首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the secular theory of coplanar N -planet system, in the absence of mean motion resonances between the planets. This theory relies on the averaging of a perturbation to the two-body problem over the mean longitudes. We expand the perturbing Hamiltonian in Taylor series with respect to the ratios of semimajor axes which are considered as small parameters, without direct restrictions on the eccentricities. Next, we average out the resulting series term by term. This is possible thanks to a particular but in fact quite elementary choice of the integration variables. It makes it possible to avoid Fourier expansions of the perturbing Hamiltonian. We derive high-order expansions of the averaged secular Hamiltonian (here, up to the order of 24) with respect to the semimajor axes ratio. The resulting secular theory is a generalization of the octupole theory. The analytical results are compared with the results of numerical (i.e. practically exact) averaging. We estimate the convergence radius of the derived expansions, and we propose a further improvement of the algorithm. As a particular application of the method, we consider the secular dynamics of three-planet coplanar system. We focus on stationary solutions in the HD 37124 planetary system.  相似文献   

2.
T.A. Michtchenko  R. Malhotra 《Icarus》2004,168(2):237-248
The discovery of extra-solar planetary systems with multiple planets in highly eccentric orbits (∼0.1-0.6), in contrast with our own Solar System, makes classical secular perturbation analysis very limited. In this paper, we use a semi-numerical approach to study the secular behavior of a system composed of a central star and two massive planets in co-planar orbits. We show that the secular dynamics of this system can be described using only two parameters, the ratios of the semi-major axes and the planetary masses. The main dynamical features of the system are presented in geometrical pictures that allows us to investigate a large domain of the phase space of this three-body problem without time-expensive numerical integrations of the equations of motion, and without any restriction on the magnitude of the planetary eccentricities. The topology of the phase space is also investigated in detail by means of spectral map techniques, which allow us to detect the separatrix of a non-linear secular apsidal resonance. Finally, the qualitative study is supplemented by direct numerical integrations. Three different regimes of secular motion with respect to the secular angle Δ? are possible: they are circulation, oscillation (around 0° and 180°), and high eccentricity libration in a non-linear secular resonance. The first two regimes are a continuous extension of the classical linear secular perturbation theory; the last is a new feature, hitherto unknown, in the secular dynamics of the three-body problem. We apply the analysis to the case of the two outer planets in the υ Andromedae system, and obtain its periodic and ordinary orbits, the general structure of its secular phase space, and the boundaries of its secular stability; we find that this system is secularly stable over a large domain of eccentricities. Applying this analysis to a wide range of planetary mass and semi-major axis ratios (centered about the υ Andromedae parameters), we find that apsidal oscillation dominates the secular phase space of the three-body coplanar system, and that the non-linear secular resonance is also a common feature.  相似文献   

3.
An analytical treatment of the evolutionary dynamics of a three-body planetary system subject to dynamical friction with an interplanetary medium is presented. The analysis presented here is in connection with the results of numerical integrations of such systems recently published by Haghighipour. Using the method of partial averaging near a resonance, the dynamics of a restricted, circular, planar three-body system, with the inner body more massive, is studied and the time variation of quantities such as the orbital angular momentum and the eccentricity of the outer planet, which were previously obtained from numerical integrations, is analytically verified.  相似文献   

4.
We investigate the secular dynamics of two-planet coplanar systems evolving under mutual gravitational interactions and dissipative forces. We consider two mechanisms responsible for the planetary migration: star-planet (or planet-satellite) tidal interactions and interactions of a planet with a gaseous disc. We show that each migration mechanism is characterized by a specific law of orbital angular momentum exchange. Calculating stationary solutions of the conservative secular problem and taking into account the orbital angular momentum leakage, we trace the evolutionary routes followed by the planet pairs during the migration process. This procedure allows us to recover the dynamical history of two-planet systems and constrain parameters of the involved physical processes.  相似文献   

5.
We consider the solid-solid interactions in the two body problem. The relative equilibria have been previously studied analytically and general motions were numerically analyzed using some expansion of the gravitational potential up to the second order, but only when there are no direct interactions between the orientation of the bodies. Here we expand the potential up to the fourth order and we show that the secular problem obtained after averaging over fast angles, as for the precession model of Boué and Laskar [Boué, G., Laskar, J., 2006. Icarus 185, 312-330], is integrable, but not trivially. We describe the general features of the motions and we provide explicit analytical approximations for the solutions. We demonstrate that the general solution of the secular system can be decomposed as a uniform precession around the total angular momentum and a periodic symmetric orbit in the precessing frame. More generally, we show that for a general n-body system of rigid bodies in gravitational interaction, the regular quasiperiodic solutions can be decomposed into a uniform precession around the total angular momentum, and a quasiperiodic motion with one frequency less in the precessing frame.  相似文献   

6.
We present the results of collapse calculations for uniformly rotating, prolate clouds performed using the numerical method: smoothed particle hydrodynamics (SPH). The clouds considered are isothermal, prolate spheroids with different axial ratios ( a/b ), and with different values of β, the ratio of the rotational to gravitational energy. Small density perturbations are added to the clouds, and different initial perturbation spectra are studied. All of the clouds considered are strongly unstable to gravitational contraction, and so collapse to form a spindle configuration. Such a linear structure is unstable to fragmentation, so that the clouds break up into a number of subcondensations. The long-term evolution of the system is then determined by the angular momentum possessed by these fragments.
It is found that a number of the calculations performed result in the formation of orbitally stable binary systems, composed of two rotationally supported discs in orbit about their common centre of mass. Tidal interactions during closest approach, close three-body interactions and the continued accretion of material with high specific angular momentum are all found to increase the orbital separation during these calculations, ensuring that the systems do not merge at later times. The calculations are therefore relevant to the problem of binary star formation, though the systems produced tend to have large orbital separations and periods. One of the strong points of the models presented, however, is their ability to produce systems with a range of mass ratios and orbital eccentricities, without the explicit inclusion of biases in the initial conditions.  相似文献   

7.
We present evidence for cosmological gas accretion on to spiral galaxies in the local universe. The accretion is seen through its effects on the dynamics of the extraplanar neutral gas. The accretion rates that we estimate for two nearby spiral galaxies are of the order of their star formation rates. Our model shows that most of the extraplanar gas is produced by supernova feedback (galactic fountain) and only 10–20 per cent comes from accretion. The accreting material must have low specific angular momentum about the disc's spin axis, although the magnitude of the specific angular momentum vector can be higher. We also explore the effects of a hot corona on the dynamics of the extraplanar gas and find that it is unlikely to be responsible for the observed kinematical pattern and the source of accreted gas. However, the interaction with the fountain flow should profoundly affect the hydrodynamics of the corona.  相似文献   

8.
We investigate the dynamics of putative Earth-mass planets in the habitable zone (HZ) of the extrasolar planetary system OGLE-2006-BLG-109L, a close analogue of the Solar system. Our work is inspired by the work of Malhotra & Minton. Using the linear Laplace–Lagrange theory, they identified a strong secular resonance that may excite large eccentricity of orbits in the HZ. However, due to uncertain or unconstrained orbital parameters, the subsystem of Jupiters may be found in a dynamically active region of the phase space spanned by low-order mean-motion resonances. To generalize this secular model, we construct a semi-analytical averaging method in terms of the restricted problem. The secular orbits of large planets are approximated by numerically averaged osculating elements. They are used to calculate the mean orbits of terrestrial planets by means of a high-order analytic secular theory developed in our previous works. We found regions in the parameter space of the problem in which stable, quasi-circular orbits in the HZ are permitted. The excitation of eccentricity in the HZ strongly depends on the apsidal angle of jovian orbits. For some combinations of that angle, eccentricities and semimajor axes consistent with the observations, a terrestrial planet may survive in low eccentric orbits. We also study the effect of post-Newtonian gravity correction on the innermost secular resonance.  相似文献   

9.
For accretion on to neutron stars possessing weak surface magnetic fields and substantial rotation rates (corresponding to the secular instability limit), we calculate the disk and surface layer luminosities general relativistically using the Hartle & Thorne formalism, and illustrate these quantities for a set of representative neutron star equations of state. We also discuss the related problem of the angular momentum evolution of such neutron stars and give a quantitative estimate for this accretion driven change in angular momentum. Rotation always increases the disk luminosity and reduces the rate of angular momentum evolution. These effects have relevance for observations of low-mass X-ray binaries.  相似文献   

10.
We consider secular perturbations of nearly Keplerian two-body motion under a perturbing potential that can be approximated to sufficient accuracy by expanding it to second order in the coordinates. After averaging over time to obtain the secular Hamiltonian, we use angular momentum and eccentricity vectors as elements. The method of variation of constants then leads to a set of equations of motion that are simple and regular, thus allowing efficient numerical integration. Some possible applications are briefly described.  相似文献   

11.
Theoretical study indicates that a contact binary system would merge into a rapidly rotating single star due to tidal instability when the spin angular momentum of the system is more than a third of its orbital angular momentum. Assuming that W Ursae Majoris (W UMa) contact binary systems rigorously comply with the Roche geometry and the dynamical stability limit is at a contact degree of about 70 per cent, we obtain that W UMa systems might suffer Darwin's instability when their mass ratios are in a region of about 0.076–0.078 and merge into the fast-rotating stars. This suggests that the W UMa systems with mass ratio   q ≤ 0.076  cannot be observed. Meanwhile, we find that the observed W UMa systems with a mass ratio of about 0.077, corresponding to a contact degree of about 86 per cent would suffer tidal instability and merge into the single fast-rotating stars. This suggests that the dynamical stability limit for the observed W UMa systems is higher than the theoretical value, implying that the observed systems have probably suffered the loss of angular momentum due to gravitational wave radiation (GR) or magnetic stellar wind (MSW).  相似文献   

12.
We describe numerical tools for the stability analysis of extrasolar planetary systems. In particular, we consider the relative Poincaré variables and symplectic integration of the equations of motion. We apply the tangent map to derive a numerically efficient algorithm of the fast indicator Mean Exponential Growth factor of Nearby Orbits (MEGNO), a measure of the maximal Lyapunov exponent, that helps to distinguish chaotic and regular configurations. The results concerning the three-planet extrasolar system HD 37124 are presented and discussed. The best-fitting solutions found in earlier works are studied more closely. The system involves Jovian planets with similar masses. The orbits have moderate eccentricities, nevertheless the best-fitting solutions are found in dynamically active region of the phase space. The long-term stability of the system is determined by a net of low-order two-body and three-body mean motion resonances. In particular, the three-body resonances may induce strong chaos that leads to self-destruction of the system after Myr of apparently stable and bounded evolution. In such a case, numerically efficient dynamical maps are useful to resolve the fine structure of the phase space and to identify the sources of unstable behaviour.  相似文献   

13.
We investigate the role of the eccentric disc resonance in systems with mass ratios q ≳1/4, and demonstrate the effects that changes in the mass flux from the secondary star have upon the disc radius and structure. The addition of material with low specific angular momentum to the outer edge of a disc restricts that disc radially. Should the mass flux from the secondary be reduced, it is possible for the disc in a system with mass ratio as large as 1/3 to expand to the 3:1 eccentric inner Lindblad resonance and for superhumps to be excited.  相似文献   

14.
We investigate the evolution of angular momentum in simulations of galaxy formation in a cold dark matter universe. We analyse two model galaxies generated in the N -body/hydrodynamic simulations of Okamoto et al. Starting from identical initial conditions, but using different assumptions for the baryonic physics, one of the simulations produced a bulge-dominated galaxy and the other one a disc-dominated galaxy. The main difference is the treatment of star formation and feedback, both of which were designed to be more efficient in the disc-dominated object. We find that the specific angular momentum of the disc-dominated galaxy tracks the evolution of the angular momentum of the dark matter halo very closely: the angular momentum grows as predicted by linear theory until the epoch of maximum expansion and remains constant thereafter. By contrast, the evolution of the angular momentum of the bulge-dominated galaxy resembles that of the central, most bound halo material: it also grows at first according to linear theory, but 90 per cent of it is rapidly lost as pre-galactic fragments, into which gas had cooled efficiently, merge, transferring their orbital angular momentum to the outer halo by tidal effects. The disc-dominated galaxy avoids this fate because the strong feedback reheats the gas, which accumulates in an extended hot reservoir and only begins to cool once the merging activity has subsided. Our analysis lends strong support to the classical theory of disc formation whereby tidally torqued gas is accreted into the centre of the halo conserving its angular momentum.  相似文献   

15.
The 1:1 mean motion resonance may be referred to as the lowest order mean motion resonance in restricted or planetary three-body problems. The five well-known libration points of the circular restricted three-body problem are five equilibriums of the 1:1 resonance. Coorbital motion may take different shapes of trajectory. In case of small orbital eccentricities and inclinations, tadpole-shape and horseshoe-shape orbits are well-known. Other 1:1 libration modes different from the elementary ones can exist at moderate or large eccentricities and inclinations. Coorbital objects are not rare in our solar system, for example the Trojans asteroids and the coorbital satellite systems of Saturn. Recently, dozens of coorbital bodies have been identified among the near-Earth asteroids. These coorbital asteroids are believed to transit recurrently between different 1:1 libration modes mainly due to orbital precessions, planetary perturbations, and other possible effects. The Hamiltonian system and the Hill’s three-body problem are two effective approaches to study coorbital motions. To apply the perturbation theory to the Hamiltonian system, standard procedures involve the development of the disturbing function, averaging and normalization, theory of ideal resonance model, secular perturbation theory, etc. Global dynamics of coorbital motion can be revealed by the Hamiltonian approach with a suitable expansion. The Hill’s problem is particularly suitable for the studies on the relative motion of two coorbital bodies during their close encounter. The Hill’s equation derived from the circular restricted three-body problem is well known. However, the general Hill’s problem whose equation of motion takes exactly the same form applies to the non-restricted case where the mass of each body is non-negligible, namely the planetary case. The Hill’s problem can be transformed into a “canonical shape” so that the averaging principle can be applied to construct a secular perturbation theory. Besides the two analytical theories, numerical methods may be consulted, for example the approach of periodic orbit, the surface of section, and the computation of invariant manifolds carried by equilibriums or periodic orbits.  相似文献   

16.
In this paper we carry out a quantitative analysis of the three-body systems and map them as a function of decaying time and initial configuration, look at this problem as an example of a simple deterministic system and ask to what extent the orbits are really predictable. We have investigated the behaviour of about 200 000 general Newtonian three-body systems using the simplest initial conditions. Within our resolution these cover all the possible states where the objects are initially at rest and have no angular momentum. We have determined the decay time-scales of the triple systems and show that the distribution of this parameter is fractal in appearance. Some areas that appear stable on large scales exhibit very narrow strips of instability and the overall pattern, dominated by resonances, reminds us of a traditional Maasai warrior shield. Also an attempt is made to recover the original starting configuration of the three bodies by backward integration. We find there are instances where the evolution to the future and to the past lead to different orbits, in spite of time symmetric initial conditions. This implies that even in simple deterministic systems there exists an arrow of time.  相似文献   

17.
We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary  50–100 M  star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of  ≳200–400 km s−1  (typical of pulsars), while  3–4 M  stars can attain velocities of  ≳300–400 km s−1  (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.  相似文献   

18.
Evolution of Comet Nucleus Rotation   总被引:1,自引:0,他引:1  
The secular evolution of comet nucleus rotation states subject to outgassing torques is studied. The dynamical model assumes that the nucleus inertia ellipsoid is axially symmetric. The outgassing torques acting on the surface are modeled using standard cometary activity formulae. The general rotational equations of motion are derived and separately averaged over the fast rotational dynamics terms and the comet orbit. Special cases where the averaging assumptions cannot be applied are evaluated separately. The modification of the comet orbit due to comet outgassing is neglected. Resulting from this analysis is a system of secular differential equations that describes the dynamics of the comet nucleus angular momentum and rotation state. We find that the qualitative secular evolution of the rotation state is controlled by a single parameter that combines parameters related to the comet orbit and parameters related to the nucleus surface geometry and activity. From this solution, we find qualitatively different evolutionary paths for comet nuclei whose entire surface is active, as compared to nuclei with only a single active region. For surface activity models between these extremes, we show that certain evolutionary paths are more likely than others. Additionally, our solution indicates that a comet nucleus' rotational angular momentum will tend to increase over time, potentially contributing to the observed phenomenon of comet nucleus splitting.  相似文献   

19.
We investigate the secular dynamics of three-body circumbinary systems under the effect of tides. We use the octupolar non-restricted approximation for the orbital interactions, general relativity corrections, the quadrupolar approximation for the spins, and the viscous linear model for tides. We derive the averaged equations of motion in a simplified vectorial formalism, which is suitable to model the long-term evolution of a wide variety of circumbinary systems in very eccentric and inclined orbits. In particular, this vectorial approach can be used to derive constraints for tidal migration, capture in Cassini states, and stellar spin–orbit misalignment. We show that circumbinary planets with initial arbitrary orbital inclination can become coplanar through a secular resonance between the precession of the orbit and the precession of the spin of one of the stars. We also show that circumbinary systems for which the pericenter of the inner orbit is initially in libration present chaotic motion for the spins and for the eccentricity of the outer orbit. Because our model is valid for the non-restricted problem, it can also be applied to any three-body hierarchical system such as star–planet–satellite systems and triple stellar systems.  相似文献   

20.
Simulations of planetary microlensing at high magnification that were carried out on a cluster computer are presented. It was found that the perturbations owing to two-thirds of all planets occur in the time interval  −0.5 t FWHM,0.5 t FWHM  with respect to the peak of the microlensing light curve, where   t FWHM  is typically ∼14 h. This implies that only this restricted portion of the light curve need be intensively monitored for planets – a very significant practical advantage. Nearly all planetary detections in high-magnification events will not involve caustic crossings. We discuss the issues involved in determining the planetary parameters in high magnification events. Earth-mass planets may be detected with 1-m class telescopes if their projected orbital radii lie within about 1.5–2.5 au. Giant planets are detectable over a much larger region. For multiplanet systems the perturbations caused by individual planets can be separated under certain conditions. The size of the source star needs to be determined independently, but the presence of spots on the source star is likely to be negligible, as is the effect of planetary motion during an event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号