共查询到20条相似文献,搜索用时 0 毫秒
1.
基于随机森林算法的近地表气温遥感反演研究 总被引:1,自引:0,他引:1
近地表气温是城市热环境的重要表征,是改变和影响城区气候的重要因素。为获得空间上连续的近地表气温,本文以北京市为研究区,利用Landsat5/TM数据计算分别得到地表温度、归一化植被指数、改进的归一化差异水体指数、地表反照率、不透水面盖度,并结合气象站点气温和高程作为输入参数建立随机森林模型反演近地表气温。结果表明,随机森林反演的近地表气温平均绝对误差(MAE)为0.80 ℃,均方根误差(RMSE)为1.06 ℃,与传统多元线性气温回归方法相比,平均绝对误差(MAE)和均方根误差(RMSE)分别提高0.06 ℃和0.09 ℃。研究表明,利用随机森林模型反演近地表气温是可行的,并且具有一定的优越性。此外,对随机森林模型的输入参数进行重要性分析,地表温度对气温反演模型的影响最大,其次为高程。 相似文献
2.
本文对近20年来中国地表气温变化估算方法进行了全面的总结,并对不同研究者所采用的资料、时间尺度及研究结果进行了对比分析。结合当前国际上应用较多的几种升温估算方法,本文以1970-2007年的气温数据为基础,分别应用直接算术平均法、逐站计算法、区域面积加权法、一级差分法和空间插值法,对中国大陆近40年的升温幅度分别进行了估算,从结果的对比分析中揭示中国地表气温变化估算中存在的不确定性:中国大陆地区近40年来的增温趋势在0.30~0.43℃/10a之间,升温幅度在1.16~1.56℃之间;冬季升温最为显著,夏季升温最少;整体上北方升温幅度高于南方。不同计算方法计算得到的增温速率在绝对值上有着一定差异,但整体趋势是相同的。 相似文献
3.
卫星遥感反演得到的地表温度可用于近地表气温的估算,但现有方法的估算精度仍有进一步提升的空间。为了获取空间上连续且精度较高的近地表气温,本研究以四川省为例,首次将高精度曲面建模(HASM)用于遥感和气温实测数据的融合,并将综合了气温、地表温度、海拔、坡度、坡向的地理加权回归(GWR)拟合结果作为HASM模型的初始温度场,进而采用此种结合HASM和GWR的求解算法(HASM-GWR),融合MOD11C3地表温度产品与190个气象台站的气温实测数据,开展省级尺度近地表气温估算,并通过比较HASM-GWR、GWR以及普通线性回归(OLS)3种方法的估算精度,评估各模型对近地表气温的估算效果。结果表明,相比于传统估算模型,采用HASM-GWR数据融合方法能有效提高近地表气温的估算精度。采用该方法的近地表气温估算残差,72%介于-1~1 ℃,90%介于-2~2 ℃;且与GWR和OLS模型相比,估算结果的均方根误差(RMSE)分别降低了25.42%和39.83%。 相似文献
4.
陆地表面温度是描述区域或者全球范围内陆地表面与大气的相互作用和能量平衡最重要的环境参数之一。针对目前尚未有遥感卫星能够同时提供具有高时间和高空间分辨率的地表温度产品的问题,国内外学者发展了多种对低空间分辨率的地表温度进行降尺度的算法。然而,由于对地表温度解释变量和降尺度模型的选择往往具有区域局限性,导致了降尺度模型的泛化能力受到了一定的限制。本文首先评估了地表反射率、遥感光谱指数、地形因子、地表覆盖、经纬度以及基本状态变量6类环境参量与地表温度之间的相关关系,并在此基础上筛选出最佳解释变量;同时,结合在非线性回归问题上表现比较优秀的随机森林算法,建立了一种鲁棒性的基于随机森林算法地表温度降尺度模型(RRF)。本文选取了中国范围内具有代表性的11个地区作为主要研究区,将空间分辨率为1 km的MODIS地表温度产品降尺度至90 m。以北京市2个典型地表类型的子区域为代表研究区,通过与传统的基于归一化植被指数与地表温度相关关系的TsHARP模型,以及基于红波段和近红外波段以及地表高程作为尺度因子建立的简单Basic-RF模型的对比分析可得,RRF模型在2个子研究区降尺度结果均优于TsHARP模型和Basic-RF模型,其均方根误差分别为2.39 K和2.27 K。通过进一步对2个子研究区训练的RRF进行交叉验证,证明在一个研究区训练的RRF应用至另一研究区的降尺度时,RRF模型表现出了较好的鲁棒性,降尺度结果的均方根误差分别为2.56 K和2.44 K,精度误差相差仅为0.17 K。通过将RRF应用于中国范围内的多个研究区,结果表明利用少量训练数据构建的RRF模型适用于大范围的区域,地表温度降尺度结果都能取得较好的精度。 相似文献
5.
采用2019-01~2022-03共90景Sentinel-1A卫星影像,基于PS-InSAR技术对天津市及其周边地区(下文简称“天津区域”)地表形变进行监测分析。结果表明,沉降主要发生在天津市外围,其中邻近天津市的河北省胜芳镇最大地面沉降速率达80 mm/a。为探究天津区域沉降内因,结合随机森林土地分类结果分析地表形变的地理分布特征,为地质灾害综合治理和地下水资源开发利用提供参考依据。 相似文献
6.
城镇用地信息是联合国2030年可持续发展议程关注的重点之一。城市在世界范围内迅速扩张,快速准确地获取城镇用地信息对于政府决策具有重要作用。城镇土地覆盖信息非常复杂,包括人工建筑、树木、草地、水体等多种地表覆盖类型。基于传统人工测绘获取城镇用地信息费时费力并且难于及时更新。Landsat等遥感卫星数据为城镇用地信息提取提供了丰富的数据源。基于卫星遥感数据提取的城镇用地信息可以为未来城市的建设和管理提供基础的科学决策数据。基于监督分类方法和卫星遥感数据可快速地提取城镇用地信息,然而特征变量的选择对于高精度城镇用地信息提取尤为重要。为研究不同特征变量组合对于城镇用地信息提取的影响,以北京市为研究区,以2017年7月10日获取的Landsat 8 OLI影像为数据源,通过数据预处理、纹理提取、独立成分分析、主成分分析等得到4个维度的29个特征,选取了7种特征组合方案进行城镇用地提取。考虑随机森林算法性能稳定,分类精度高和可以方便进行特征重要性评价等优点,选择其作为监督分类算法以提取城镇用地信息,并进行了精度评定,以确定最优的城镇用地提取特征组合。研究发现:综合利用光谱特征和独立成分分析后的影像特征,提取城镇用地的总体精度为93.1%,Kappa系数为0.86,优于利用其他特征的提取结果;基于随机森林算法对数据进行训练后输出的各变量的归一化变量重要性与特征均值的标准差结果存在相似性,利用随机森林算法的变量重要性估计与特征均值折线图都可以进行变量重要性评价。 相似文献
7.
基于随机森林的遥感干旱监测模型的构建 总被引:1,自引:0,他引:1
利用遥感数据进行大面积旱情监测是现有干旱监测的重要方法之一,然而传统的遥感干旱监测方法主要侧重于对土壤湿度或植被状况等单一干旱响应因子进行监测,对综合多因子的干旱监测研究较为有限。随机森林是一种机器学习方法,具有学习过程快速、运算速度快、稳定性好、预测精度高的优点,近年来被应用于生态环境等多个领域。本文利用2001-2010年4-9月的MODIS数据提取的植被状态指数(VCI)、温度状态指数(TCI)和土地覆盖类型(LC),TRMM降水资料计算的TRMM-Z指数及SRTM-DEM、土壤有效含水量(AWC)等多个遥感及土壤资料提取的干旱因子为自变量,以气象站点的综合气象干旱指数(CI)为因变量,利用随机森林模型构建遥感干旱监测模型,并以河南省为研究区进行了评价和分析。该模型在2009-2010年的监测值和实测CI值的具有显著的相关性,并且二者干旱等级的一致率为81%。在2001-2010年4-9月间,模型监测值与气象站点的标准降水蒸散发指数(SPEI)总体干旱等级一致率为74.9%,较为一致,其中9月的模型结果与SPEI的干旱等级一致率最高,达到82.4%,空评估率和漏评估率最低;与10 cm土壤相对湿度的相关系数在0.475-0.639之间,达到极显著水平。河南省2011年4-6月干旱事件同样验证了本文构建的模型旱情监测结果,说明本模型能较好地就应用于监测区域旱情监测。 相似文献
8.
地表温度是反映地表环境的一个重要参数,精确获取地表温度的方法对研究城市热岛效应、进行生态环境监测评价是必不可少的。利用遥感手段进行地表温度的反演是一种较新颖的方法,相对成熟的反演算法主要有单通道算法、辐射传输方程法及单窗算法。本文以山东省威海市Landsat TM数据为例,分别利用辐射传输方程法和单窗算法进行地表温度反演,通过遥感目视解译的方法提取研究区各类典型地物对应的地表温度,进行统计分析,结果表明,两者反演得到的地表温度具有一致的变化趋势,其中单窗算法中不同典型地物的地表温度整体标准差较小,如建设用地为0.530,起伏波动小,算法精度略优于辐射传输方程法。 相似文献
9.
空气温度是评价人居环境的重要指标,与人类的生产生活息息相关;其观测对于水文、环境、生态和气候变化等方面的研究具有重要意义。传统的大范围空气温度观测数据一般通过气象站点获取,但由于气象观测站点空间分布离散稀疏的特点,所获取的数据不能精确描述空间连续的空气温度变化情况。因此,实现基于遥感数据的近地表空气温度精准估算具有重要的现实意义。本研究基于精细的地表覆盖类型、空间连续的土壤水分、地表温度(LST)数据,并结合其他辅助数据,构建了近地表空气温度空间化模型,并对近地表空气温度影响因子进行评估,发现地表覆盖类型对近地表空气温度的影响最大,土壤水分为最活跃的影响因素,经验证,模型精度较高,R2接近0.85,RMSE为0.5℃。本研究获取的精确空间连续的近地表空气温度信息,能够充分表达其空间异质性,为农业气象灾害灾变过程监测、农作物生长过程模拟、区域气候变化分析等研究提供良好的近地表空气温度数据支撑。 相似文献
10.
11.
现有基于Landsat 8的城市热岛研究课题对城市热岛格局变化研究较少,且驱动因素分析匮乏。本文针对上述问题以成都市为例开展研究。基于2013年和2018年两期Landsat 8影像采用RTE算法、JM_SC10算法和TIRS10_SC算法进行热场分布的空间特征分析,并结合植被、建筑及人口等数据探讨驱动城市热岛时空格局变化的因素。研究表明:①3种反演算法获取的城市热岛效应结果具有一致性;②2018年较2013年热场分布呈现扩大化、多极化、空心化的趋势,尤其在双流区、龙泉驿区等近年重点发展区域出现新的热岛极值区;③植被和水体指数与地表温度成负相关,建筑、人口指数与地表温度成正相关;④除自然地理因素外,城市热岛时空格局变化受人口分布、政策和政府行为因素及社会经济因素驱动性明显。 相似文献
12.
采用机载LiDAR数据估算森林结构参数是当前林业遥感中的研究热点。本文以福建省长汀县朱溪河流域为示范区,探讨了随机森林算法(RF)在机载LiDAR数据林分平均树高估测中的适用性。首先,通过渐进三角网(TIN)算法进行点云滤波并获取相应林分样地的植被点云子集和高程归一化的植被点云;然后,从归一化后的植被点云提取出高度分位数变量以及点云统计特征值等24个变量参数;最后,根据提取的变量参数和野外实测林分均高数据建立研究区林分平均高随机森林回归估测模型。研究结果表明,模型估测的样地平均树高与实测值具有明显线性相关关系,线性回归系数为0.938,相关系数达到0.968。对样地的估测精度都在86%以上,总体平均精度达到了93.17%。研究认为,基于植被点云变量参数的随机森林模型估测林分平均树高具有较高的可靠性。 相似文献
13.
随机森林算法在全球干旱评估中的应用 总被引:2,自引:0,他引:2
干旱是发生频率最高,造成社会、经济损失和生态破坏最严重、最广泛的自然灾害之一,因此对干旱进行可靠、有效的评估十分重要.本文以月平均降水、月平均温度、月最高温度、月最低温度、土壤湿度、蒸散发、NDVI、叶绿素荧光等作为解释变量,以基于SPI的干旱等级作为目标变量,采用随机森林算法,以2007-2012年的数据作为训练数据... 相似文献
14.
地貌分类在指导人类建设活动的规模与布局中有着重要的意义。然而,传统的基于数字高程模型(DEM)的地貌分类方法使用的地形因子和考虑到的地貌特征往往比较单一。本文提出了一种基于流域单元的地貌分类方法,该方法考虑了流域单元的多方面特征,包括基本地形因子统计量、地形特征点线统计量、小流域特征和纹理特征。本研究首先基于DEM进行水文分析将研究区域划分成不同的小流域。然后利用数字地形分析提取29个不同方面的特征来表征流域的形态,并基于随机森林(RF)算法进行了特征选择和参数标定。RF是一种基于决策树算法的集成分类器,能有效地处理高维数据,分类精度高。最后选择训练集小流域对RF分类器进行训练,使用训练完成的分类器对整个研究区域的地貌进行分类,研究地貌分异的规律。该实验在我国陕北黄土高原典型黄土地貌区域的地貌分类中取得了较好的结果,结果表明不同的地貌之间存在明显的区域界线,特定的地貌类型在空间上表现出明显的聚集性。通过人工判读进行验证的分类精度达到了85%,Kappa系数为0.83。 相似文献
15.
Landsat-8卫星设计有2个热红外波段,但由于第11波段存在定标问题,无法用于定量研究,所以基于Landsat-8的地表温度反演算法目前仍以单通道为主。单通道算法反演地表温度需先已知地表比辐射率并完成大气校正的工作。在大气校正方面,现有的算法主要以传统方法为主,即通过大气辐射传输模型或经验-半经验公式的方式获取大气参数。但是,传统的经验-半经验的方法并不建立在物理机制上,其自身存在一定局限性;而大气辐射传输模型的方法虽然精度更高,但执行效率较低,不适用于业务化的产品生产。本文针对现有大气估算方法的不足,提出了一种基于Landsat-8单通道地表温度反演的大气参数快速估算方法。在水汽范围0~6 g/cm2内,大气参数快速估算方法的精度与MODTRAN精度相当,大气透过率RMSE为0.003;大气上行辐亮度RMSE为0.0004;大气下行辐亮度RMSE为0.0004。相较于传统的大气参数估算方法,本文提出的大气参数快速估算方法,不仅可以脱离大气辐射传输模型使用,而且具有与其相当的估算精度,执行效率更高,适用性更广。 相似文献
16.
青藏高原作为中低纬度地区最大的高山冻土区,多年冻土和季节冻土广泛分布。高精度的地表冻融监测结果对研究该区域的水热交换、碳氮循环和土壤冻融侵蚀非常重要。本文基于4个青藏高原典型地区的土壤温湿度观测网数据,开展利用LightGBM算法和随机森林算法进行土壤冻融循环监测的研究。在构建土壤冻融监测模型的过程中,发现土壤湿度是影响冻融判别的一个关键因子。使用AMSR2亮温数据和ERA5-Land土壤湿度数据,基于两种机器学习算法判别地表冻融状态,将结果与传统冻融判别式算法进行对比分析。结果表明:相比冻融判别式算法,LightGBM算法在白天和夜间的总体判对率提高了12.09%;14.45%,随机森林算法在白天和夜间的总体判对率提高了13.23%和14.96%。近80%的错分样本分布在-4.0℃~4.0℃之间,说明2个机器学习算法能够识别出稳定的土壤冻结状态和融化状态。另外,LightGBM算法和随机森林算法得到的日冻融转换天数的平均RMSE降低了112.82和117.00;冻结天数的平均RMSE降低了47.87和53.96;融化天数的平均RMSE降低了37.10和39.80。同时,基于随机森林算... 相似文献
17.
高时空分辨率的气温栅格数据是多种地学模型和气候模型的重要输入。山区地形复杂,气温空间异质性强,如何获取高时空分辨率的山区地表气温数据一直是研究热点与难点。本文选择地形复杂的河北省张家口市作为试验区,基于局部薄盘样条函数对ERA5再分析日均近地表气温(2 m高度)进行空间插值,并利用随机森林算法,结合少量气象站观测气温数据、地形地表参数数据构建日均气温订正模型和气温逐时化模型,实现空间分辨率由0.1°(约11 km)到30 m的逐时气温降尺度,最后将该模型拓展应用于其他时间与区域,检验本文发展的降尺度方法在没有站点观测数据条件下的时空移植性。结果显示,本文降尺度方法得到的高时空分辨率山区气温数据精度较高,1月均方根误差(RMSE)平均值为2.4℃,明显优于气象站点插值结果,且气温相对高低的空间分布更为合理、纹理更加丰富;将该方法应用到其他时间与区域的RMSE平均值分别为2.9℃与2.5℃,均小于再分析资料直接插值所产生的误差。研究结果总体表明,在气象站点较少甚至没有时,可利用本文方法通过ERA5再分析气温准确获取复杂地形条件下的山区高时空分辨率气温数据。 相似文献
18.
城市绿化在改善空气、水和土壤质量,吸收和减少二氧化碳及各种污染物,缓解城市热岛和减少雨水径流等方面发挥着重要作用。及时准确地获取树种信息是城市规划与绿化管理的先决条件,对进一步改善城市生态环境也具有重要意义。基于遥感技术,使用高空间分辨率的WorldView-2卫星影像,采用光谱、纹理、指数以及几何等多种特征相结合的面向对象方法,并通过随机森林进行特征选择,对福州大学旗山校区北部的榕树、杧果、香樟、重阳木、羊蹄甲、垂叶榕以及木棉7种主要绿化乔木进行树种分类。实地验证结果表明:通过特征选择可以减少或规避数据冗余以及休斯效应的产生,该方法可以提高现有同类型树种分类的精度,当淘汰全部特征的20%,利用34个特征(包括15个光谱特征、6个纹理特征、8个指数特征和5个几何特征)进行分类时,总精度最高,可达74.95%,Kappa系数为0.67。其中,光谱平均值的特征重要性最高,而各波段的标准差的重要性较低。WorldView-2卫星影像的4个新增波段,特别是黄光和红边波段及其构建的指数特征重要性较高,也说明这些波段在植被遥感,特别是树种分类中极具应用前景。 相似文献
19.
新一代星载激光雷达卫星ICESat-2首次采用了微脉冲光子计数激光雷达技术,由于单光子探测的灵敏性导致数据在大气和地表下层产生了大量噪声,因此对光子计数激光雷达点云数据实现信号和噪声的分离是开展进一步应用研究的前提和基础。本文选择美国俄勒冈州和弗吉尼亚州2个研究区,采用MATLAS数据,根据光子点云数据的特点构造了12个光子点云特征,对所构造的特征利用随机森林进行变量筛选,用机器学习方法对光子点云进行分类,并将建立好的模型推广到整个研究区。研究结果表明,本文构建的分类器分类总精度达到了96.79%,Kappa系数为0.94,平均生产者精度和用户精度分别为97.1%和96.8%。在相对弱噪声、平坦地形区域和强噪声、复杂地形区域都取得较好的分类结果。本文结果显示了基于少量样本通过机器学习的方法构建模型,可以推广到较大范围区域的光子点云分类应用中。 相似文献
20.
TM热波段图像的地表温度反演算法与实验分析 总被引:26,自引:1,他引:26
目前利用LandsatTM热波段数据反演地表温度有3种算法:辐射传导方程法、单窗算法和单通道算法。辐射传导方程法由于计算过程复杂且需要实时大气剖面数据,因而实际应用较为困难。单窗算法和单通道算法对Landsat热波段反演地表温度能获得较高精度。单窗算法所需的大气参数包括近地表气温和大气水分含量,单通道算法所需的大气参数仅为大气水分含量。地表辐射率为这两种算法共有的关键参数。本文以福建省福州市为研究区,使用1989年6月15日LandsatTM数据,利用单窗算法和单通道算法对研究区进行地表温度反演,并将这两种算法的反演结果与研究区反演的亮度温度进行了比较,结果表明:(1)两种算法反演的结果总体趋势比较接近,但单窗算法的结果相对于单通道算法较低,二者相差约2.45℃;(2)两种算法的结果与亮度温度相比,单窗算法要高出约2.84℃,而单通道算法则要高出约5.28℃。 相似文献