共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-point, space-time correlations of streamwise and vertical velocity were obtained from a wind tunnel simulation of an atmospheric surface layer with an underlying model wheat canopy constructed of flexible nylon stalks. Velocity data extend from 1/6 canopy height to several canopy heights, with in excess of 2000 three-dimensional vector separations of the two x-wire probes. Isocorrelation contours over an x, z slice show the streamwise velocity autocorrelation to be roughly circular, such that vertical velocities at the same horizontal position but different heights are closely in phase. Cross-correlations between the two velocity components reflect this difference to some extent. Lateral displacements of the probes revealed side lobes with correlations of reversed sign but we cannot positively link this pattern to particular vorticular structures. Integral length scales obtained directly from the spatial correlations match similar scales deduced from single-point time series with Taylor's hypothesis at 2 to 3 times the canopy height but greatly exceed such scales at lower levels, particularly within the wheat. We conclude that the reversed sign lateral lobes are important components of the correlation field and that an integral length scale for the lateral direction must be defined such that they are included. Convective velocities obtained from the time lag to optimally restore correlation lost by physical separation of the probes change only slowly with height and greatly exceed the mean wind velocity within and immediately above the canopy. Thus, mean wind velocity is not a suitable proxy for convective velocity in the application of Taylor's hypothesis in this situation. The ratio of vertical to longitudinal convective velocity for the streawise velocity signal yields a downwind tilt angle of about 39° which is probably a better estimate of the slope of the dominant fluid motions than the tilt of the major axis of the isocorrellation contours mentioned previously. 相似文献
2.
Analysis of movie films of a field of barley, combined with observations of the motions of individual plants, show that single stalks oscillate at a well-defined natural frequency even when stimulated by turbulent winds. Treating single stalks as resonant cantilevers allows the use of standard engineering methods to determine their elastic properties. Armed with these values, the application of similarity analysis to the equation of motion of a single stalk leads to criteria for aeroelastic modelling of wheat plants in the wind tunnel. A representative value for the spacing of stalks in a small section of model wheat field was calculated by referring to published data on momentum absorption in a variety of real and model canopies. Preliminary measurements of first and second moments of velocity in the model appear to confirm the importance of including elastic properties in wind-tunnel simulations of airflow in flexible crops. 相似文献
3.
Detailed wind tunnel measurements have been made of mean flow and turbulence over a two-dimensional ridge and a circular hill, both having cosine-squared cross-section and maximum slope about 15 °. The measurements were made in an artificially thickened neutrally stratified boundary layer, and have been compared with results from linear models and rapid distortion theory as appropriate.Our study shows that linear theory gives generally good predictions of the mean flow on the upwind side of the hills, and especially of the flow speedup at the hill top, but that the turbulence is less well predicted. In particular, the measurements show a major increase in the vertical component of turbulence and in the shear stress on the upwind slope of both the two- and three-dimensional hills which is not predicted by either equilibrium or isotropic rapid-distortion theories, although this may be partly due to the effect of streamline curvature. Rapid-distortion theory is successful only in describing the streamwise component of turbulence in the outer region of the flow, while in the upper part of the inner region of the flow, the turbulence measurements show disagreement with both the equilibrium and the rapid-distortion theories. Our experiments also confirm that the equilibrium region is a very thin layer close to the surface, while above this region and below the outer region, there is a transitional region where all terms in the stress equation are important.The measurements over the three-dimensional hill suggest that the mean flow and turbulence are broadly similar to those over the two-dimensional ridge, but with reduced perturbation amplitudes. The major differences between the two cases are found on the upwind slope and in the wake where, respectively, horizontal divergence and convergence of the three-dimensional flow are most pronounced. 相似文献
4.
We present a wind-tunnel simulation of adiabatic atmospheric flow normal to a rough, two-dimensional ridge. The data are analyzed in physical streamline coordinates, which are described in some detail. The mean velocity speed-up on the hill top is adequately predicted by existing formulae while the behaviour of the wake flow fits into a pattern that emerges from other wind-tunnel experiments. The turbulent stresses evolve in response to the extra strain rates induced by the hill, streamline curvature and acceleration: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaWbaaS% qabeaaceaIYaGbaebaaaaaaa!3456!\[u^{\bar 2}\]is coupled strongly to acceleration while % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaaqaaiaadw% hacaWG3baaaaaa!3462!\[\overline {uw}\]and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaWbaaS% qabeaaceaIYaGbaebaaaaaaa!3458!\[w^{\bar 2}\]follow curvature. These differing responses lead to significant phase differences between the changes in the component stresses as the hill is traversed. An analogous response is seen in the components of turbulent stress divergence, which are computed as part of streamwise momentum budgets. Only very close to the surface is turbulent stress divergence comparable to the inertial and pressure terms in the momentum budget; over most of the flow regime, the mean flow response is approximately inviscid. Finally, we compare our results with data from other wind tunnel models and from real hills. 相似文献
5.
The EPA Meteorological Wind Tunnel was used to examine the flow field in and around models of open-top field-plant growth chambers used to assess the effects of pollutant gases on plant growth. Baffles designed to reduce the ingress of ambient air into the chamber through the open top were tested; the mean flow and turbulence in the simulated boundary layer with and without the chambers were compared (the chamber was operated with and without the pollutant flow system on); and the effects of surrounding chambers on the concentration field were measured. Results showed that a baffle with a reduced opening vertically above the test area maintained the highest uniform concentration in the test area. The major differences between the three (no chamber and the chamber with flow on and off) mean velocity profiles occurred below z/h = 2.0 ( h is chamber height) and at z/h ≤ 4.2. The three Reynolds stress profiles were similar above z/h = 2.0. Downwind of the chamber, the Reynolds stresses in the on-mode were greater than those in the off-mode above z/h = 1.1. The reverse was true below that point. Both longitudinal and vertical intensities above and downwind of the chamber were greater with the mixture flow system on rather than off, below about z/h < 1.5. Lateral variations in the mean wind indicated that the mean velocity was greater with the mixture flow system on except near the centerline where the reverse was true. The concentrations in the downwind wake resembled those for a cube. The location of a cylinder within a regular array had some effect on its internal gas concentration. Locations near the upwind and downwind edges of the array were associated with lower concentrations, although for all locations the highest internal values were always found at the lowest portion of the upwind wall. With active cylinders downwind, the gas plume emitted from a source cylinder at the windward edge of the array was forced 0.5 h higher and the centerline meandered laterally when compared with the single-cylinder case. A cylinder located at z/h = 1.0 downwind from a source cylinder received approximately 3%; of the concentration input to the source, or roughly 10%; of the actual concentration within the source cylinder. 相似文献
6.
The combined use of a stratified flow wind tunnel and of periodic sampling methods in low Reynolds number flows allows the recovery of the instantaneous dynamics of internal waves. Several detailed examples are given of the thermal structure of large propagating and breaking internal waves and Kelvin-Hemholtz waves. Preliminary measurements of the stability of finite waves as a function of Richardson number are also reported. 相似文献
7.
This paper describes wind-tunnel experiments on the flow around single and multiple porous windbreaks (height H), sheltering a model plant canopy (height H/3). The mean wind is normal to the windbreaks, which span the width of the wind tunnel. The incident turbulent flow simulates the adiabatic atmospheric surface layer. Five configurations are examined: single breaks of three solidities (low, medium, high; solidity = 1 - porosity), and medium-solidity multiple breaks of streamwise spacing 12 H and 6 H. The experimental emphases are on the interactions of the windbreak flow with the underlying plant canopy; the effects of solidity; the differences in shelter between single and multiple windbreaks; and the scaling properties of the flow. Principal results are: (1) the "quiet zones" behind each windbreak are smaller in multiple than single arrays, because of the higher turbulence level in the very rough-wall internal boundary layer which develops over the multiple arrays. Nevertheless, the overall shelter effectiveness is higher for multiple arrays than single windbreaks because of the "nonlocal shelter" induced by the array as a whole. (2) The flow approaching the windbreak decelerates above the canopy but accelerates within the canopy, particularly when the windbreak solidity is high. (3) A strong mixing layer forms just downwind of the top of each windbreak, showing some of the turbulence and scaling properties of the classical mixing layer formed between uniform, coflowing streams. (4) No dramatic increase in turbulence levels in the canopy is evident at the point where the deepening mixing layer contacts the canopy (around x/H = 3) but the characteristic inflection in the canopy wind profile is eliminated at this point. 相似文献
8.
The report presents the results of a wind-tunnel study of the flow of the natural wind over complex terrain. A 1:4000 undistorted scale model of Gebbies Pass in the South Island of New Zealand was prepared and tested in the boundary-layer wind tunnel in the Department of Mechanical Engineering at the University of Canterbury.Three forms of construction, viz., terraced, contoured and roughness-added, were compared. Velocity and turbulence profiles, Reynolds stresses and spectra were measured, and correlation of results between different types of construction was calculated. The terraced form was much simpler to construct but was found to be unsatisfactory. The correlation between the contoured and roughness-added models was as high as 0.94, although the roughness-added model made a significant difference to the results in the lower 20%; of the boundary layer. The results of these tests will be compared with results from the field in a future report. 相似文献
9.
A study of turbulent dispersion over hills for upstream, elevated sources was conducted, based on wind tunnel tracer gas (CO 2) experiments over a gentle 2-D ridge and a 3-D circular hill, both having a cosine-square cross-section. The concentration measurements were made with four different source locations for each hill case (2-D or 3-D), and the study focused on dispersion parameters under the influence of the presence of the hills in order to provide a better understanding of the mechanisms involved.The wind tunnel measurements show that, in the case of gentle hills, the topographic impact on turbulent dispersion from upstream sources is only moderate and is more pronounced for the 3-D than for the 2-D hill. The perturbation in mean flow introduced by the hills, including streamline divergence/convergence, is shown to dominate the changes in the dispersion due to the hills in this case. The plume spread, both in the lateral and the vertical, is enhanced over the upwind hill foot and reduced over the hill top in response to the mean flow slow-down and speed-up at these places, and is further enhanced or reduced due to streamline divergence/convergence in the vertical over the hills as well as in the horizontal over the 3-D hill. These results are also compared with cases of turbulent dispersion over more steep hills (Snyder and Britter, 1987). 相似文献
10.
本文利用325米气象塔及声雷达探测资料分析了夜间平稳天气条件下行星边界层中风速出现多极值的现象。分析指出,多极值风速与边界层中多层逆温有密切的联系,当温度场出现多层逆温并维持一定的强度和时间后,便相应地出现了多层风速极大,风速极大值出现的高度在逆温顶附近或稍高。 文内还用一维非定常模式模拟了多极值风速廓线的形成。 相似文献
11.
Air flow over wind waves generated in a wind-wave tunnel was visualized by numerous tiny suspended particles (zinc stearate), and instantaneous air flow fields over about one wavelength of wind waves were obtained. Air flow separation was detected over the wave crest in about a half of the samples. In such cases, the separation started near the crest about half of the time, with a vortex trapped over the convergence point of the surface flow which appeared at the leeward face of the crest. This structure was much different from a previously imagined picture in which the separation started at the convergence point. The high frequency of its occurrence suggested the stability of this structure. However, even when this structure was clearly seen, the structure behind the vortex to the next wave crest had various patterns. This variety seems to be related to an instability of the high-shear layer accompanied by separation. Other varieties were also seen, such as the occurrence of separation without the above mentioned structure, as well as the existence of non-separated air flow structures. These varieties seem to be related to the variability of individual wind wave crests. An analysis of correlation between the wave form and the air flow structure over it shows that there is a critical value of local gradient of wave form, above which the air flow always separates. This fact suggests a strong coupling between the air and the water, i.e., the local stress exerted on the water surface changes the nature of a wave crest, especially its form, and as a result, the air flow structure over it changes drastically.Decreased 21 November, 1981. Final draft of the paper prepared by Professor Yoshiaki Toba, Geophysical Institute, Tohoku University. 相似文献
12.
Two mass consistent models (MATHEW and MINERVE) and two dynamic linearized models (MS3DJH/3R and FLOWSTAR) are used to simulate the mean flow over two-dimensional hills of analytical shape and of varying slope. The results are compared with detailed wind tunnel data (RUSHIL experiment at US EPA). Different numerical experiments have been performed, varying input data and control parameters, to test the data-processing methodology and to evaluate the minimum input data (for mass consistent models only) necessary to obtain a reliable flow field. The models behave differently according to the physical assumptions made and numerical procedure used: an assessment is then made in order to identify the proper solution for the different conditions of topography and wind data. 相似文献
13.
Variation of soil moisture during active and weak phases of summer monsoon JJAS (June, July, August, and September) is very important for sustenance of the crop and subsequent crop yield. As in situ observations of soil moisture are few or not available, researchers use data derived from remote sensing satellites or global reanalysis. This study documents the intercomparison of soil moisture from remotely sensed and reanalyses during dry spells within monsoon seasons in central India and central Myanmar. Soil moisture data from the European Space Agency (ESA)—Climate Change Initiative (CCI) has been treated as observed data and was compared against soil moisture data from the ECMWF reanalysis-Interim (ERA-I) and the climate forecast system reanalysis (CFSR) for the period of 2002–2011. The ESA soil moisture correlates rather well with observed gridded rainfall. The ESA data indicates that soil moisture increases over India from west to east and from north to south during monsoon season. The ERA-I overestimates the soil moisture over India, while the CFSR soil moisture agrees well with the remotely sensed observation (ESA). Over Myanmar, both the reanalysis overestimate soil moisture values and the ERA-I soil moisture does not show much variability from year to year. Day-to-day variations of soil moisture in central India and central Myanmar during weak monsoon conditions indicate that, because of the rainfall deficiency, the observed (ESA) and the CFSR soil moisture values are reduced up to 0.1 m3/m3 compared to climatological values of more than 0.35 m3/m3. This reduction is not seen in the ERA-I data. Therefore, soil moisture from the CFSR is closer to the ESA observed soil moisture than that from the ERA-I during weak phases of monsoon in the study region. 相似文献
14.
Research results are presented, under natural and laboratory conditions, concerning the process of wind-wave generation. The complementary problem, the effect of waves on the structure of the wind field above them, is also studied. 相似文献
15.
Mean streamwise and vertical velocities as well as streamwise and vertical turbulence intensities were measured in a combustion wind tunnel used to collect pollutant emission data for agricultural field burning. Objectives were to compare the flow field upstream of a fire to that without a fire present and to compare the wind tunnel flow upstream of a fire to field conditions. Vertical centerline traverses with an anemometer were conducted for 32 separate wind tunnel operating configurations (wind speed, position in the tunnel, with or without fire, ceiling position, and floor condition) with one replication for each configuration (total of 64 traverses). Certain configurational changes in the wind tunnel had substantial effects on the flow field. Turbulence intensities and velocity profiles (as modeled by the log law-of-the-wall to determine z
0 and u
* values) in the wind tunnel were comparable to those in the field as reported in the literature. Velocities and turbulence intensities were generally higher, however, with a fire present in the tunnel and all other conditions constant. 相似文献
16.
This paper describes an experimental investigation of the behaviour of the statistics of concentration fluctuations in a passive plume dispersing over a two-dimensional hill of moderate steepness. Recently developed high frequency response Flame Ionization Detector (FID) technology with a frequency response in excess of 200 Hz was utilized to obtain an extensive set of measurements of the mean and fluctuating plume concentrations. Plumes dispersing over flat terrain and over a hill with a maximum slope of 0.3 were studied. For both cases, extensive turbulent flow measurements were also carried out.The measured mean plume concentration profiles were of a generally Gaussian form and showed the expected effects of surface reflection for the flat terrain and hill. Plume intermittency and concentration fluctuation intensity were calculated at all measurement locations. Conditional and unconditional plume concentration statistics were calculated. The conditional (in-plume) concentrations and intensities were more uniform with height than for the unconditional ones. 相似文献
17.
The boundary layer wind tunnel at the Technische Universit?t München was tested for atmospheric boundary layer (ABL) simulations. The ABLs developing above rural, suburban, and urban terrains were reproduced using the Counihan method, i.e., castellated barrier wall, vortex generators, and a fetch of surface roughness elements. A series of flow-characteristic evaluations was performed to investigate the flow development and uniformity. Experimental results presented as mean velocity, turbulence intensity, integral length scale of turbulence, Reynolds stress, and power spectral density of velocity fluctuations were compared with the ESDU data and/or theoretical models. Generated ABL wind-tunnel simulations compare well with the rural, suburban, and urban ABLs. In the test section area used for experiments on structural models, the ABL simulation is developed and uniform. Results of this study indicate the boundary layer wind tunnel at the Technische Universit?t München can be successfully employed in a broad spectrum of engineering, environmental, and micrometeorological studies, where it is required to accurately reproduce ABL characteristics. 相似文献
18.
针对风电场风功率预测所需的定点、逐时风速预报,对利用中央气象台发布的MM5格点输出的数值预报风速插值到福建沿海某个风电场测风塔高度的预报结果进行误差分析,发现由于海陆交界的特殊下垫面等原因,存在一定的系统误差;根据误差的后延相关性和测风塔实时发回的气象资料,探讨了利用前期误差观测值和测风塔湍流指标对MM5数值预报风速进行动态修订的方法,建立了订正值方程,结果表明,订正后的预报风速平均绝对误差降低31%~54%,有效提高了预报精度。 相似文献
19.
A three-dimensional non-hydrostatic numerical model has been used to investigate the air flow and turbulence around a single tree.The results for velocity and turbulence distributions have been compared with available data from windtunnel experiments; the agreement is satisfactory.Simulations have been carried out for different meteorological conditions (wind speed, thermal stratification) as well as for different canopy characteristics (stem height, crown diameter, crown height, porosity).Dedicated to Prof. F. Wippermann on the occasion of his 65th birthday. 相似文献
20.
统计分析了贵州福泉自建气象站以来累积的47a风向风速资料,得出福泉47a的风向风速分布及变化特征,风速年、月、日、时的时间分布及最多风向等。 相似文献
|