首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The vorticity analysis technique was applied to measure the different lithological units,such as schist,metagranite and metavolcano-sedimentary rocks,which are present in the Halaban region.This work aims to interpret the relationship between the different lithologies and the tectonic setting,in order to elucidate the nature of kinematic analysis in the Halaban region.The kinematic analyses were applied to feldspar porphyroclasts,quartz and hornblende for twentysix samples.The kinematic vorticity number (W_m) for deformed rocks in the study area ranged from~0.6 to 0.9.The direction of the long axes for finite strain data (X axes) revealed a WNW trend with shallow dipping.The direction of the short axes for finite strain data (Z axes) were represented by vertical with associated horizontal foliation.The results of the kinematic vorticity and strain analyses are characterized by simple shear with different degrees of deformation in the Halaban region.Furthermore,our finite strain data shows no significant volume change during deformation.The subhorizontal foliation was synchronized with thrusting and deformation.Furthermore,throughout the overlying nappes,the same attitudes of tectonic contacts are observable,the nappes in the orogens being formed from simple shear deformation.  相似文献   

3.
Kassem  O. M. K.  Zaidi  F. K.  Alamri  Y.  Al-Hashim  M. 《Geotectonics》2022,56(2):228-240
Geotectonics - The Ajjaj shear zone is a part of the regional-scale Quazaz–Ajjaj–Hamadat (QAH) shear zone that controls the structure of the northwestern Arabian Shield. The finite...  相似文献   

4.
The Mizil gneiss dome is an elliptical structure consisting of an amphibolite-facies volcanosedimentary mantle and a gneissic granite core. This dome is located at the northern tip of the Ar Rayn terrane only a few kilometers from the eastern edge of the Arabian shield. Previous investigations have shown the intrusive core to be an adakitic diapir with a U–Pb zircon age of 689 ± 10 Ma; this age is 50–80 Ma years older than other granites in this terrane. Vorticity analysis was carried out on samples from the intrusive core and volcanosedimentary cover; the Passchier and Rigid Grain Net (RGN) methods were used to obtain the kinematic vorticity number (Wk) and the mean kinematic vorticity number (Wm). The Wk and Wm values show a marked increase towards the south; such a pattern indicates a N-S movement of the core pluton thus creating an inclined diapir tilted to the south. Analogue experiments simulating the flow of magma diapirs rising form a subducted slab through the mantle wedge have shown that supra-subduction zone oblique diapirs are produced close to the trench and are elongated normal to the convergence direction as is the case in the Mizil pluton. This effect was found to increase with increasing slab dip due to enhanced drag along the upper surface of the subducted lithospheric plate. Spontaneous subduction which is often associated with rollback resulting in back-arc extension and steep dipping slabs is thought to have occurred in the Mozambique Ocean by 700 Ma. The Mizil pluton is coeval with the back-arc Urd ophiolite from the adjacent Dawadimi terrane, and could therefore have been produced by incipient subduction of a relatively cold slab as observed in many Pacific margin adakites. The tectonic evolution of the eastern shield, as deduced from the Mizil dome and other data from Ar Rayn and neighboring terranes, begins with the subduction of >100 My-old lithosphere beneath the Afif terrane resulting in back-arc spreading and the splitting of the Ar Rayn arc from the Afif microplate, with the concomitant production of a small volume of adakite melt. Other arc terrane(s) docked east of Ar Rayn with the westward-directed subduction still going but a lower angles and greater depth due to trench jump; this phase produced the more prevalent non-adakitic group-1 granites. A major collisional orogeny affected the entire eastern shield between 620–600 Ma and sutured the eastern shield terranes with northern Gondwana.  相似文献   

5.
Kassem  O. M. K.  Ibrahim  El Kh. H.  Lashin  A.  Almutari  M. 《Geotectonics》2019,53(6):752-764
Geotectonics - The present study deals with the Jabal Tays ophiolite area, which was affected by Al Amar-Idsas fault. It is one of the most important tectonic features in the Eastern Arabian...  相似文献   

6.
7.
8.
Recent work on outer arcs and collision belts provides for the first time a possible model for evolution of part of the Arabian Shield. The thick volcanic, volcaniclastic and sedimentary succession of the Proterozoic Halaban Group in the east of the Shield is intruded by synto late tectonic plutons and resembles Cenozoic subduction-related magmatic areas. West of the Halaban Group, and separated from it by a major east-dipping thrust with associated ultrabasic rocks and carbonates, are folded chlorite—sericite metasediments of the Abt Schists, comparable to Cenozoic outer arc successions. West of and beneath the Abt Schists calcareous and arenaceous metasediments of the Ar-Ridaniyah Formation are analogous to Mesozoic—Cenozoic continental margin shelf facies of the subducting plate. Eastward subduction with magmatism (Halaban Group) and tectonic emplacement of ocean-floor sediments (Abt Schists) was followed by continental collision and eastward underthrusting by the Ar-Ridaniyah Group and cratonized central part of the Shield. Collision-related post-tectonic granites were emplaced during and following the collision.  相似文献   

9.
The present study focuses on the gold mining in Mahd Ad Dahab region of Saudi Arabia. The study aims to assess the spatial relationship between tectonic contacts in Mahd Ad Dahab area and to provide a meaningful hypothesis relating gold metallogeny to the evolution of the Arabian Shield. Distribution and localization of gold occurrences in the study area was envisaged based on the different styles of microstructures and the major deformation phases affecting the area. The detailed petrographical and mineralogical investigations indicate that the metavolcanic rocks at the Mahd Ad Dahab gold mine area can be classified into metabasalt, metaandesite, and the felsic varieties (metadacite, metarhyodacite and metarhyolite) associating their metapyroclastics (conglomerate and tuffs). Furthermore, quartz forms allotriomorphic crystals which exhibit wavy extinction, deformational lamina and foliation due to subsequent deformations. Furthermore, we conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. Furthermore, contacts formed during intrusion of plutons with some faults in the Mahd Ad Dahab area under brittle to semi-ductile deformation conditions. In this case, finite strain accumulated during superimposed deformation on the already assembled nappe structure. It indicates that the contacts formed during the accumulation of finite strain.  相似文献   

10.
The present study aims to shed light on the mechanism of formation of the Oligo-Miocene oolitic ironstones of Haddat Ash Sham area, Saudi Arabia. These ironstones are enclosed within the middle part of the Oligo-Miocene siliciclastic succession of the western part of the Arabian Shield, western Saudi Arabia. The ironstone beds were formed during marine incursion and creation of short-lived starved time periods of high organic matter activities, ferrous iron, and low clastic input. The depositional and diagenetic processes involved in the formation of Haddat Ash Sham ironstones are summarized here as follows: (1) the deposition of detrital components (i.e., amorphous iron-bearing clays admixed with silt and sand-sized quartz grains) and their distribution by the waves and current actions in areas of different water depths (bars and inter-bar areas); (2) the deposition of the iron-bearing clays in slightly reducing transgressive conditions (dysaerobic zone) led to the authigenesis of green marine chamositic clays of variable mineralogical and chemical compositions according to the predominated depositional environments; and (3) in the upper parts of the depositional cycles, the iron-bearing clays become admixed with detrital quartz grains which resulted in the formation of silty and sandy ironstones of low iron content. The diagenetic processes led to the oxidation of the green chamositic clays and formation of amorphous Fe-oxyhydroxides, ferrihydrites, goethite, and hematite. These iron mineral phases are related to each other and show progressive steps of transformation during the diagenetic processes. The iron ooids represent in situ formed irregular domains formed during the diagenetic crystallization and dehydration of the amorphous iron oxyhdroxides resulted from the diagenetic oxidation of green chamositic clays. This is supported by the absence of detrital cores of the iron ooids, the gradational contact between the iron ooids and the enclosing matrix and also by the presence of many ooids of unclear and ill-defined internal structure.  相似文献   

11.
12.
The Jabal Al-Hassir ring complex is located between latitudes 19°21′ and 19°42′ N,  and longitudes 42°55′ and 4312′ E, Southern Arabian Shield. It is an alkaline to highly fractionated calc-alkaline granite complex consisting of an inner core of biotite granite followed outward by porphyritic sodic-calcic amphibole (ferrobarroisite) granite. U–Pb zircon geochronology indicates that the Jabal Al-Hassir ring complex was emplaced at ca. 620 Ma. The granites display highly fractionated geochemical features (i.e., Eu/Eu* = 0.05–0.35; enrichment of K, Rb, Th, U, Zr, Hf, Y and REE; depletion of Ta, Nb, Ba, Sr, P, Eu, and Ti). Jabal Al-Hassir granites are post-collisional plutonic rocks and contain abundant microcline perthite and sodic-calcic amphibole, sharing the petrological and chemical features of A2-type granites. Sri values range from 0.70241 to 0.70424, are similar to those expected for magmas extracted from a Neoproterozoic depleted source and much lower than what would be expected, if there was minor involvement of pre-Neoproterozoic continental crust. The geochemical characteristics indicate that their magma was most plausibly represented by partial melting of juvenile lower crust following the collision between East and West Gondwana at the final stage of the Arabian Shield evolution. The data presented in this study are therefore consistent with an intraplate, post-collisional magmatism formed at the beginning of a transition from convergent to extensional tectonics.  相似文献   

13.
14.
15.
Wadi Qudaid is present about 120 km northeast of Jeddah, Saudi Arabia. The area includes Precambrian Arabian Shield, Tertiary sedimentary rocks, Tertiary basic volcanics (harrat), and finally Quaternary wadi deposits which represent the main aquifer of Wadi Qudaid area. The present study indicates the presence of pronounced geochemical variations in the groundwater characters along the main channel of Wadi Qudaid from the southwestern part (downstream) to the northeastern (upstream) part. The groundwater-bearing horizon is thicker in the downstream part than the upstream part. The study also revealed that the groundwater is of good quality in the upstream (NE) part than the downstream (SW) part. This is related to the addition and depletion of many elements during the groundwater trip from NE to SW and the addition and depletion of some elements. The downstream part is of high hardness and TDS when compared with the upstream part. Also, the downstream part is of high bisnous element (As, Co, Ni) than the upstream part. The groundwater of the southwestern part of Wadi Qudaid are free from the following elements: i.e., Al, Mn, Fe, Ni, Cu, Zn, and Pb.  相似文献   

16.
ABSTRACT

The Bir Umq ophiolite is one of the most important ophiolitic successions in the Arabian Shield, and represents an excellent case for the study of the tectonomagmatic evolution of the earliest Precambrian events in the juvenile part of the Arabian-Nubian Shield (ANS). It is a dismembered ophiolite, which includes a serpentinized peridotite with small amounts of gabbro and mélange, and is overlain by the Sumayir formation. The mantle section of the Bir Umq ophiolite has been pervasively sheared and folded during its emplacement and is extensively serpentinized, carbonated and silicified, resulting in the common development of magnesite and listwaenite along the shear zones. Listwaenite occurs in the form of upstanding ridges due to its resistance to erosion. Antigorite is the main serpentine mineral, which, however, has low amounts of lizardite and chrysotile, indicating that the present serpentinites formed by prograde metamorphism. The ophiolitic rocks of Bir Umq have undergone regional metamorphism up to the greenschist to amphibolite facies. The presence of mesh and bastite textures indicates harzburgite and dunite protoliths. The serpentinized peridotite preserves rare relicts of primary minerals such as olivine, pyroxene and Cr-spinel. The serpentinized ultramafics of Bir Umq have high Mg# [molar Mg/(Mg+Fe2+); 0.90–0.93), low CaO, and Al2O3 contents similar to that of the environment of the suprasubduction zone. Additionally, they are characterized by the depletion of some compatible trace elements (e.g., Nb, Sr, Ta, Zr, Hf and REE), but show a wide variation in the Rb and Ba. Moreover, they are enriched in some elements that have affinities for Mg-rich minerals such as Ni, Cr, V, and Co. Fresh relics of olivine have high Fo (av. 0.91) and NiO (av. 0.42) contents, similar to those in the mantle olivine. The fresh Cr-spinel has high Cr# (0.68) and low TiO2 content (av. 0.11), similar to those in modern fore-arc peridotites. The composition of both orth- and clinopyroxenes confirms the fore-arc affinity of the studied ultramafics. The present study indicates that the protoliths of the serpentinized ultramafics of Bir Umq have high partial melt degrees, which is consistent with the characteristics of ultramafic rocks formed in a subarc environment (fore-arc) within a suprasubduction zone system.  相似文献   

17.
Wadi Al-Marwah area is located in the northwestern part of the Arabian Shield, Saudi Arabia. It is mainly covered by Precambrian igneous and sedimentary rock units. This area was not subjected to previous detailed lithological or structural mapping. This study aims to apply supervised classification technique of remotely sensed digital satellite data of Landsat 7 for detailed lithological and structural mapping of the area. The fusion between multispectral Enhanced Thematic Mapper (ETM)+ data and high-resolution panchromatic ETM+ band-8 produced a color composite fused image for the study area, scale 1:50,000. The structural lineaments of the study area were extracted and interpreted from the digital imageries data. Little discrepancies or improvements were detected when combining the supervised classification results with the Landsat ratios or principal component analysis. These highlighted the benefits of multispectral classification, especially in terms of lithologic discrimination. The overall results of image processing techniques, applied in this work, were excellent and succeeded in the performance of a more detailed and accurate lithological and structural maps (scale 1:50,000) than the previous published maps for the investigated area.  相似文献   

18.
The present study aims to evaluate a relationship between the mineralogy and structural analysis in the Halaban area and to document the tectonic evolution of Halaban and Al Amar faults. The collected samples were taken from deformed granitiods rocks (such as granite, gneisses and tonalite), metasedimentary, metavolcanic, metagabbro and carbonate rocks are trend to NE-SW with low dip angle in the Halaban area. These samples were 8 from granite, 14 metagabbro, 6 metavolcanics, 5 tonalite, 6 metasedimentary, 10 gneisses and 8 carbonate rocks. Our results are described for the different axial ratios of deformed rocks as the following: XZ sections range from 1.10 to 4.60 in the Fry method and range from 1.70 to 2.71 in the Rf/? method. YZ sections range from 1.10 to 3.34 in the Fry method and range from 1.62 to 2.63 in the Rf/Phi method. In addition, XY sections range from 1 to 3.51 in the Fry method and range from 1 to 1.27 in the Rf/? method for deformed granite rocks, metasedimentry rocks, and metagabbro. The stretch axes for measured samples in the X direction axes (SX) variety from 1.06 to 2.53 in the Fry method and vary from 1.20 to 1.45 in the Rf/? method. The values of the Y direction axes (SY) vary from 0.72 to 1.43 in the Fry method, which indicates contraction and extension in this direction and vary from 1.13 to 1.37 in the Rf/? method which indicates extension in this direction. Furthermore, the Z direction axes (SZ) varies from 0.09 to 0.89 in the Fry method and from 0.52 to 0.71 in the Rf/? method. The stretches axes in the Z direction (SZ) show a vertical shortening about 11% to 91% in the Fry method and show vertical shortening about 29% to 48% in the Rf/? method. The studied rock units are generally affected by brittle-ductile shear zones, which are sub-parallel to parallel NW or NNW trend. It assumed that different rock types of have similar deformation behavior. Based on these results, it is concluded that the finite strain is accumulated during the metamorphism after that was started the deformation by thrusting activity. The contacts between the different rock types were deformed during thrusting under semi-brittle to ductile deformation conditions by simple shear. A component of vertical shortening is also involved causing subhorizontal foliation in the Halaban area.  相似文献   

19.
As Suqah area is a NW–SE trending wadi present in the west central part of the Arabian Shield. It comprises Precambrian–Cambrian basement rocks, Cretaceous–Tertiary sedimentary succession, Tertiary–Quaternary basaltic lava flows, and Quaternary–Recent alluvial deposits. The magnetic anomalies indicated the presence of many recent local buried faults. These affected the distribution of the clastic sedimentary succession and seem to have controlled the deep groundwater aquifers. Groundwater movement is towards the west and northwest, following in general the surface drainage system. Hydraulic gradient varies greatly from one point to another depending on the pumping rates and cross-sectional area of the aquifer in addition to its transmissivity. The detailed results of the resistivity and seismic measurements were integrated with those obtained from test holes drilled in the study area. Groundwater occurs mainly in two water-bearing horizons, the alluvial deposits and within the clastic sedimentary rocks of Haddat Ash Sham and Ash Shumaysi formations. The shallow zone is characterized with a saturated thickness of 3–20 m and water is found under confined to semi-confined conditions. Water levels were encountered at depths varying from 3 to 16 m in the alluvial wadi deposits and from 18 to 62 m in the sedimentary succession. The combinations of vertical electrical sounding, horizontal electrical profiling, and drilling led to the identification of groundwater resources in the study area. Resistivity soundings clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Significantly, the majority of the groundwater was found within the deep confined aquifer gravelly sandstone, rather than in the shallow unconfined aquifer.  相似文献   

20.
Mount Ablah is a mining prospect, hosted by a dioritic igneous body that is bound to the east by greenschist grade metamorphic rocks and to the west by Ablah group volcano–sedimentary rocks. Rock units of Mount Ablah area were remapped through field investigations, petrological studies, and analysis of enhanced TM Landsat data. Ablah group rocks were divided into lower tuffaceous and upper epiclastic units. The epiclastic unit was divided into three subunits. During remapping, a sliver of serpentinite was discovered, which occurs between the dioritic igneous body and Ablah group rocks. The greenschist grade metamorphic rocks were intruded by Late Proterozoic quartz diorite prior to deposition of Ablah group rocks. The epiclastic unit is an infracambrian molassic unit that filled a graben, known as the Ablah graben. The Mount Ablah area was intruded by post-tectonic granitic rocks and affected by two superimposed F1-F2 folding events, associated with thrust and dextral faults, respectively. The first folding event involved N–S folding and thrusting. Simultaneously, stress partitioning at E–W accommodations zones produced E–W minor folds (F2) and associated E–W dextral faults. The F1–F2 folding events are contemporaneous with the Pan African deformation event, also known as the East African Orogeny (EAO). The EAO is infracambrian in age and culminated in development of the Najd sinistral fault system. The E–W dextral faults were probably reactivated during Cenozoic Red Sea rifting. The Ablah graben's infracambrian sedimentary rocks, such as siltstone, sandstone, and limestone that are mainly bound within the Ablah graben were not deformed prior to F1–F2 folding. Thus, the upper epiclastic unit of the Ablah group rocks is rheologically different from the surrounding greenschist rocks, responded to the late E–W compression in a more ductile manner than the surrounding greenschist rocks. Therefore, the Ablah graben was inverted, refolded, and crosscut by E–W dextral faults during the infracambrian EAO event, prior to development of Najd sinistral fault system, which are evident in Asir Terrane and crosscut Ablah graben.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号