首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
This study aims to examine the effect of increased salinity on the photosynthetic activity of the Mediterranean seagrass Posidonia oceanica in a laboratory mesocosm system. To do this, large rhizome fragments were transplanted in a mesocosm laboratory system and maintained at 37 (ambient salinity, control treatment), 39, 41 and 43 (hypersaline treatments) for 47 days. Pigment content, light absorption, photosynthetic characteristics (derived from P vs. E curves and fluorescence parameters), and shoot size, growth rates and net shoot change were determined at the end of the experimental period. Both net and gross photosynthetic rates of plants under hypersaline conditions were significantly reduced, with rates some 25–33% and 13–20% lower than in control plants. The pigment content (Chla, Chlb, Chlb:Chla molar ratio, total carotenoids and carotenoids:Chla ratio), leaf absorptance and maximum quantum yield of PSII (Fv/Fm) of control plants showed little or no changes under hypersaline conditions, which suggests that alterations to the capacity of the photosynthetic apparatus to capture and process light were not responsible for the reduced photosynthetic rates. In contrast, dark respiration rates increased substantially, with mean values up to 98% higher than in control leaves. These results suggest that the respiratory demands of the osmoregulatory process are likely to be responsible for the observed decrease in photosynthetic rates, although alterations to photosynthetic carbon assimilation and reduction could also be involved. As a consequence, leaf carbon balance was considerably impaired and leaf growth rates decreased as salinity increased above the ambient (control) salinity. No significant differences were found in the percentage of net shoot change, but mean values were clearly negative at salinity levels of 41 and 43. Results presented here indicate that photosynthesis of P. oceanica is highly sensitive to hypersaline stress and that it likely account for the decline in leaf growth and shoot survival reported in this and previous studies in response to even small increments of the ambient salinity.  相似文献   

2.
杨盛昌  谢潮添  陈文列 《台湾海峡》2003,22(2):145-149,T001
用焦锑酸钙沉淀的电镜细胞化学方法,研究了白骨壤叶片衰老过程中叶肉细胞Ca^2 水平的变化.结果表明,在白骨壤幼叶和成熟叶叶肉细胞中,焦锑酸钙沉淀颗粒大量出现在液池和细胞间隙中,细胞壁中也可见少量沉淀,而细胞基质中则看不到焦锑酸钙沉淀.在衰老叶中,细胞基质和细胞膜上焦锑酸钙沉淀增加,而液泡和细胞间隙中的锑酸钙沉淀则显著减少,并且叶绿体外膜部分破损,结构破坏,核膜与液泡膜内部结构模糊,叶绿素含量、净光合速率、气扎手率和蒸腾速率显著下降.Ca^2 的区域性分布的变化与植物叶片衰老密切相关。  相似文献   

3.
4.
The photosynthetic activity of Zostera marina, Zostera asiatica and Phyllospadix iwatensis shoots from populations of Hokkaido (Northern Japan) was determined using the pulse amplitude modulated (PAM) fluorometer. Several fluorescence parameters were measured as a function of irradiance and leaf age: electron transport rate (ETR), quantum yield, photochemical quenching (qP) and non‐photochemical quenching (NPQ). The leaf age determined by the leaf position in the shoot bundle strongly influenced the photosynthetic activity of Z. marina, Z. asiatica and P. iwatensis. Young leaves had the maximum electron transport rate (Zm: Leaf 1 = 15.7, Leaf 2 = 16.3; Za: Leaf 1 = 13.0, Leaf 2 = 12.2; and Pi: Leaf 1 = 12.5, Leaf 2 = 11.7) and showed higher photoprotection (NPQ) than old leaves. Among the studied seagrass species, Z. marina had the highest photosynthetic activity (ETRmax = 15.3), in accordance with the highest production in the field in comparison with the other two seagrass species. The PAM fluorometry technique showed to be effective in determining intraspecific (among‐leaves) and interspecific (among‐species) variation in seagrass photosynthetic activity.  相似文献   

5.
大亚湾浮游植物光合作用特征   总被引:1,自引:1,他引:0  
利用Phyto-PAM测量大亚湾浮游植物的光合作用能力、非化学淬灭并建立快速光曲线,同时研究浮游植物群落结构、组成、丰度和相应的环境因素,分析光合作用特征与浮游植物生长和分布的耦合关系。本次调查期间大亚湾浮游植物以集群化硅藻为优势物种,各站位最大光量子收益达到0.72。大亚湾浮游植物适应高光强,当光照达到1000μE/(m2.s)时电子传递速率逐渐达到饱和;光照达到1500μE/(m2.s)浮游植物依然可进行光合作用,叶黄素循环保护光合器官使其免受高光强损伤;当光照达到1700μE/(m2.s)时,光合器官可能受到损伤,此时电子传递速率下降,实际光量子收益接近于0。集群化硅藻能够耐受较广的光照范围及其活跃的光合特征有利于它们在全球海区的广泛分布。  相似文献   

6.
Spartina densiflora Brongn. is found in coastal marshes of south-west Spain, growing in sediments with between 300 and 3000mg Cu kg(-1) total soil DW (450-4500mg Cu kg(-1) supposing that the soil porosity is 0.5). An experiment was designed to investigate the effect of copper from 0 to 5000mgkg(-1) (64mmoll(-1)) on the photosynthetic apparatus and the growth of S. densiflora. We also determined total ash, copper, calcium, magnesium and phosphorous concentrations, as well as C/N ratio. S. densiflora survived to concentrations as high as 320mg Cukg(-1) DW in leaves, although excess of Cu diminished water use efficiency and Ca-, Mg- and P-uptake. Also, quantum efficiency of PSII, net photosynthetic rate, stomatal conductance and pigment concentrations declined with increasing external Cu. Finally, the decline in the photosynthetic function resulted in a biomass reduction of between 50 and 80% (for 600 and 5000mg Cu kg(-1), respectively).  相似文献   

7.
《Oceanologica Acta》2002,25(3-4):125-134
Photoacclimatization of zooxanthellae extracted from the coral Pocillopora verrucosa was studied through the determination of pigments, light absorption and photosynthetic parameters, for samples collected in summer and winter between 1 and 40 m on a northwestern reef of Tahiti (French Polynesia). The same measurements were also performed on phytoplanktonic samples collected at a stable oceanic site north of the island. For the zooxanthellae, the variations with depth of all the parameters were generally of small amplitude. Seasonal differences were also observed. The photosynthetic to non-photosynthetic pigments ratio was higher at depth in both seasons and was higher in winter. The intracellular concentration of chlorophyll a and photosynthetic pigments was higher in winter, as was the photosynthetic pigments/chlorophyll a ratio, whereas the non-photosynthetic pigments/chlorophyll a ratio was higher in summer. Variations in the light absorption properties were also small. The photosynthetic parameters showed limited changes with depth with the largest variations (a factor of ∼2) observed for PBmax. The trends observed for the phytoplankton assemblage were generally of much higher amplitudes than for the zooxanthellae (e.g. for photosynthetic to non-photosynthetic pigments ratio or the saturation parameter, Ek). These results suggest that, in the very clear Polynesian waters, the amount of energy that reaches the zooxanthellae of Pverrucosa is not variable enough in the 1–40 m depth range to result in a drastic modification of the photosynthetic apparatus of the algae.  相似文献   

8.
Biological invasions represent one of the significant components of global change. A comparative study of invaders and co-occurring natives is a useful approach to gaining insights into the invasiveness of exotic plants. Spartina alterniflora, a C4 grass, is a widespread invader in the coastal wetlands in China and other regions of the world. We conducted a comparative study of S. alterniflora and native C3 species, Phragmites australis and Scirpus mariqueter, in terms of their gas exchange and efficiencies in resource utilization. We tested the hypothesis that S. alterniflora has growth-related ecophysiological advantages over the natives in its non-native range, which result in its rapid growth and enhance its invasiveness. Photosynthesis, leaf area index (LAI), specific leaf area (SLA), and the efficiency of resource use (light, water, and nitrogen) were examined monthly for eight months in 2004. Overall, S. alterniflora had greater LAI, higher maximal net photosynthetic rate (Amax), and longer growing season than those of the native species. On average, the efficiencies of S. alterniflora in light, water, and nitrogen utilization were respectively 10.1%, 26.1%, and 33.1% higher than those of P. australis, and respectively 70.3%, 53.5%, 28.3% higher than those of S. mariqueter. However, SLA of S. alterniflora was significantly lower than those of P. australis and S. mariqueter. Although there was no general pattern in the relationship between invasiveness and plant photosynthetic types, in this study, most of the ecophysiological characteristics that gave S. alterniflora a competitive advantage in the Yangtze River estuary were associated with photosynthetic pathways. Our results offer a greater understanding of the relationship between invasiveness and plant photosynthetic type. Our results also indicate that LAI and the length of the photosynthetic season, which vary with habitats, are also important in invasion success.  相似文献   

9.
Abstract. In view of proposed human use of seagrass production the influence of cropping on the growth of Posidonia oceanica (L.) DELILE was investigated. Removal of photosynthetic tissue reduces productivity throughout most of the growth season. This is consistent with the observed low natural grazing rates in aquatic macrophytes. A high mortality of shoots points to possible irreversible damage to the meadow. Harvesting of Posidonia should therefore be restricted to the end of the leaf growth period in early fall.  相似文献   

10.
As part of two USJGOFS cruises, we investigated spatial variability in phytoplankton properties across the strong environmental gradient associated with the Antarctic Polar Frontal Zone during late austral summers of 1997 and 1998. Cell properties, including size and an index of pigment content as well as photosynthetic efficiency (as indicated by relative variable fluorescence), changed dramatically across this frontal region. A general trend toward reduced photosynthetic efficiency south of the Polar Front was correlated with low dissolved iron concentration and is consistent with physiological iron limitation in the phytoplankton. We detected no significant differences in photosynthetic efficiency among different size classes of the dominant pico- to nanophytoplankton, despite a systematic community level shift toward larger sized cells south of the Polar Front. In contrast to other cells, those classified as cryptophyte algae showed relatively high photosynthetic efficiency in low iron waters; however, this group was never found in high abundance. One group, all cells ⩽2 μm, showed an unexpected increase in intracellular pigment content (based on single cell chlorophyll fluorescence measurements) south of the Polar Front where dissolved iron concentration and the cells’ relative abundance were low. Overall, these results suggest that group- or size-specific differences in physiological status were not directly regulating community structure in the pico- to nanophytoplankton during the late summer season; other processes, such as differential grazing or sinking losses, must be important.  相似文献   

11.
Due to its rapid growth, the introduced mangrove species Sonneratia apetala from Bangladesh has been widely used in mangrove restoration in southeastern China since 1985. As an indigenous mangrove species in Hainan, China, Sonneratia caseolaris was also planted in Guangdong Province for afforestation purposes. Both species have developed well in their new habitats, but their ecophysiological differences with the native mangrove species have not been studied. In this study, leaf gas exchange, water and nitrogen use efficiencies of two Sonneratia species were compared with those of selected native mangrove species (Avicennia marina, Aegiceras corniculatum, Kandelia candel, and Excoecaria agallocha) in Hainan and Shenzhen. The introduced S. apetala maintained lower carbon assimilation rate (A) and photosynthetic nitrogen use efficiency (PNUE) than the indigenous S. caseolaris. In Shenzhen, the two introduced Sonneratia had comparable photosynthetic rates and water use efficiency (WUE) with the native mangrove species, except that PNUE in S. caseolaris was significantly higher than in the native mangrove species. The two Sonneratia species showed significant overlap in PNUE and long-term WUE. Photosynthetic parameters derived from leaf photosynthetic light–response curves and ACi curves also suggested lower carbon assimilation capacities for the introduced Sonneratia than for the native mangrove species in both study sites. The lower light compensation point (LCP) of two introduced Sonneratia in both study sites also indicated a better adaptation to a low light regime than the native mangrove species. The results of photosynthetic capacities indicated that the introduced mangrove species have little competitive advantage over local native mangrove species in their respective new habitats.  相似文献   

12.
Cyanobacteria have flexible photosynthetic apparatus that allows them to utilise light at very low levels, making them ideal symbionts for a wide range of organisms. Sponge associations with cyanobacteria are common in all areas of the world, but little is known about them. Recent research has revealed new cyanobacterial symbionts that may be host specific and two major clades, ' Candidatus Synechococcus spongiarum ' and Oscillatoria spongeliae , that occur in widely separated geographic locations in unrelated sponge hosts. These clades may represent a cluster of closely related symbiont species, or may be single species that are maintained by periods of horizontal transmission over large distances. Erroneous assumptions regarding the importance of cyanobacterial symbionts to the survival of individual sponges or species may arise from cyanosponges being deemed to be phototrophic or mixotrophic without studies of their photophysiology. This review brings together recent and past research on cyanobacterial associations with sponges, including their biogeography, phylogeny, host specificity, and ecology.  相似文献   

13.
Properties of the light saturation curve of photosynthesis and ribulose-1,5-bisphosphate carboxylase (RuBPC) activity are shown to change qualitatively in a natural population of marine phytoplankton during a spring bloom. Evidence is presented to show that these changes constitute photoadapative responses to increasing irradiance. As irradiance increased during the bloom, both the level of light-saturated photosynthesis (Pm) and the initial slope of the light saturation curve (α = photosynthetic efficiency) increased whether those parameters were normalized to chlorophyll a concentration (Pmb, αb) or to cell numbers (Pmc, αc). The magnitudes of these changes were such that Ik (= Pm/α, the photoadaptation parameter) did not change, but Im, the light intensity at which photosynthesis becomes saturated, increased. RuBPC activity, both chlorophyll a (RuBPCb) and cell number normalized (RuBPCc), also increased during the bloom. We suggest that these adaptations were achieved by simultaneously increasing the number of photosynthetic units, proportionately decreasing the photosynthetic unit size, and increasing both the concentrations of the enzymes of the dark reactions and possibly also of photosynthetic electron transport components.We also observed diminished levels of photoinhibition in the high light adapted cells late in the bloom and have suggested that this was a consequence of the same suite of physiological changes.In situ carbon fixation per cell increased during the bloom whereas no change occurred in this parameter when normalized to chlorophyll a concentration. Although these photoadaptive responses thus permitted carbon to be fixed in situ more rapidly per cell, at a constant efficiency with respect to investment of energy in the photosynthetic apparatus, they did not result in a change in growth rate. Based on consideratios of the role of time scale in physiological adaptation, however, it is suggested that the observed alterations in photosynthesis with increasing irradiance might permit a cell to more rapidly fill an energy quota for division, possibly an advantage in a mixing environment in which energy is patchily distributed, both spatially and temporalyy.Phosphoenolpyruvate carboxylase activity when normalized to chlorophyll a (PEPCb) did not change during the bloom while chlorophyll a normalized dark carbon fixation decreased sharply and was quantitatively small compared to PEPCb. On this basis and considering that RuBPCb increased during the bloom, it is suggested that, although PEPC may be involved in dark carbon fixation, its most important quantitative role is probably an indirect one in light dependent photosynthesis.We have also considered the relevance of laboratory results on photoadaptation to interpretations of field studies and have suggested that batch culture studies must be treated with caution but that turbidistat and semi-continuous methods provide reasonable simulations of natural conditions.  相似文献   

14.
Extracellular release of photosynthetic products by a pelagic blue-green alga,Trichodesmium thiebautii, was scrutinized in relation to pre-treatments in14C-method for measuring the primary productivity.The extracellular release increased markedly by the pre-treatments with such strong fixative solutions as formaldehyde and mercuric chloride. In such a case, the amount of extracellular fraction reached even almost 78 % of the total photosynthates. The extracellular release of photosynthates was dependent both on light intensity and on physiological state of algal cells. When photosynthesis was terminated by a fixative, the extracellular release was noticed even just after the fixation, and it increased with time. Thus, it appears to be difficult to deduce the real photosynthetic production capacity from the amount of cellular fraction only.The amount of extracellular fraction for unfixed samples filtered immediately after the incubation was less than 8 % of the total photosynthetic products inT. thiebautii. This value is nearly comparable to the amount of excretion reported in many cultured algae.  相似文献   

15.
A freshwater green microalgae Chlorella sp., UMACC344 was shown to produce high lipid content and has the potential to be used as feedstock for biofuel production. In this study, photosynthetic effciency, biochemical pro?les and non-targeted metabolic pro?ling were studied to compare between the nitrogen-replete and deplete conditions. Slowed growth, change in photosynthetic pigments and lowered photosynthetic effciency were observed in response to nitrogen deprivation. Biochemical pro?les of the cultures showed an increased level of carbohydrate, lipids and total fatty acids, while the total soluble protein content was lowered. A trend of fatty acid saturation was observed in the nitrogen-deplete culture with an increase in the level of saturated fatty acids especially C16:0 and C18:0, accompanied by a decrease in proportions of monounsaturated and polyunsaturated fatty acids. Fifty-nine metabolites, including amino acids, lipids, phytochemical compounds, vitamins and cofactors were signi?cantly dysregulated and annotated in this study. Pathway mapping analysis revealed a rewiring of metabolic pathways in the cells, particularly purine, carotenoid, nicotinate and nicotinamide, and amino acid metabolisms. Within the treatment period of nitrogen deprivation, the key processes involved were reshu ? ing of nitrogen from proteins and photosynthetic machinery, together with carbon repartitioning in carbohydrates and lipids.  相似文献   

16.
Occurrence of the depth differences in pigment composition and photosynthetic properties of marine phytoplankton were examined in relation to the spectral changes of light with depth. Phytoplankton were taken from various depths in the northwestern North Pacific, and their absorption spectra were determined with intact cells and in 90% acetone extract. The photosynthetic activities of phytoplankton were concurrently measured under blue, green, red and white light. The difference in absorption spectra for the surface and deeper samples was considerably small, indicating that the prevailing green or blue light in the deeper layers may have little significance for depth-variations of the pigment composition in marine phytoplankton. The depth differentiation in the shape of the light-photosynthesis curve was marked in a well stratified water column but no active response of deeper phytoplankton to green light could be confirmed. The photosynthetic efficiencies of phytoplankton for blue and green light were approximately 105–115 % and 80–90 % of white light, respectively, irrespective of sampling depth.Contribution No. 261 from Shimoda Marine Biological Station  相似文献   

17.
光合细菌在海湾扇贝工厂化育苗生产中的应用研究   总被引:3,自引:0,他引:3  
1999年2月6日-4月10日,在青岛市崂山区海水育苗场80m3水体育苗池中,进行了几株光合细菌混合菌液作为海湾扇贝(Argopectonirradians)幼体及稚贝培育期水质净化剂及辅助饵料育苗生产试验,取得了显著效果。浮游幼体生长速度提高了18.3%,浮游期成活率提高20.3%,幼本提前30个小时出现眼点,稚贝变态率提高14.5%,产量提高94%。  相似文献   

18.
钝顶螺旋藻在LED光电板式光生物反应器中的培养研究   总被引:1,自引:1,他引:1  
分析研究了LED集成光电板光辐射强度对螺旋藻生物量浓度、螺旋藻比生长速率、藻光合放氧量及藻光合色素等螺旋藻生长特性的影响,并分析了LED集成光电板辐射红光及红、蓝组合双波长光质与冷白荧光灯光质对藻类各有效组成部分的影响。结果表明,在光辐射强度尚未达到饱和光辐射强度之前,光辐射强度决定螺旋藻的比生长速度;超过饱和光辐射强度,光合作用产氧量趋向恒定,说明螺旋藻光合器官具有光合稳定性;与冷白荧光日光灯组相比,LED集成光电板射红光及红,蓝组合双波长光质非常适合螺旋藻的生长并促进细胞干重、叶绿素、藻胆蛋白的增加,在相同的光辐射强度[275.9μmol/(m^2.s)]下,采用LED集成光辐射板辐射单色红光与冷白荧光日光灯组相比,藻胆蛋白、藻细胞干重吸绿素a分别增加43.39%、98.40%,51.563%。  相似文献   

19.
用透射电镜技术研究了秀丽白虾精子发生过程中早期生精细胞的结构特征。结果表明:精原细胞可分为原始型和发育型两种。原始型精原细胞体积较小,形状不规则,整个细胞呈现极高的电子密度,胞质中线粒体多。早期发育型精原细胞度过非繁殖期后开始生长,内质网、线粒体增多。初级精母细胞胞质中细胞器结构典型,数量达到最多。次级精母细胞期,线粒体开始解体并相互融合;高尔基体、内质网形态不典型,胞质中充满了不规则的囊泡。  相似文献   

20.
Influence ofwaterlogging time on the growth ofKandeliacandel(L.) Druce seedlings grown for 70 d in the artificial-tidal tanks' simulated semidiumal tide under greenhouse is studied. Sand and soil act as the substrate and artificial sea-water with salinity of 15 is used in cultivation. Shorter waterlogging time (inundated for about 2 ~ 4 h) promotes thegrowth of K. candel seedlings, while longer time(inundated more than 8 h) or no waterlogging(0 h) inhibits theirgrowth. The number and length of aerating roots increase with the increase ofwaterlogging time. Under existing condi-tions, the optimalwaterlogging time for the growth of K. canoel seedlings is about 2 ~ 4 h in every tide cycle. Com-pared with other treatments, the 2 h sanded treatments obtain the highest biomass of seedlings, have the lowest massloss ofhypocotyl and broaden the photosynthetic area by increasing the area per leaf after 70-d cultivation. And the soiltreatments have the similar tendeney. However, waterlogging for 8 h in every tide cycle is critieal for normal develop-ment of seedlings. K. candel seedlings are highly tolerant to waterlogging and a proper waterlogging is beneficial to thegrowth ofK. candel seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号