首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A detailed field study reveals a gradual transition from high‐grade solid‐state banded orthogneiss via stromatic migmatite and schlieren migmatite to irregular, foliation‐parallel bodies of nebulitic migmatite within the eastern part of the Gföhl Unit (Moldanubian domain, Bohemian Massif). The orthogneiss to nebulitic migmatite sequence is characterized by progressive destruction of well‐equilibrated banded microstructure by crystallization of new interstitial phases (Kfs, Pl and Qtz) along feldspar boundaries and by resorption of relict feldspar and biotite. The grain size of all felsic phases decreases continuously, whereas the population density of new phases increases. The new phases preferentially nucleate along high‐energy like–like boundaries causing the development of a regular distribution of individual phases. This evolutionary trend is accompanied by a decrease in grain shape preferred orientation of all felsic phases. To explain these data, a new petrogenetic model is proposed for the origin of felsic migmatites by melt infiltration from an external source into banded orthogneiss during deformation. In this model, infiltrating melt passes pervasively along grain boundaries through the whole‐rock volume and changes completely its macro‐ and microscopic appearance. It is suggested that the individual migmatite types represent different degrees of equilibration between the host rock and migrating melt during exhumation. The melt topology mimicked by feldspar in banded orthogneiss forms elongate pockets oriented at a high angle to the compositional banding, indicating that the melt distribution was controlled by the deformation of the solid framework. The microstructure exhibits features compatible with a combination of dislocation creep and grain boundary sliding deformation mechanisms. The migmatite microstructures developed by granular flow accompanied by melt‐enhanced diffusion and/or melt flow. However, an AMS study and quartz microfabrics suggest that the amount of melt present did not exceed a critical threshold during the deformation to allow free movements of grains.  相似文献   

2.
High‐strain zones are potential pathways of melt migration through the crust. However, the identification of melt‐present high‐strain deformation is commonly limited to cases where the interpreted volume of melt “frozen” within the high‐strain zone is high (>10%). In this contribution, we examine high‐strain zones in the Pembroke Granulite, an otherwise low‐strain outcrop of volcanic arc lower crust exposed in Fiordland, New Zealand. These high‐strain zones display compositional layering, flaser‐shaped mineral grains, and closely spaced foliation planes indicative of high‐strain deformation. Asymmetric leucosome surrounding peritectic garnet grains suggest deformation was synchronous with minor amounts of in situ partial melting. High‐strain zones lack typical mylonite microstructures and instead display typical equilibrium microstructures, such as straight grain boundaries, 120° triple junctions, and subhedral grain shapes. We identify five key microstructures indicative of the former presence of melt within the high‐strain zones: (a) small dihedral angles of interstitial phases; (b) elongate interstitial grains; (c) small aggregates of quartz grains with xenomorphic plagioclase grains connected in three dimensions; (d) fine‐grained, K‐feldspar bearing, multiphase aggregates with or without augite rims; and (e) mm‐ to cm‐scale felsic dykelets. Preservation of key microstructures indicates that deformation ceased as conditions crossed the solidus, breaking the positive feedback loop between deformation and the presence of melt. We propose that microstructures indicative of the former presence of melt, such as the five identified above, may be used as a tool for recognising rocks formed during melt‐present high‐strain deformation where low (<5%) volumes of leucosome are “frozen” within the high‐strain zone.  相似文献   

3.
Melt infiltration into quartzite took place due to generation and migration of partial melts within the high‐grade metamorphic rocks of the Big Cottonwood (BC) formation in the Little Cottonwood contact aureole (UT, USA). Melt was produced by muscovite and biotite dehydration melting reactions in the BC formation, which contains pelite and quartzite interlayered on a centimetre to decimetre scale. In the migmatite zone, melt extraction from the pelites resulted in restitic schollen surrounded by K‐feldspar‐enriched quartzite. Melt accumulation occurred in extensional or transpressional domains such as boudin necks, veins and ductile shear zones, during intrusion‐related deformation in the contact aureole. The transition between the quartzofeldspathic segregations and quartzite shows a gradual change in texture. Here, thin K‐feldspar rims surround single, round quartz grains. The textures are interpreted as melt infiltration texture. Pervasive melt infiltration into the quartzite induced widening of the quartz–quartz grain boundaries, and led to progressive isolation of quartz grains. First as clusters of grains, and with increasing infiltration as single quartz grains in the K‐feldspar‐rich matrix of the melt segregation. A 3D–μCT reconstruction showed that melt formed an interconnected network in the quartzites. Despite abundant macroscopic evidence for deformation in the migmatite zone, individual quartz grains found in quartzofeldspathic segregations have a rounded crystal shape and lack quartz crystallographic orientation, as documented with electron backscatter diffraction (EBSD). Water‐rich melts, similar to pegmatitic melts documented in this field study, were able to infiltrate the quartz network and disaggregate grain coherency of the quartzites. The proposed mechanism can serve as a model to explain abundant xenocrysts found in magmatic systems.  相似文献   

4.
In the Karakoram Shear Zone, Ladakh, NW India, Miocene leucogranitic dykes form an extensive, varied and complex network, linking an anatectic terrane exposed in the Pangong Range, with leucogranites of the Karakoram Batholith. Mineral paragenesis of the heterogeneous anatectic source rocks suggests melting has resulted from water influx into rocks at upper amphibolite facies conditions, and microstructures suggest anatexis was contemporaneous with shearing. The network is characterized by continuous and interconnected dykes, with only rare cross‐cutting relationships, forming swarms and chaotic injection complexes where magmatic rocks cover up to 50% of the outcrop area. Despite this volume of magma, the system did not lose continuity, suggesting that it did not flow en masse and that the magma network was not all liquid simultaneously. Leucogranites in this network, including leucosomes in migmatites, carry an isotopic signature intermediate between the two main anatectic rocks in the source, suggesting efficient homogenization of the magmatic products. Here, we describe a number of microscopic features of these magmatic rocks which suggests that several pulses of magma used the same pathways giving rise to textural and chemical disequilibrium features. These include: (i) narrow, tortuous corridors of fine‐grained minerals cutting across or lining the boundaries of larger grains, interpreted to be remnants of magma‐filled cracks cutting across a pre‐existing magmatic rock; (ii) corrosion of early formed grains at the contact with fine‐grained material; (iii) compositional zoning of early formed plagioclase and K‐feldspar grains and quartz overgrowths documented by cathodoluminescence imaging; (iv) incipient development of rapakivi and anti‐rapakivi textures, and (iv) different crystallographic preferred orientation of early formed quartz and fine‐grained quartz. Mapping of the fine‐grained corridors interpreted to represent late melt channels reveal an interlinked network broadly following the S‐C fabric defined by pre‐existing magmatic grains. We conclude that early formed dykes provided a pathway exploited intermittently or continuously by new magma batches. New influxes of magma opened narrow channels and migrated through a microscopic network following predominantly grain boundaries along an S‐C fabric related to syn‐magmatic shearing. A mixed isotopic signature resulted not from the mixing of magmas, but from the micro‐scale interaction between new magma batches and previously crystallized magmatic rocks, through local equilibration.  相似文献   

5.
A metamorphic field gradient has been investigated in the Moldanubian zone of the central European Variscides encompassing, from base to the top, a staurolite–kyanite zone, a muscovite–sillimanite zone, a K‐feldspar–sillimanite zone, and a K‐feldspar–cordierite zone, respectively. The observed reaction textures in the anatectic metapsammopelites of the higher grade zones are fully compatible with experimental data and petrogenetic grids that are based on fluid‐absent melting reactions. From structural and microstructural observations it can be concluded that the boundary between the kyanite–staurolite zone and the muscovite‐ and K‐feldspar–sillimanite zones coincides with an important switch in deformation mechanism(s). Besides minor syn‐anatectic shearing (melt‐enhanced deformation), microstructural criteria point (a) to a switch in deformation mechanism from rotation recrystallization (climb‐accommodated dislocation creep) to prism slip and high‐temperature (fast) grain boundary migration in quartz (b) to the activity of diffusion creep in quartz–feldspar layers, and (c) to accommodation of strain by intense shearing in fibrolite–biotite layers. It is suggested that any combination of these deformation mechanisms will profoundly affect the rheological characteristics of high‐grade metamorphic rocks and significantly lower rock strength. Hence, the boundary between these zones marks a major rheological barrier in the investigated cross section and probably also in other low‐ to medium‐pressure/high‐temperature areas. At still higher metamorphic grades (K‐feldspar‐cordierite zone), where the rheologically critical melt percentage is reached, rock rheology is mainly governed by the melt and other deformation mechanisms are of minor importance. In the study area, the switch in deformation mechanism(s) is responsible for large‐scale strain partitioning and concentration of deformation within the higher‐temperature hanging wall during top‐to‐the‐S thrusting, thus preserving a more complete petrostructural record within the rocks of the footwall including indications for a ?Devonian high‐ to medium‐pressure/medium‐temperature metamorphic event. Thrusting is accompanied by diapiric ascent of diatexites of the K‐feldspar‐cordierite zone and infolding of the footwall, suggesting local crustal overturn in this part of the Moldanubian zone.  相似文献   

6.
The grain‐ and outcrop‐scale distribution of melt has been mapped in anatectic rocks from regional and contact metamorphic environments and used to infer melt movement paths. At the grain scale, anatectic melt is pervasively distributed in the grain boundaries and in small pools; consequently, most melt is located parallel to the principal fabric in the rock, typically a foliation. Short, branched arrays of linked, melt‐bearing grain boundaries connect melt‐depleted parts of the matrix to diffuse zones of melt accumulation (protoleucosomes), where magmatic flow and alignment of euhedral crystals grown from the melt developed. The distribution of melt (leucosome) and residual rocks (normally melanocratic) in outcrop provides different, but complementary, information. The residual rocks show where the melt came from, and the leucosomes preserve some of the channels through which the melt moved, or sites where it pooled. Different stages of the melt segregation process are recorded in the leucosome–melanosome arrays. Regions where melting and segregation had just begun when crystallization occurred are characterized by short arrays of thin, branching leucosomes with little melanosome. A more advanced stage of melting and segregation is marked by the development of residual rocks around extensive, branched leucosome arrays, generally oriented along the foliation or melting layer. Places where melting had stopped, or slowed down, before crystallization began are marked by a high ratio of melanosome to leucosome; because most of the melt has drained away, very few leucosomes remain to mark the melt escape path — this is common in melt‐depleted granulite terranes. Many migmatites contain abundant leucosomes oriented parallel to the foliation; mostly, these represent places where foliation planes dilated and melt drained from the matrix via the branched grain boundary and larger branched melt channel (leucosome) arrays collected. Melt collected in the foliation planes was partially, or fully, expelled later, when discordant leucosomes formed. Leucosomes (or veins) oriented at high angles to the foliation/layering formed last and commonly lack melanocratic borders; hence they were not involved in draining the matrix of the melting layer. Discordant leucosomes represent the channels through which melt flowed out of the melting layer.  相似文献   

7.
Contact metamorphism caused by the Glenmore plug in Ardnamurchan, a magma conduit active for 1 month, resulted in partial melting, with melt now preserved as glass. The pristine nature of much of the aureole provides a natural laboratory in which to investigate the distribution of melt. A simple thermal model, based on the first appearance of melt on quartz–feldspar grain boundaries, the first appearance of quartz paramorphs after tridymite and a plausible magma intrusion temperature, provides a time‐scale for melting. The onset of melting on quartz–feldspar grain boundaries was initially rapid, with an almost constant further increase in melt rim thickness at an average rate of 0.5–1.0 × 10?9 cm s?1. This rate was most probably controlled by the distribution of limited amounts of H2O on the grain boundaries and in the melt rims. The melt in the inner parts of the aureole formed an interconnected grain‐boundary scale network, and there is evidence for only limited melt movement and segregation. Layer‐parallel segregations and cross‐cutting veins occur within 0.6 m of the contact, where the melt volume exceeded 40%. The coincidence of the first appearance of these signs of the segregation of melt in parts of the aureole that attained the temperature at which melting in the Qtz–Ab–Or system could occur, suggests that internally generated overpressure consequent to fluid‐absent melting was instrumental in the onset of melt movement.  相似文献   

8.
Pervasive melting of the middle crust, as inferred in Tibet and the Altiplano, probably influences the deformation of the lithosphere. To constrain strain distribution in a pervasively molten crust, we analysed the deformation in an eroded analogue of these orogens. The Ribeira‐Araçuaí orogen (SE Brazil) comprises a stack of allochthons containing large volumes of anatectic and magmatic rocks. The upper allochton (∼300 km long, 50–100 km wide and >10 km thick) involves peraluminous diatexites and leucogranites resulting from partial melting of the middle crust. It overlies another allochthon containing huge early‐ to syn‐collisional plutons intruding metasediments. Both anatexites and magmatic intrusions display a pervasive strain‐induced magmatic fabric. Homogeneous strain distribution suggests inefficient localization. U–Pb ages of ∼575 Ma imply that anatexite melting was synchronous to the early‐ to syn‐collisional magmatism. Similarity in ages magmatic and solid‐state fabrics indicates that intrusions and anatexites deformed coherently with solid‐state rocks while still molten, in response to a combination of gravity‐driven and collision‐driven deformation.  相似文献   

9.
Continental collision results in deep burial of crustal rocks and their subsequent partial melting. Field relations of melt along zones of intense deformation suggest that partially molten rocks may play an important role in regional tectonics. However, subsequent deformation may erase the microstructures produced by the earlier deformation mechanisms, inhibiting our understanding of the rheology of partially molten crustal rocks. Thus, in this paper, we report the results of an experimental study of the distribution of 2–5 vol% melt in quartzo-feldspathic aggregates of various grain sizes: 2–5, 5–10, 10–16 and 26–31 μm. Three types of samples were examined, all with the composition of 60 wt% albite, 25 wt% potassium feldspar, 10 wt% quartz and 5 wt% biotite. The first group included mineral powders annealed at 1000 °C, 1.0 GPa, for c. 100 h. The second group included commercially hot-pressed mineral powders which yielded c. 25 vol% glass; cores of this material were also annealed at 1000 °C, 1.0 GPa, for c. 100 h. The third group included cores of hot-pressed material that were annealed at 1000 °C, 1.0 GPa, for c. 45 h, then deformed. All samples were quenched rapidly in order to examine the melt distribution. Wetting angles are very similar in both the hydrostatically annealed and the deformed samples. Analysis of melt pool orientations reveal that melt migrates away from grain boundaries normal to the maximum compressive stress direction in response to the applied non-hydrostatic stress. This response is easily seen in the coarser-grained samples in which melt pools elongated parallel to the maximum compressive stress direction formed during deformation. If these results extrapolate to naturally deformed rocks, it will be important to consider the orientation of the state of stress in a region during syn-magmatic deformation because of its effect on the melt distribution.  相似文献   

10.
熔体的形态与分布特征对岩石流变的影响   总被引:5,自引:1,他引:4  
熔体的形态与分布研究表明,在静态条件下,熔融程度比较低时,熔体主要分布于三个矿物颗粒之间,形成三角形状熔体结构,熔体二面角在0°~60°;熔融程度比较高时,熔体沿多个颗粒边界形成孤立的三角形或四边形结构,熔体三联点的二面角接近60°或大于60°。在动态条件下,在部分或全部矿物颗粒边界出现熔体薄膜,把熔体三角形连通,形成局部熔体网络,熔体三联点的二面角接近0°。如果熔体呈孤立的三角形或四边形结构时,熔体对岩石流变的影响比较小:当熔体含量小于2%~3%,熔体对岩石流变基本没有影响;只有熔体含量接近或超过3%~5%,熔体对流变强度的弱化作用才出现,当熔体含量达到10%时,流变强度弱化增加3倍左右。如果矿物颗粒边界出现熔体薄膜,微量熔体(小于1%)就对岩石流变强度有显著的弱化作用。流变实验表明,在颗粒边界含有小于1%的熔体时,熔体对流变强度的弱化达到4倍,当颗粒边界含有3%的熔体时,这种弱化作用达到10倍。  相似文献   

11.
Garnet (10 vol.%; pyrope contents 34–44 mol.%) hosted in quartzofeldspathic rocks within a large vertical shear zone of south Madagascar shows a strong grain‐size reduction (from a few cm to ~300 μm). Electron back‐scattered diffraction, transmission electron microscopy and scanning electron microscope imaging coupled with quantitative analysis of digitized images (PolyLX software) have been used in order to understand the deformation mechanisms associated with this grain‐size evolution. The garnet grain‐size reduction trend has been summarized in a typological evolution (from Type I to Type IV). Type I, the original porphyroblasts, form cm‐sized elongated grains that crystallized upon multiple nucleation and coalescence following biotite breakdown: biotite + sillimanite + quartz = garnet + alkali feldspar + rutile + melt. These large garnet grains contain quartz ribbons and sillimanite inclusions. Type I garnet is sheared along preferential planes (sillimanite layers, quartz ribbons and/or suitably oriented garnet crystallographic planes) producing highly elongated Type II garnet grains marked by a single crystallographic orientation. Further deformation leads to the development of a crystallographic misorientation, subgrains and new grains resulting in Type III garnet. Associated grain‐size reduction occurs via subgrain rotation recrystallization accompanied by fast diffusion‐assisted dislocation glide. This plastic deformation of garnet is associated with efficient recovery as shown by the very low dislocation densities (1010 m?3 or lower). The rounded Type III garnet experiences rigid body rotation in fine‐grained matrix. In the highly deformed samples, the deformation mechanisms in garnet are grain‐size‐ and shape‐dependent: dislocation creep is dominant for the few large grains left (>1 mm; Type II garnet), rigid body rotation is typical for the smaller rounded grains (300 μm or less; Type III garnet) whereas diffusion creep may affect more elliptic garnet (Type IV garnet). The P–T conditions of garnet plasticity in the continental crust (≥950 °C; 11 kbar) have been identified using two‐feldspar thermometry and GASP conventional barometry. The garnet microstructural and deformation mechanisms evolution, coupled with grain‐size decrease in a fine‐grained steady‐state microstructure of quartz, alkali feldspar and plagioclase, suggests a separate mechanical evolution of garnet with respect to felsic minerals within the shear zone.  相似文献   

12.
Microstructures of melt inclusions in anatectic metasedimentary rocks   总被引:2,自引:0,他引:2  
The occurrence of crystallized and glassy melt inclusions (MI) in high‐grade, partially melted metapelites and metagraywackes has opened up new possibilities to investigate anatectic processes. The present study focuses on three case studies: khondalites from the Kerala Khondalite Belt (India), the Ronda migmatites (Spain), and the Barun Gneiss (Nepal Himalaya). The results of a detailed microstructural investigation are reported, along with some new microchemical data on the bulk composition of MI. These inclusions were trapped within peritectic garnet and ilmenite during crystal growth and are therefore primary inclusions. They are generally isometric and very small in size, mostly ≤15 μm, and only rarely reaching 30 μm; they occur in clusters. In most cases inclusions are crystallized (‘nanogranites’) and contain a granitic phase assemblage with quartz, feldspar and one or two mica depending on the particular case study, commonly with accessory phases (mainly zircon, apatite, rutile). In many cases the polycrystalline aggregates that make up the nanogranites show igneous microstructures, e.g. granophyric intergrowths, micrographic quartz in K‐feldspar and cuneiform rods of quartz in plagioclase. Further evidence for the former presence of melt within the investigated inclusions consists of melt pseudomorphs, similar to those recognized at larger scale in the host migmatites. Moreover, partially crystallized inclusions are locally abundant and together with very small (≤8 μm) glassy inclusions may occur in the same clusters. Both crystallized and partially crystallized inclusions often display a diffuse nanoporosity, which may contain fluids, depending on the case study. After entrapment, inclusions underwent limited microstructural modifications, such as shape maturation, local necking down processes, and decrepitation (mainly in the Barun Gneiss), which did not influence their bulk composition. Re‐homogenized nanogranites and glassy inclusions show a leucogranitic and peraluminous composition, consistent with the results of partial melting experiments on metapelites and metagraywackes. Anatectic MI should therefore be considered as a new and important opportunity to understand the partial melting processes.  相似文献   

13.
This study describes normal fault zones formed in foreland arkosic turbidites (the Grès d'Annot Formation, SW French Alps) under deep diagenesis conditions (~200 °C) and highlights the occurrence of two markedly different fault‐rock types: (1) the foliated fault rocks of the Moutière‐Restefond area; and (2) the dilatant fault rocks of the Estrop area. The deformation of (1) is dominated by intra‐ and transgranular fracturing, pressure solution of quartz and feldspar grains and syn‐kinematic phyllosilicate precipitation resulting from feldspar alteration. The combination of these mechanisms results in a strongly anisotropic strain with intense shortening normal to the foliation (pressure solution) and extension parallel to the foliation (quartz‐ and calcite‐sealed extension veins). This deformation implies local mass transfer that may be achieved without (or with limited) volume change. The deformation of (2) is expressed as dilatant quartz‐sealed veins and breccia textures in which the main mechanisms are transgranular fracturing and quartz precipitation. Type (2) implies fault volume increase, isotropy of deformation and mass transfer at distances larger than in type (1). This study discusses the origins of (1) and (2) and shows that the permeability of (1) is anisotropic, with higher values than the host rocks parallel to the Y main deformation axis (i.e. perpendicular to the slip vector), whereas the permeability of (2) is isotropic and equivalent to that of the host rocks.  相似文献   

14.
A combined petrological, geochronological and geochemical study was carried out on felsic veins and their host rocks from the North Qaidam ultrahigh‐pressure (UHP) metamorphic terrane in northern Tibet. The results provide insights into partial melting of deeply subducted continental crust during exhumation. Partial melting is petrograpically recognized in metagranite, metapelite and metabasite. Migmatized gneisses, including metagranite and metapelite, contain microstructures such as granitic aggregates with varying outlines, small dihedral angles at mineral junctions and feldspar with magmatic habits, indicating the former presence of felsic melts. Partial melts were also present in metabasite that occurs as retrograde eclogite. Felsic veins in both the eclogites and gneisses exhibit typical melt crystalline textures such as large euhedral feldspar grains with straight crystal faces, indicating vein crystallization from anatectic melts. The Sr–Nd isotope compositions of felsic veins inside gneisses suggest melt derivation from anatexis of host gneisses themselves, but those inside metabasites suggest melt derivation from hybrid sources. Felsic veins inside gneisses exhibit lithochemical compositions similar to experimental melts on the An–Ab–Or diagram. In trace element distribution diagrams, they exhibit parallel patterns to their host rocks, but with lower element contents and slightly positive Eu and Sr anomalies. The geochemistry of these felsic veins is controlled by minerals that would decompose and survive, respectively, during anatexis. Felsic veins inside metabasites are rich either in quartz or in plagioclase with low normative orthoclase. In either case, they have low trace element contents, with significantly positive Eu and Sr anomalies in plagioclase‐rich veins. Combined with cumulate structures in some veins, these felsic veins are interpreted to crystallize from anatectic melts of different origins with the effect of crystal fractionation. Nevertheless, felsic veins in different lithologies exhibit roughly consistent patterns of trace element distribution, with variable enrichment of LILE and LREE but depletion of HFSE and HREE. There are also higher contents of trace elements in veins hosted by gneisses than veins hosted by metabasites. Anatectic zircon domains from felsic veins and migmatized gneisses exhibit consistent U–Pb ages of c. 420 Ma, significantly younger than the peak UHP eclogite facies metamorphic event at c. 450–435 Ma. Combining the petrological observations with local P–T paths and experimentally constrained melting curves, it is inferred that anatexis of UHP gneisses was caused by muscovite breakdown while anatexis of UHP metabasites was caused by fluid influx. These UHP metagranite, metapelite and metabasite underwent simultaneous anatexis during the exhumation, giving rise to anatectic melts with different compositions in various elements but similar patterns in trace element distribution.  相似文献   

15.
Cordierite–quartz and plagioclase–quartz intergrowths in a paragneiss from northern Labrador (the Tasiuyak Gneiss) were studied using SEM, STEM and TEM. The gneiss experienced granulite facies conditions and partial melting during both regional and, subsequently, during contact metamorphism. The microstructures examined all results from the contact metamorphism. Cordierite–quartz intergrowths occur on coarse and fine scales. The former sometimes exist as a ‘geometric’ intergrowth in which the interface between cordierite and quartz appears planar at the resolution of the optical microscope and SEM. The latter exists in several microstructural variants. Plagioclase is present as a minor component of the intergrowth in some examples of both the coarse and fine intergrowth. Grain boundaries in cordierite–quartz intergrowths are occupied by amorphous material or a mixture of amorphous material and chlorite. Cordierite and quartz are terminated by crystal faces in contact with amorphous material. Chlorite is sometimes found on cordierite surfaces and penetrating into cordierite grains along defects. Quartz contains (former) fluid inclusions 10–20 nm in maximum dimension. The presence of planar interfaces between cordierite and the amorphous phase is reminiscent of those between crystals and glass in volcanic rocks, but in the absence of compelling evidence that the amorphous material represents former melt, it is interpreted as a reaction product of cordierite. Plagioclase–quartz intergrowths occur in a number of microstructural variants and are commonly associated with cordierite–quartz intergrowths. The plagioclase–quartz intergrowths display simple, non‐planar interfaces between plagioclase and quartz. Quartz contains (former) fluid inclusions of dimensions similar to those observed in cordierite–quartz intergrowths. The boundary between quartz and enclosing K‐feldspar is cuspate, with quartz cusps penetrating a few tens of nanometres into K‐feldspar, commonly along defects in K‐feldspar and sometimes with very low dihedral angles at their tips. This cuspate microstructure is interpreted as melt pseudomorphs. The plagioclase–quartz intergrowths share some features with myrmekite, but differ in some respects: the composition of the plagioclase (An37Ab62Or1–An38Ab61Or1); the association with cordierite–quartz intergrowths; and microstructures that are atypical of myrmekite (e.g. quartz vermicules shared with cordierite–quartz intergrowths). It is inferred that the plagioclase–quartz intergrowths may have formed from, or in the presence of, melt. Inferred melt‐related microstructures preserved on the nanometre scale suggest that melt on grain boundaries was more pervasive than is evident from light optical and SEM observations.  相似文献   

16.
花岗质岩石中微粒交生体的成因研究   总被引:3,自引:0,他引:3  
在一些花岗质片麻岩中,经常看到分布在长石颗粒周围的细小矿物集合体——微粒交生体。电子探针分析结果表明,微粒交生体主要由钠长石、钾长石和石英组成,其标准矿物平均成分相当于An-Ab-Or体系的“低限熔点”成分。显然,微粒交生体是花岗质片麻岩经部分熔融产生的“低限熔体”的结晶产物。太古宙高级区一些晚构造钾质花岗岩的矿物,化学特征与微粒交生体类似。这意味着在塑性变形过程中产生和聚集的“低限熔体”最终可以形成大规模钾质花岗岩。  相似文献   

17.
This study uses field, microstructural and geochemical data to investigate the processes contributing to the petrological diversity that arises when granitic continental crust is reworked. The Kinawa migmatite formed when Archean TTG crust in the São Francisco Craton, Brazil was reworked by partial melting at ~730 °C and 5–6 kbar in a regional‐scale shear zone. As a result, a relatively uniform leucogranodiorite protolith produced compositionally and microstructurally diverse diatexites and leucosomes. All outcrops of migmatite display either a magmatic foliation, flow banding or transposed leucosomes and indicate strong, melt‐present shearing. There are three types of diatexite. Grey diatexites are interpreted to be residuum, although melt segregation was incomplete in some samples. Biotite stable, H2O‐fluxed melting is inferred via the reaction Pl + Kfs + Qz + H2O = melt and geochemical modelling indicates 0.35–0.40 partial melting. Schlieren diatexites are extremely heterogeneous; residuum‐rich domains alternate with leucocratic quartzofeldspathic domains. Homogeneous diatexites have the highest SiO2 and K2O contents and are coarse‐grained, leucocratic rocks. Homogeneous diatexites, quartzofeldspathic domains from the schlieren diatexites and the leucosomes contain both plagioclase‐dominated and K‐feldspar‐dominated feldspar framework microstructures and hence were melt‐derived rocks. Both types of feldspar frameworks show evidence of tectonic compaction. Modelling the crystallization of an initial anatectic melt shows plagioclase appears first; K‐feldspar appears after ~40% crystallization. In the active shear zone setting, shear‐enhanced compaction provided an essentially continuous driving force for segregation. Thus, Kinawa migmatites with plagioclase frameworks are interpreted to have formed by shear‐enhanced compaction early in the crystallization of anatectic melt, whereas those with K‐feldspar frameworks formed later from the expelled fractionated melt. Trace element abundances in some biotite and plagioclase from the fractionated melt‐derived rocks indicate that these entrained minerals were derived from the wall rocks. Results from the Kinawa migmatites indicate that the key factor in generating petrological diversity during crustal reworking is that shear‐enhanced compaction drove melt segregation throughout the period that melt was present in the rocks. Segregation of melt during melting produced residuum and anatectic melt and their mixtures, whereas segregation during crystallization resulted in crystal fractionation and generated diverse plagioclase‐rich rocks and fractionated melts.  相似文献   

18.
This study uses field, petrographic and geochemical methods to estimate how much granitic melt was formed and extracted from a granulite facies terrane, and to determine what the grain‐ and outcrop‐scale melt‐flow paths were during the melt segregation process. The Ashuanipi subprovince, located in the north‐eastern Superior Province of Quebec, is a large (90 000 km2) metasedimentary terrane, in which > 85% of the metasediments are of metagreywacke composition, that was metamorphosed at mid‐crustal conditions (820–900 °C and 6–7 kbar) in a late Archean dextral, transpressive orogen. Decrease in modal biotite and quartz as orthopyroxene and plagioclase contents increase, together with preserved former melt textures indicate that anatexis was by the biotite dehydration reaction: biotite + quartz + plagioclase = melt + orthopyroxene + oxides. Using melt/orthopyroxene ratios for this reaction derived from experimental studies, the modal orthopyroxene contents indicate that the metagreywacke rocks underwent an average of 31 vol% partial melting. The metagreywackes are enriched in MgO, CaO and FeOt and depleted in SiO2, K2O, Rb, Cs, and U, have lower Rb/Sr, higher Rb/Cs and Th/U ratios and positive Eu anomalies compared to their likely protolith. These compositions are modelled by the extraction of between 20 and 40 wt %, granitic melt from typical Archean low‐grade metagreywackes. A simple mass balance indicates that about 640 000 km3 of granitic melt was extracted from the depleted granulites. The distribution of relict melt at thin section‐ and outcrop‐scales indicates that in layers without leucosomes melt extraction occurred by a pervasive grain boundary (porous) flow from the site of melting, across the layers and into bedding planes between adjacent layers. In other rocks pervasive grain boundary flow of melt occurred along the layers for a few, to tens of centimetres followed by channelled flow of melt in a network of short interconnected and structurally controlled conduits, visible as the net‐like array of leucosomes in some outcrops. The leucosomes contain very little residual material (< 5% biotite + orthopyroxene) indicating that the melt fraction was well separated from the residuum left in situ as melt‐depleted granulite. Only 1–3 vol percentage melt remained in the melt‐depleted granulites, hence, the extraction of melt generated by biotite dehydration melting in these granulites, was virtually complete under conditions of natural melting and strain rates in a contractional orogen.  相似文献   

19.
Schlieren are trains of platy or blocky minerals, typically the ferromagnesian minerals and accessory phases, that occur in granites and melt‐rich migmatites, such as diatexites. They have been considered as: (1) unmelted residue from xenoliths or the source region; (2) mineral accumulations formed during magma flow; (3) compositional layering; and (4) sites of melt loss. In order to help identify schlieren‐forming processes in the diatexites at St Malo, differences in the size, shape, orientation, distribution and composition of the biotite from schlieren and from their hosts have been investigated. Small biotite grains are much less abundant in the schlieren than in their hosts. Schlieren biotite grains are generally larger, have greater aspect ratios and have, except in hosts with low (< 10%) biotite contents, a much stronger shape preferred orientation than host biotite. The compositional ranges of host and schlieren biotite are similar, but schlieren biotite defines tighter, sharper peaks on composition‐frequency plots. Hosts show magmatic textures such as imbricated (tiled), unstrained plagioclase. Some schlieren show only magmatic textures (tiled biotite, no crystal‐plastic strain features), but many have textures indicating submagmatic and subsolidus deformation (e.g. kinked grains) and these schlieren show the most extensive evidence for recrystallization. Magmas at St Malo initially contained a significant fraction of residual biotite and plagioclase crystals; smaller biotite grains were separated from the larger plagioclase crystals during magma flow. Since plagioclase was also the major, early crystallizing phase, the plagioclase‐rich domains developed rapidly and reached the rigid percolation threshold first, forcing further magma flow to be concentrated into narrowing melt‐rich zones where the biotite had accumulated, hence increasing shear strain and the degree of shape preferred orientation in these domains. Schlieren formed in these domains as a result of grain contacts and tiling in the grain inertia‐regime. Final amalgamation of the biotite aggregates into schlieren involved volume loss as melt trapped between grains was expelled after the rigid percolation threshold was reached in the biotite‐rich layers.  相似文献   

20.
Upper amphibolite facies felsic gneiss from Broken Hill records the metatexite to schlieren diatexite to massive diatexite transition in a single rock type over a scale of tens to hundreds of metres. The metatexites are characterized by centimetre‐scale segregation of melt into leucosomes to form stromatic migmatite. The schlieren diatexites are characterized by the disaggregation of the rocks and the development of schlieren migmatite. The massive diatexites represent a higher degree of disaggregation, lack schlieren and contain plagioclase and K‐feldspar phenocrysts. The transition from metatexite to schlieren diatexite and massive diatexite was heterogeneous with both disaggregation of the rock on a grain scale and disaggregation of the rock into centimetre‐ to metre‐scale rafts. As melt contents increased, the proportion of material disaggregated on a grain scale increased. The high proportion of melt needed to form diatexites at upper amphibolite facies conditions was the result of an influx of hydrous fluid at temperatures just above the solidus of the diatexites. Nearby metapelitic rocks, with a slightly higher solidus temperature, undergoing subsolidus muscovite breakdown are the likely source of the fluid. Continued heating during and after the influx of fluid led to melt contents of up to c. 60 mol.% in the massive diatexite. The metatexite zone probably involved little added fluid. Continued deformation during cooling and melt crystallization resulted in the extensive development of schlieren and late‐stage melt segregations and melt‐rich shear bands in the schlieren diatexite zone. The rocks of the massive diatexite zone lack these late‐stage segregations, consistent with the cessation of D2 deformation prior to them developing a crystal framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号