首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stephen J. Kortenkamp 《Icarus》2005,175(2):409-418
Numerical simulations of the gravitational scattering of planetesimals by a protoplanet reveal that a significant fraction of scattered planetesimals can become trapped as so-called quasi-satellites in heliocentric 1:1 co-orbital resonance with the protoplanet. While trapped, these resonant planetesimals can have deep low-velocity encounters with the protoplanet that result in temporary or permanent capture onto highly eccentric prograde or retrograde circumplanetary orbits. The simulations include solar nebula gas drag and use planetesimals with diameters ranging from ∼1 to ∼1000 km. Initial protoplanet eccentricities range from ep=0 to 0.15 and protoplanet masses range from 300 Earth-masses (M) down to 0.1M. This mass range effectively covers the final masses of all planets currently thought to be in possession of captured satellites—Jupiter, Saturn, Neptune, Uranus, and Mars. For protoplanets on moderately eccentric orbits (ep?0.1) most simulations show from 5-20% of all scattered planetesimals becoming temporarily trapped in the quasi-satellite co-orbital resonance. Typically, 20-30% of the temporarily trapped quasi-satellites of all sizes came within half the Hill radius of the protoplanet while trapped in the resonance. The efficiency of the resonance trapping combined with the subsequent low-velocity circumplanetary capture suggests that this trapped-to-captured transition may be important not only for the origin of captured satellites but also for continued growth of protoplanets.  相似文献   

2.
We explore the cross section of giant planet envelopes at capturing planetesimals of different sizes. For this purpose we employ two sets of realistic planetary envelope models (computed assuming for the protoplanetary nebula masses of 10 and 5 times the mass of the minimum mass solar nebula), account for drag and ablation effects and study the trajectories along which planetesimals move. The core accretion of these models has been computed in the oligarchic growth regime [Fortier, A., Benvenuto, O.G., Brunini, A., 2007. Astron. Astrophys. 473, 311-322], which has also been considered for the velocities of the incoming planetesimals. This regime predicts velocities larger that those used in previous studies of this problem. As the rate of ablation is dependent on the third power of velocity, ablation is more important in the oligarchic growth regime. We compute energy and mass deposition, fractional ablated masses and the total cross section of planets for a wide range of values of the critical parameter of ablation. In computing the total cross section of the planet we have included the contributions due to mass deposited by planetesimals moving along unbound orbits. Our results indicate that, for the case of small planetary cores and low velocities for the incoming planetesimals, ablation has a negligible impact on the capture cross section in agreement with the results presented in Inaba and Ikoma [Inaba, S., Ikoma, M., 2003. Astron. Astrophys. 410, 711-723]. However for the case of larger cores and high velocities of the incoming planetesimals as predicted by the oligarchic growth regime, we find that ablation is important in determining the planetary cross section, being several times larger than the value corresponding ignoring ablation. This is so regardless of the size of the incoming planetesimals.  相似文献   

3.
The irregular satellites of Jupiter are believed to be captured asteroids or planetesimals. In the present work is studied the direction of capture of these objects as a function of their orbital inclination. We performed numerical simulations of the restricted three-body problem, Sun-Jupiter-particle, taking into account the growth of Jupiter. The integration was made backward in time. Initially, the particles have orbits as satellites of Jupiter, which has its present mass. Then, the system evolved with Jupiter losing mass and the satellites escaping from the planet. The reverse of the escape direction corresponds to the capture direction. The results show that the Lagrangian points L1 and L2 mainly guide the direction of capture. Prograde satellites are captured through these two gates with very narrow amplitude angles. In the case of retrograde satellites, these two gates are wider. The capture region increases as the orbital inclination increases. In the case of planar retrograde satellites the directions of capture cover the whole 360° around Jupiter. We also verified that prograde satellites are captured earlier in actual time than retrograde ones. This paper was presented at the Asteriods, Comets and Meteors meeting held at Búzios, Rio de Janeiro, Brazil in August 2005 and could not be included in the special issue related to that conference.  相似文献   

4.
The recent discovery of free-floating planets and their theoretical interpretation as celestial bodies, either condensed independently or ejected from parent stars in tight clusters, introduced an intriguing possibility. Namely, that some exoplanets are not condensed from the protoplanetary disk of their parent star. In this novel scenario a free-floating planet interacts with an already existing planetary system, created in a tight cluster, and is captured as a new planet. In the present work we study this interaction process by integrating trajectories of planet-sized bodies, which encounter a binary system consisting of a Jupiter-sized planet revolving around a Sun-like star. To simplify the problem we assume coplanar orbits for the bound and the free-floating planet and an initially parabolic orbit for the free-floating planet. By calculating the uncertainty exponent, a quantity that measures the dependence of the final state of the system on small changes of the initial conditions, we show that the interaction process is a fractal classical scattering. The uncertainty exponent is in the range (0.2–0.3) and is a decreasing function of time. In this way we see that the statistical approach we follow to tackle the problem is justified. The possible final outcomes of this interaction are only four, namely flyby, planet exchange, capture or disruption. We give the probability of each outcome as a function of the incoming planet’s mass. We find that the probability of exchange or capture (in prograde as well as retrograde orbits and for very long times) is non-negligible, a fact that might explain the possible future observations of planetary systems with orbits that are either retrograde (see e.g. Queloz et?al. Astron. Astrophys. 417, L1, 2010) or tight and highly eccentric.  相似文献   

5.
We study the rate of radial diffusion of planetesimals due to mutual gravitational encounters under Hill’s approximations in the three-body problem. Planetesimals orbiting a central star radially migrate inward and outward as a result of mutual gravitational encounters and transfer angular momentum. We calculate the viscosity in a disk of equal-sized planetesimals due to their mutual gravitational encounters using three-body orbital integrations, and obtain a semianalytic expression that reproduces the numerical results. We find that the viscosity is independent of the velocity dispersion of planetesimals when the velocity dispersion is so small that Kepler shear dominates planetesimals’ relative velocities. On the other hand, in high-velocity cases where random velocities dominate the relative velocities, the viscosity is a decreasing function of the velocity dispersion, and is found to agree with previous estimates under the two-body approximation neglecting the solar gravity. We also calculate the rate of radial diffusion of planetesimals due to gravitational scattering by a massive protoplanet. Using these results, we discuss a condition for formation of nonuniform radial surface density distribution of planetesimals by gravitational perturbation of an embedded protoplanet.  相似文献   

6.
Impossibility of the capture of retrograde satellites is proved in the framework of the circular planar restricted three-body problem.Motion of the third body is described in Birkhoff's variables. First, various kinds of retrograde orbits around one of the primaries are defined. Among them are captured retrograde orbits and retrograde satellite orbits. Second, the surface of section and surface transformation are defined in the three dimensional manifold, in which the motion of the third body is possible for a fixed value of the Jacobi constant. Third, the surface transformation is shown to be homeomorphic and measure-preserving. Finally, with the use of these properties of surface transformation, impossibility of the capture is shown.  相似文献   

7.
We investigate a new theory of the origin of the irregular satellites of the giant planets: capture of one member of a ∼100-km binary asteroid after tidal disruption. The energy loss from disruption is sufficient for capture, but it cannot deliver the bodies directly to the observed orbits of the irregular satellites. Instead, the long-lived capture orbits subsequently evolve inward due to interactions with a tenuous circumplanetary gas disk.We focus on the capture by Jupiter, which, due to its large mass, provides a stringent test of our model. We investigate the possible fates of disrupted bodies, the differences between prograde and retrograde captures, and the effects of Callisto on captured objects. We make an impulse approximation and discuss how it allows us to generalize capture results from equal-mass binaries to binaries with arbitrary mass ratios.We find that at Jupiter, binaries offer an increase of a factor of ∼10 in the capture rate of 100-km objects as compared to single bodies, for objects separated by tens of radii that approach the planet on relatively low-energy trajectories. These bodies are at risk of collision with Callisto, but may be preserved by gas drag if their pericenters are raised quickly enough. We conclude that our mechanism is as capable of producing large irregular satellites as previous suggestions, and it avoids several problems faced by alternative models.  相似文献   

8.
A migrating planet can capture planetesimals into mean motion resonances. However, resonant trapping can be prevented when the drift or migration rate is sufficiently high. Using a simple Hamiltonian system for first- and second-order resonances, we explore how the capture probability depends on the order of the resonance, drift rate and initial particle eccentricity. We present scaling factors as a function of the planet mass and resonance strength to estimate the planetary migration rate above which the capture probability drops to less than half. Applying our framework to multiple extrasolar planetary systems that have two planets locked in resonance, we estimate lower limits for the outer planet's migration rate, allowing resonance capture of the inner planet.
Mean motion resonances are comprised of multiple resonant subterms. We find that the corotation subterm can reduce the probability of capture when the planet eccentricity is above a critical value. We present factors that can be used to estimate this critical planet eccentricity. Applying our framework to the migration of Neptune, we find that Neptune's eccentricity is near the critical value that would make its 2 : 1 resonance fail to capture twotinos. The capture probability is affected by the separation between resonant subterms and so is also a function of the precession rates of the longitudes of periapse of both planet and particle near resonance.  相似文献   

9.
In this paper, distant quasi-periodic orbits around Mercury are studied for future Mercury missions. All of these orbits have relatively large sizes, with their altitudes near or above the Mercury sphere of influence. The research is carried out in the framework of the elliptic restricted three-body problem (ER3BP) to account for the planet’s non-negligible orbital eccentricity. Retrograde and prograde quasi-periodic trajectories in the planar ER3BP are generalized from periodic orbits in the CR3BP by the homotopy algorithm, and the shape evolution of such quasi-periodic trajectories around Mercury is investigated. Numerical simulations are performed to evaluate the stability of these distant orbits in the long term. These two classes of orbits present different characteristics: retrograde orbits can maintain shape stability with a large size, although the trajectories in some regions may oscillate with larger amplitudes; for prograde orbits, the range of existence is much smaller, and their trajectories easily move away from the vicinity of Mercury when the orbits become larger. Distant orbits can be used to explore the space environment in the vicinity of Mercury, and some orbits can be taken as transfer orbits for low-cost Mercury return missions or other programs for their high maneuverability.  相似文献   

10.
Wetherill GW  Stewart GR 《Icarus》1993,106(1):190-209
An earlier investigation of the formation of approximately 10(26) g planetary embryos from much smaller planetesimals (G.W. Wetherill and G.R. Stewart 1989, Icarus 77, 350-357) has been extended to include the effects of collisional fragmentation, the low relative velocity regime in which the effects due to solar gravity are important, and independent perturbations of eccentricity and inclination. In agreement with this earlier work, it if found that at 1 AU runaway growth occurs on a approximately 10(-5)-year time scale as a consequence of equipartition of energy between large and small planetesimals. It is now seen that the runaway is initiated after approximately 10(4) years, when the relative velocities of the larger bodies temporarily fall into the low-velocity regime, lowering their inclinations and increasing their gravitational capture rates. After approximately 2 X 10(4) years, relative velocities between most bodies emerge from the low-velocity regime, and these higher velocities tend to inhibit further runaway growth. This rapid runaway growth is self-regulated, however, by these same higher velocities, causing fragmentation of the smaller bodies. The velocities of the collision fragments are reduced by gas drag, facilitating their capture by the growing runaway embryos. Variations in which different fragmentation models are used, or long-range forces between nonrunaway bodies are absent, give similar results. When fragmentation is not included, the time scale for growth increases to approximately 3 X 10(5) years as a result of loss of the self-regulating process described above.  相似文献   

11.
12.
We investigate the possibility of gravitational capture of planetesimals as temporary or permanent satellites of Uranus and Neptune during the process of planetary growth. The capture mechanism is based in the enhancement of the Hill's sphere of action not only due to the mass acquired by the planet, but also by the variation of the planet-Sun distance as a consequence of the scattering of planetesimals by the planets of the outer solar system. Our calculations indicate that satellite capture was very important, specially during the first stages of the accretion process, contributing in a significant way to the planetary growth.  相似文献   

13.
In this paper we extend the theory of close encounters of a giant planet on a parabolic orbit with a central star developed in our previous work (Ivanov and Papaloizou in MNRAS 347:437, 2004; MNRAS 376:682, 2007) to include the effects of tides induced on the central star. Stellar rotation and orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment that incorporates first order corrections to normal mode frequencies arising from stellar rotation and numerical treatments that are in satisfactory agreement over the parameter space of interest. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5?C6 stellar radii with tides in the star being much stronger for retrograde orbits compared to prograde orbits. Assuming that combined action of dynamic and quasi-static tides could lead to the total circularisation of orbits this corresponds to observed periods up to 4?C5 days. We use the simple Skumanich law to characterise the rotational history of the star supposing that the star has its rotational period equal to one month at the age of 5 Gyr. The strength of tidal interactions is characterised by circularisation time scale, t ev , which is defined as a typical time scale of evolution of the planet??s semi-major axis due to tides. This is considered as a function of orbital period P obs , which the planet obtains after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits, respectively, is of order 1.5?C2 for a planet of one Jupiter mass having P obs ~ 4 days. The ratio grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same P orb . Note, however, this result might change for more realistic stellar rotation histories. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet?Cplanet scattering, which favours systems with retrograde orbits. The results reported in the paper may also be applied to the problem of tidal capture of stars in young stellar clusters.  相似文献   

14.
One possible origin of the terrestrial planets involves their formation by gravitational accretion of particles originally in Keplerian orbits about the sun. Some implications of this theory are considered. A formal expression for the rate of mass accretion by a planet is developed. The formal singularity of the gravitational collision cross-section for low relative velocities is shown to be without physical significance when the accreting bodies are in heliocentric orbits. The distribution of particle velocities relative to an accreting planet is considered; the mean velocity increases with time. The internal temperature of an accreting planet is shown to depend simply on the accretion rate. A simple and physically reasonable approximate expression for a planetary accretion rate is proposed.  相似文献   

15.
Detectable debris discs are thought to require dynamical excitation ('stirring'), so that planetesimal collisions release large quantities of dust. We investigate the effects of the secular perturbations of a planet, which may lie at a significant distance from the planetesimal disc, to see if these perturbations can stir the disc, and if so over what time-scale. The secular perturbations cause orbits at different semimajor axes to precess at different rates, and after some time   t cross  initially non-intersecting orbits begin to cross. We show that   t cross∝ a 9/2disc/( m pl e pl a 3pl)  , where   m pl, e pl  and   a pl  are the mass, eccentricity and semimajor axis of the planet, and   a disc  is the semimajor axis of the disc. This time-scale can be faster than that for the growth of planetesimals to Pluto's size within the outer disc. We also calculate the magnitude of the relative velocities induced among planetesimals and infer that a planet's perturbations can typically cause destructive collisions out to 100 s of au. Recently formed planets can thus have a significant impact on planet formation in the outer disc which may be curtailed by the formation of giant planets much closer to the star. The presence of an observed debris disc does not require the presence of Pluto-sized objects within it, since it can also have been stirred by a planet not in the disc. For the star ε Eridani, we find that the known radial velocity planet can excite the planetesimal belt at 60 au sufficiently to cause destructive collisions of bodies up to 100 km in size, on a time-scale of 40 Myr.  相似文献   

16.
A two body, patched conic analysis is presented for a planetary capture mode in which a gravity assist by an existing natural satellite of the planet aids in the capture. An analytical condition sufficient for capture is developed and applied for the following planet/satellite systems: Earth/Moon, Jupiter/Ganymede, Jupiter/Callisto, Saturn/Titan and Neptune/Triton. Co-planar, circular planetary orbits are assumed. Three sources of bodies to be captured are considered: spacecraft launched from Earth, bodies entering the solar system from interstellar space, and bodies already in orbit around the Sun. Results show that the Neptune/Triton system has the most capability for satellite aided capture of those studied. It can easily capture bodies entering the Solar System from interstellar space. Its ability to capture spacecraft launched from Earth is marginal and can only be decided with better definition of physical properties. None of the other systems can capture bodies from these two sources, but all can capture bodies already in orbit around the Sun under appropriate conditions.  相似文献   

17.
The motion of a satellite around a planet can be studied by the Hill model, which is a modification of the restricted three body problem pertaining to motion of a satellite around a planet. Although the dynamics of the circular Hill model has been extensively studied in the literature, only few results about the dynamics of the elliptic model were known up to now, namely the equations of motion and few unstable families of periodic orbits. In the present study we extend these results by computing a large set of families of periodic orbits and their linear stability and classify them according to their resonance condition. Although most of them are unstable, we were able to find a considerable number of stable ones. By computing appropriate maps of dynamical stability, we study the effect of the planetary eccentricity on the stability of satellite orbits. We see that, even for large values of the planetary eccentricity, regular orbits can be found in the vicinity of stable periodic orbits. The majority of irregular orbits are escape orbits.  相似文献   

18.
An analytical theory is developed for the velocity evolution of nonaccreting planetesimal populations, based on the Boltzmann and Fokker-Planck equations. Adapting Shkarofsky's calculation of plasma viscosities, the rate of increase in random velocities due to gravitational encounters between planetesimals of equal mass is found to be one-third to one-half Safronov's result. Comparison with Wetherill's numerical experiments suggests that the Fokker-Planck equation underestimates the effectiveness of encounters and that Safronov's value is approximately correct. For populations of nonuniform sizes, the Fokker-Planck equation indicates an efficient redistribution of energy from the largest bodies to the smaller ones. By conserving angular momentum, the rate of radial spreading of orbits is also derived.  相似文献   

19.
We have numerically investigated the stability of retrograde orbits/trajectories around Jupiter and the smaller of the primaries in binary systems RW-Monocerotis (RW-Mon) and Krüger-60 in the presence of radiation. A trajectory is considered as stable if it remains around the smaller mass for at least few hundred binary periods. In case of circular binary orbit, we find that the third order resonance provides the basis for reduction of stability region of retrograde motion of particle in RW-Mon and Sun-Jupiter system both in the presence and absence of radiation. Considering finite ellipticity in Sun-Jupiter system we find that for distant retrograde orbits, radiation from the Sun increases the width of the stable region and covers a significant portion of the region obtained in the absence of solar radiation. Further, due to solar radiation pressure, the stable region in the neighborhood of Jupiter has been found to shift much below the characteristic asymptotic line for the periodic retrograde orbits. In case of Krüger-60 we observe the distant retrograde orbits around the smaller of the primaries get affected considerably with increase in radiation parameter β1. Further the range of velocities for which stable motion may persist narrows down for distant retrograde orbits in this system.  相似文献   

20.
The estimates of the delivery of icy planetesimals from the feeding zone of Proxima Centauri c (with mass equal to 7mE, mE is the mass of the Earth) to inner planets b and d were made. They included the studies of the total mass of planetesimals in the feeding zone of planet c and the probabilities of collisions of such planetesimals with inner planets. This total mass could be about 10–15mE. It was estimated based on studies of the ratio of the mass of planetesimals ejected into hyperbolic orbits to the mass of planetesimals collided with forming planet c. At integration of the motion of planetesimals, the gravitational influence of planets c and b and the star was taken into account. In most series of calculations, planetesimals collided with planets were excluded from integrations. Based on estimates of the mass of planetesimals ejected into hyperbolic orbits, it was concluded that during the growth of the mass of planet c the semi-major axis of its orbit could decrease by at least a factor of 1.5. Depending on possible gravitational scattering due to mutual encounters of planetesimals, the total mass of material delivered by planetesimals from the feeding zone of planet c to planet b was estimated to be between 0.002mE and 0.015mE. Probably, the amount of water delivered to Proxima Centauri b exceeded the mass of water in Earth's oceans. The amount of material delivered to planet d could be a little less than that delivered to planet b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号