首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variations in air density have been determined using the orbit of the satellite Cosmos 462, 1971-106A, which entered orbit on 3 December 1971 with an initial perigee near 230 km and inclination 65.75°, and decayed on 4 April 1975. Accurate orbits determined at 85 epochs give perigee height correct to about 200 m throughout the satellite's lifetime. Using these values of perigee height and orbital decay rates from NORAD elements, 604 values of air density at half a scale height above perigee have been evaluated. These densities have been compared with values from the COSPAR International Reference Atmosphere 1972, taking account of variations due to solar activity and geomagnetic disturbances, and day-to-night variations, to reveal the residual variations in density at a series of standard heights, 245, 240, 232 and 213 km.The main residual variation is semi-annual, with maxima usually in April and October, and minima usually in January and July; but it is irregular in phase and shape. The amplitude of the semi-annual variation is remarkably constant from year to year between 1972 and 1975, and considerably greater than that given by CIRA 1972: the April/July density ratio is 1.68, not 1.32 as in CIRA; the October–November maxima are all lower than the April maxima, whereas CIRA gives the opposite; the July minima are 18% lower than the January minima, as opposed to 10% in CIRA.A standardized semi-annual density variation for the early 1970s is presented, with January minimum of 0.94, April maximum of 1.28, July minimum of 0.77 and October–November maximum of 1.22. In addition, three other recurrent variations are recognizable: in each year the density has a subsidiary minimum in May and maximum in June; there are low values in mid November and high values in late December.  相似文献   

2.
On February 8, 1974, Skylab 1 was manoeuvred into a near circular orbit of inclination 50.04° and perigee near 420km. Orbital parameters have been computed at forty-six epochs thereafter using all available observations. Using these orbital elements, supplemented by orbital decay rates derived from NORAD bulletins, 193 values of air density were determined between 23 February, 1974 and 11, August, 1976. Corrected to a fixed height and normalised with respect to exospheric temperature these values reveal the semi-annual variation, exhibiting maxima in March–April and October–November, and minima in January–February and July–August. For 1974–1976 the July minima are more pronounced than the January minima whilst the April and October maxima appear equal. Overall the variation is greater than that indicated by CIRA 1972.  相似文献   

3.
Cosmos 359 rocket, 1970-65D, entered orbit on 22 August 1970, with an initial perigee height of 209 km and inclination 51·2°, and decayed on 6 October 1971. Using the values of perigee height from RAE orbits and decay rates from USAF Spacetrack bulletins, 146 values of air density have been calculated between August 1970 and September 1971, mainly at heights between 180 and 230 km.On ten occasions in 1971 when there were substantial geomagnetic disturbances there were sudden increases in density, the largest being about 32 per cent.When the density was corrected to a fixed height and allowance was made for the day-tonight variation and the effects of solar activity, the dominant feature was a semi-annual variation, with maxima in density centred at 6 November 1970 and 7 April 1971, and minima centred at 5 January and 28 July 1971. The maxima in density are nearly equal and exceed the minima by about 50 per cent.  相似文献   

4.
The orbit of Explorer 19 (1963-53A) has been determined at 60 epochs between February 1976 and October 1976 from over 3000 observations. Using values of the orbital decay rate corrected for the effects of solar radiation pressure, 58 values of air density at a height of 900 km have been evaluated. After correcting for solar and geomagnetic activity and seasonal-latitudinal and diurnal variations in the exospheric temperature, the residual variation exhibited modulations associated with the ‘winter helium bulge’.An examination of three different models of the helium variation has indicated a procedure, which combines distinct features of the CIRA (1972) and Jacchia (1977) model atmospheres, for determining the atmospheric drag effect on Explorer 19. It is proposed that this technique may be equally applicable to any satellite in near-polar orbit at an equivalent height.  相似文献   

5.
China 2 rocket, 1971-18B, was launched on 3rd March 1971 into an orbit inclined at 69.9° to the Equator, with an initial perigee height of 265 km. Analysis of its orbit has yielded values of air density at average intervals of 6 days between July 1971 and January 1972. When corrected to a fixed height, the density exhibits a correlation with the geomagnetic index Ap and the solar 10.7-cm radiation. With values of density extending over seven months it is possible to examine a complete cycle of the semi-annual variation at a height near 300 km. The values of density, corrected for the day-to-night variation and for solar and geomagnetic activity, reveal minima in mid-August and late January; at the intervening maximum, in early November, the density is almost 40% higher than at the minima.  相似文献   

6.
7.
Changes in the orbital periods of two satellites, 1962-βτ6 (Injun 3 rocket) and 1965-11D (Cosmos 54 rocket), have been used to deduce the air density at heights of 240 and 280 km during April–November 1967. At both heights the generally low density observed in July and the higher density in April and October were almost certainly part of a semi-annual variation similar to that observed at other heights in the thermosphere. The ratio of the maximum (October) to minimum (July) density was about 1·8 at 240 km and 2·2 at 280 km. Superimposed upon this variation were short-lived increases in density associated with magnetic storms, the largest being of 65 per cent at 280 km on 25 May, and a periodic variation with an amplitude of up to 25 per cent from the monthly mean density, related to the 10·7 cm solar radiation flux. A diurnal variation of density was also detected with a maximum density at 14 hr and a maximum to minimum ratio of 1·7 at 280 km.  相似文献   

8.
The global mean vertical energy flux of the (1,1,1) mode of atmospheric oscillation is evaluated at 80 km altitude by classical tidal theory for mean January, April, July and October conditions using revised profiles of water vapour and ozone heating. Fluxes calculated for January and July are lower than those for April and October due to seasonal changes in water vapour, solar declination and Sun-Earth distance. Flux values obtained are compared with a previously stated requirement for maintaining the residual thermosphere and are adequate unless damping, which is ignored in the present calculations, introduces a factor of more than an order of 10 in magnitude. The relative changes of flux between the above four months are noted to be similar in form to the semi-annual variation of thermospheric air densities.  相似文献   

9.
Cosmos 378 rocket, 1970-97B, entered orbit on 17 November 1970, with orbital inclination 74.0°, period 105 min and perigee height 230 km, and decayed on 30 September 1972 after 683 days in orbit. The RAE computer program PROP was used, with more than 1900 observations from 64 stations, to determine the orbit at 39 epochs between February 1971 and September 1972.The main aim of the analysis was to determine the atmospheric rotation rate from the decrease in orbital inclination, which was determined with a mean standard deviation of 0.0010° and a best standard deviation of 0.0003°. After removal of relevant perturbations, analysis of the variation in inclination between July 1971 and April 1972 yields the surprisingly low average atmospheric rotation rate of 0.75 ± 0.05 rev/day, at a mean height of 250 km. The local time at perigee is however strongly biassed towards daytime values (07–16 hr), so the results lend support to the picture of east-to-west winds by day and west-to-east winds by night.Values of scale height are obtained by analysis of the change in perigee height.  相似文献   

10.
《Planetary and Space Science》1987,35(8):1039-1052
An empirical density formula is explored as a practical model for atmospheric variations and satellite drag analyses. Expanding neutral air density as a series of spherical harmonics and normalizing to a fixed height, an analytical expression for the rate of change of the mean motion is developed for an oblate atmosphere with density scale height varying linearly with altitude. A subset of the coefficients in the density expansion is determined by least-squares adjustment to the observed orbital decay rate of Intercosmos 13 rocket (1975-22B) for the period May 1975–December 1979. Comparisons against four thermospheric models are undertaken for the solar activity effect and the diurnal and semi-annual variations. Given the even spread of data and the increase in solar activity from low to moderate, the air density variation with solar activity is particularly well determined. The results support the “J77” model revealing a greater increase in density with the daily solar index than either the “MSIS” or “DTM” thermospheric models near the solar minimum. Analyses of the diurnal and semi-annual variations are less exact.  相似文献   

11.
The fluctuation and the periodicities of the total ozone layer for the period 1957–1990 is studied. Monthly total ozone data from 32 ground based stations have been analysed. It is shown that the maxima and the minima of the monthly values of total ozone for each year and for the whole period in question do not necessarily occur in March or in April and in September or October but range from March till July and from September till December respectively. Periodicities of 3, 4 and 6 months have been revealed. Finally the maxima and the minima of the total ozone data were examined. The variation of the whole phenomenon is analytically expressed with the help of an algebraic formula and can represent the observed monthly ozone values with an accuracy of 97%.  相似文献   

12.
Photoelectric photometry of the unusual binary system, whose light curve shows peculiar light variations, has been done in the two colours. The observations obtained at the Ege University Observatory between 1973 and 1978 and at the Kottamia Observatory in November 1977 show a variable light curve. The observed variations in the light curve show a migrating wave towards a decreasing orbital phase similar to those observed in RS CVn-binaries. The migration period appears to be about 191 days. The times of minima indicate that there has been a decrease on the orbital period of the system. However, since there is not enough material on the observed times of minima, we cannot explain whether the decrease in the orbital period has been sudden or gradual. The radii of the components have been computed from the primary minimum alone. With the available spectroscopic data, the absolute dimensions of the components are also presented. It appears to be difficult to explain the evolution of the system without taking into consideration the mass loss. The proposed models for the evolution of the system and an explanation of the observed light variations are also presented.  相似文献   

13.
The orbit of China 2 rocket, 1971-18B, has been determined at 114 epochs throughout its 5-yr life, using the RAE orbit refinement program PROP 6, with more than 7000 radar and optical observations from 83 stations.The rocket passed slowly enough through the resonances 14:1, 29:2, 15:1 and 31:2 to allow lumped geopotential harmonic coefficients to be calculated for each resonance, by least-squares fittings of theoretical curves to the perturbation-free values of inclination and eccentricity. These lumped coefficients can be combined with values from satellites at other inclinations, to obtain individual harmonic coefficients.The rotation rate of the upper atmosphere, at heights near 300 km, was estimated from the decrease in orbital inclination, and values of 1.15, 1.05, 1.10 and 1.05 rev/day were obtained between April 1971 and January 1976. From the variation in perigee height, 25 values of density scale height were calculated, from April 1971 to decay. Comparison with values from the COSPAR International Reference Atmosphere 1972 shows good agreement between April 1971 and October 1975, but the observational values are 10% lower, on average, than CIRA thereafter.A further 1400 observations, made during the final 15 days before decay, were used to determine 15 daily orbits. Analysis of these orbits reveals a very strong West-to-East wind, of 240 ± 40 ms?1, at a mean height of 195 km under winter evening conditions, and gives daily values of density scale height in the last 7 days before decay.  相似文献   

14.
An analysis of 1210 visual brightness estimations of the Moon's ashen light is presented, performed by a working group of amateur astronomers from June 1972 to December 1973. In the Moon phase interval 0.1 T b 0.7 the brightness expressed in a semi-empirical scale, S G, is found to be linearly related to the phase. Monthly deviations from the mean brightness show well defined winter maxima (January) and summer minima (July). Within the referenced period the brightness of the ashen light tends to increase, whereas the solar magnetic activity decreased. In addition, minor correlations and, respectively, anti-correlations are found at stratospheric temperature and, respectively density. On account of the nature of the ashen light its variations are regarded as fluctuations of the Earth's albedo.  相似文献   

15.
The orbit of the satellite Cosmos 482 (1972-23A) has been determined at 77 epochs between 8 November 1977 and 18 April 1981 from 5650 optical and radar observations. The computations were made with the RAE orbit determination program PROP 6, and an average accuracy of 150 m radial and cross-track was achieved.Cosmos 482 was a high-drag satellite in an eccentric orbit and, between the first epoch and the last, the orbital period decreased from 157 to 94 min, the eccentricity decreased from 0.32 to 0.04, and the orbital inclination decreased from 52.14° to 51.95° due to the transverse forces caused by atmospheric rotation. The orbit was therefore ideal for determining the atmospheric rotation rate from the decrease in inclination, and seven accurate values of rotation rate have been obtained. The new values strengthen the existing overall picture of upper-atmosphere winds, and are generally in good accord with the previous results.An improved equation has been derived for calculating density scale height H from the decrease in perigee distance, and has been applied to determine seven values of H. The corresponding values of H from the COSPAR International Reference Atmosphere are on average 5% lower than the observational values, for 1980–1981.  相似文献   

16.
Knowles  S.H.  Picone  J.M.  Thonnard  S.E.  Nicholas  A.C. 《Solar physics》2001,204(1-2):387-397
Geomagnetic storms driven by solar eruptions are known to have significant effects on the total density of the upper atmosphere in the altitude range 250–1000 km. This in turn causes a measurable effect on the orbits of resident space objects in this altitude range. We analyzed a sample of these orbits, both from sensor data and from orbital element sets, during the period surrounding the 14 July 2000 solar activity. We present information concerning the effects of this event on the orbits of resident space objects and how well accepted atmospheric models were able to represent it. As part of this analysis, we describe a technique for extracting atmospheric density information from orbital element sets. On daily time scales, the effect of geomagnetic activity appears to be more important than that of prompt radiation. However, the limitations in time and amplitude quantization of the accepted solar indices are evident. A limited comparison is also made with previous solar storm events.  相似文献   

17.
We Investigate the orbital changes of the satellite 1976-87A (the sixth Chinese satellite) during its lifetime and from its orbital decay rate determine the air density at heights 205–220 km. The density we obtained is, on the average, over 20% greater than that in the CIRA 1972 model. We discuss in detail the correlation between changes in the density and in the geomagnetic activity, and the relationships between the geomagnetic effect and the latitude and the local solar time.  相似文献   

18.
The upper mesosphere airglow emissions OI 5577, NaD and OH have been observed at Cachoeira Paulista (22.7°S; 45.0°W) Brazil. Nocturnal variations and their seasonal dependencies in amplitude and phase, and the annual variations of these emissions are presented, analysing the data obtained from 1977 to 1982 during the ascending phase of the last solar cycle. The nocturnal variations of the OI 5577 emission and the OH rotational temperature showed a significant semidiurnal oscillation, with the phase of maximum moving from midnight in January to early morning in June. Semiannual variation of the OI 5577 and NaD emissions with the maximum intensities in April/May and October/November were observed. The OH rotational temperature, however, showed an annual variation, maximum in summer and minimum in winter, while no significant seasonal variation was found in the OH emission intensities. Long-term intensity variations are also presented with the solar sunspot numbers and the 10.7 cm flux.  相似文献   

19.
The satellite NOAA-B (1980-43A) was launched in May 1980 into an orbit with perigee height near 260 km and apogee height 1440 km, at an inclination of 92.2°.The lifetime was 11 months. The orbit has been determined at 40 epochs between October 1980 and May 1981 from about 3000 radar and optical observations. The average orbital accuracy, radial and cross-track, was about 100 m, with rather better accuracy in the final 14 days.The variation of orbital inclination has been analysed to determine two good values of atmospheric rotation rate, namely 1.10 ± 0.10 rev day?1 at 300 km (average local time) and 1.15 ± 0.06 rev day?1 at 225 km (evening).The effect of atmospheric rotation on the precession of the orbital plane of an actual satellite has never previously been detected; it is clearly apparent for 1980-43A in its last days and conforms to the expected theoretical change.The variation of perigee height has been analysed to determine ten values of atmospheric density scale height, for heights of 280–370 km. These values, accurate to about 3%, exceed by 15% the values indicated by the COSPAR International Reference Atmosphere. Solar activity was higher in the years 1980–1981 than at any time since early 1958 and it appears that the CIRA model underestimates the density and density scale height at high levels of solar activity.  相似文献   

20.
Cosmos 316 (1969-108A) was launched on 23 December 1969 into an orbit with an initial perigee height of 154 km at an inclination of 49.5° to the equator. Being very massive, Cosmos 316 had a longer lifetime than any previous satellite with such a low initial perigee: it remained in orbit until 28 August 1970. Because of its interest for upper-atmosphere research, the satellite was intensively observed, and accurate orbits are being determined at RAE from all available observations. Using perigee heights from the RAE orbits so far computed, and decay rates from Spacetrack bulletins, 102 values of air density have been obtained, giving a detailed picture of the variations in density at heights near 150 km between 24 December 1969 and 28 August 1970. The three strongest geomagnetic storms, on 8 March, 21 April and 17 August 1970, are marked by sudden increases in density of at least 23, 15 and 24 per cent respectively. With values of density extending over eight months, it is possible for the first time to examine a complete cycle of the semi-annual variation at a height near 150 km: the values of density, when corrected to a fixed height, exhibit minima in mid January and early August; at the intervening maximum, in April, the density is 30 per cent higher than at the minima.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号