首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This study investigates the recent invasion of exotic grasslands by coyote brush in La Jolla Valley, California. We test the “event dependent” hypothesis that mechanical disturbances during the past century were a key cause. To examine the relationship between past mechanical disturbances and vegetation dynamics we first conducted a review of the historical literature on practices of shrub removal and documented disturbance history using historical imagery. We next analyzed vegetation‐cover change over time using remotely sensed imagery and a vegetation map to document the history of native shrub advancement into exotic grassland by species association. Finally, we determined the topographic characteristics associated with different phases of shrub advancement. We found that mechanical disturbances historically varied by topography with upper and steeper slopes being least intensively disturbed. We found that shrub advancement rates, following release from grazing, varied by slope, elevation, and time period, and that Baccharis pilularis (coyote brush) was the main species to invade the more intensively disturbed sites at lower elevations. Our results indicate that mechanical disturbances played an important role in modifying the original vegetation cover with long‐lasting consequences, including a facilitating role for the subsequent Baccharis pilularis invasion. We concluded that the practice of grazing often included exotic mechanical disturbances that had long‐lasting impacts on native plants.  相似文献   

2.
Biological soil crusts take a long time to recover after soil disturbance but data on the rate and trajectory of crust recovery are lacking. Using a space-for-time chronosequence of time-since-cultivation, we assessed the recovery of crust diversity and cover in semi-arid grasslands in southern Australia. Using sites that spanned from recently-cultivated to never-cultivated, we show that the recovery of soil crust cover is highly variable with time-since-cultivation; recently-cultivated sites generally had the lowest total cover of biological soil crusts and morphological type diversity relative to sites allowed to recover for ≥60 yrs. Moss, liverworts, squamulose and crustose lichens return to grasslands quickly after cultivation, but cover returned at highly variable rates; this might reflect that other factors (stock grazing, microtopography, soils) also affect crust cover recovery. Our results suggest that soil crusts are initially slow to recover after soil disturbance. However, post-cultivation recovery does occur but this is in the context of historical and spatial contingencies. The patterns of cover and diversity that we observed provide a useful way to interpret effects of disturbance on semi-arid grasslands in Australia and may be useful indicators of grassland condition where cultivation history is not known.  相似文献   

3.
Early-warning indicators of rangeland health can be used to estimate the functional integrity of a site and may allow sustainable management of desert rangelands. The utility of several vegetation canopy-based indicators of rangeland health at 32 Great Basin rangeland locations was investigated. The indicators were originally developed in rangelands of the Chihuahuan Desert. Soil resources are lost through wind and water-driven erosion mainly from areas unprotected by plant canopies (i.e. bare soil). Study sites in Idaho had the smallest bare patches, followed by sites in Oregon. The more arid Great Basin Sagebrush Zone sites in Utah had the largest bare patches. Several vegetational indicators including percent cover by vegetation, percent cover by life-form, percent cover by sagebrush, and percent cover by resilient species were negatively related to mean bare patch size and are potential indicators of Great Basin rangeland condition. Plant community composition and the range of bare patch sizes were different at sites in the three locations in Idaho, Oregon and Utah. Therefore, expected indicator values are location specific and should not be extrapolated to other locations. The condition of study sites were often ranked differently by different indicators. Therefore, the condition of rangeland sites should be evaluated using several indicators.  相似文献   

4.
Restoration of palatable grasses on degraded rangelands dominated by unpalatable grasses in central Argentina is limited by low availability of seeds and safe sites for seedling establishment. The objective of our study was to determine how mechanical disturbance of unpalatable grasses (Stipa spp.) in combination with seeding of a palatable grass (Poa ligularis) influenced species composition in a degraded rangeland excluded from livestock grazing. In April 2001 10 blocks were uniformly distributed on a previously burned site dominated by unpalatable grasses, and treatments applied in 8 m×8 m experimental plots. Treatments were ‘disked and seeded’ and control (no disking, no seeding). Perennial plant cover and end-of-season standing crop, at species or species group level, were assessed in December 2002/2003 and in December 2004/2006, respectively. P. ligularis out-competed both tillers of unpalatable grasses that survived mechanical disturbance and seedlings of unpalatable grasses established after mechanical disturbance. The cover and end-of-season standing crop of unpalatable grasses was higher in the control than in the ‘disked and seeded’ treatment, whereas the cover and end-of-season standing crop of P. ligularis was higher in the latter than in the former treatment. Our results suggest that a rapid transition from a state dominated by unpalatable grasses to a state dominated by palatable grasses can be achieved by mechanical disturbance of unpalatable grasses in combination with seeding of palatable grasses in semiarid rangelands of central Argentina.  相似文献   

5.
Plant assemblages' dynamics have been studied to evaluate the influence of different environmental factors. The aim of our work was to assess the effect of a disturbance in the form of livestock grazing on annual plants, in a South American desert. We tested the exclusion of cattle grazing by comparing the composition of annual plants in three major vegetation types within a MaB Reserve in the Monte Desert of Argentina, with those of an adjacent grazed field. Sampling was conducted in two consecutive years that differed in precipitation. We established three sampling sites within each vegetation type at the reserve and the grazed field. Transects were set to assess plant cover, abundance, and richness. Theoretically, changes in diversity are explained by changes in one of its components: species richness. Species richness of annual plants was not different between the grazed and ungrazed sites. However, plant cover and diversity were lower in grazed sites, whereas abundance increased. Owing to a strong species-specific effect, we propose that it is evenness the main parameter involved in diversity dynamics in the heterogeneous vegetation mosaic of the Monte desert. Finally, vegetation types (spatial heterogeneity) and rainfall regime (temporal heterogeneity) greatly interacted with grazing effects. We endorse the idea that rapid responses of annual plant assemblages to changes in rainfall conditions coupled with herbivore control, might result in a restoration pathway for degraded arid landscapes.  相似文献   

6.
Diversity theory predicts that species numbers should be highest at intermediate levels of both disturbance and environmental stress. We examined woody and herbaceous plant species richness and cover in the San Pedro River flood plain, along lateral gradients of water availability (ground-water depth), flood disturbance (inundation frequency), and distance from and elevation above the channel, and along longitudinal gradients of water availability (ground-water depth, surface flow permanence, and rainfall) and flood disturbance (total stream power). Herbaceous species were recorded during four sampling periods, and spatial patterns for this group were time-dependent, reflecting temporal variation in limiting factors. During the summer dry season of a dry year, when overall richness was low, richness and cover of herbaceous species declined laterally from the stream channel with increasing ground-water depth, consistent with the idea that low resource levels can limit species richness. Following the summer monsoon rains and floods, when water was less limiting and annuals were seasonally abundant, lateral patterns shifted such that herbaceous species richness and cover increased with increasing plot location above or from the channel. The relationship of herbaceous species richness with tree canopy cover also varied seasonally, shifting from positive (greater richness under canopy) in dry seasons to negative (lesser richness under canopy) in wet seasons. Longitudinally, herbaceous species richness and cover were limited primarily by stream flow and/or ground-water availability during the summer dry season of a dry year. Following the summer monsoon rains and floods, patterns were weighted by the seasonally abundant annuals, and richness increased among sites primarily with distance upstream (and related rainfall gradients). Richness and cover patterns also varied between years with different flood conditions. During the two sampling seasons in the year following a large flood, herbaceous species richness increased with flood disturbance intensity but declined at the few most intensely disturbed sites, consistent with intermediate disturbance theory.For woody species, richness within plant functional groups varied in opposing ways along the lateral gradients: hydromesic pioneer species decreased and hydromesic and xeric competitors increased with distance from or above the channel, with no overall change in species richness. Among sites, woody species richness patterns were related to water availability, but not to flood disturbance. However, richness of woody hydromesic pioneer species increased with both increasing site moisture and flood disturbance. Woody and herbaceous species richness both increased among sites as a function of increasing flood-plain width, likely due to species–area effects. Overall, results indicate that flood disturbance and water availability both influence species richness of riparian plants in the flood plain of this semi-arid region river, with the relative influence of each factor varying among plant groups and over time.  相似文献   

7.
Palaeoecological studies have identified the broad patterns of environmental and climate change in highland south‐eastern Australia, but the detail of human impact on a variety of parameters and their interlinkages is largely missing. This study compares the erosion, productivity, fire and vegetation history in prehistoric and historical times at Burraga Swamp in montane rainforest in New South Wales. The known human impact is meagre; the major presently sustained impacts involve forestry in the surrounding sclerophyll forests and a low level of visits to the swamp by day‐walkers. While no significant changes in the largely oligotrophic conditions or in fire frequency were detected, changes in erosion rates and some vegetation change can be attributed to impacts since European settlement. There has been a small decline in eucalypts and a loss of fern cover, while grasses, Urtica and exotic species have expanded. It is clear that upland sites are sensitive to environmental change including low‐level human impact.  相似文献   

8.
《自然地理学》2013,34(3):269-284
Development is known to impair stream water quality at moderate to high levels of urbanization, but the effects of low-density urban expansion, the kind occurring on the outskirts of many cities, remain unclear. We examined five suburban headwater streams in Duchess County, New York whose watersheds contained between 4.7% and 34% impervious surface cover. We measured Cl- and nitrate-N (NO3-N) concentrations in water samples taken at four to six sites on each stream in winter and summer. Even at low levels of population and impervious cover, concentrations of both Cl- and NO3-N exceeded reference levels found in cleaner streams in the region. Chloride levels were elevated in upper reaches and remained elevated or continued to increase downstream, with a linear response to impervious cover. Nitrate-N increased downstream in all watersheds, indicating that NO3-N inputs exceeded natural denitrification and uptake in both winter and summer. Nitrate-N responded logarithmically to impervious surface cover, with steep increases at low levels of imperviousness. Per-capita inputs were also high in rural areas. Agricultural inputs were not sufficient to explain observed trends in NO3-N; we interpret inputs to result chiefly from low-density exurban expansion. Widespread residential expansion has significant impacts on water quality that have not previously been acknowledged.  相似文献   

9.
Bankfull channel width is a fundamental measure of stream size and a key parameter of interest for many applications in hydrology, fluvial geomorphology, and stream ecology. We developed downstream hydraulic geometry relationships for bankfull channel width w as a function of drainage area A, w = α Aβ, (DHGwA) for nine aggregate ecoregions comprising the conterminous United States using 1588 sites from the U.S. Environmental Protection Agency's National Wadeable Streams Assessment (WSA), including 1152 sites from a randomized probability survey sample. Sampled stream reaches ranged from 1 to 75 m in bankfull width and 1 to 10,000 km2 in drainage area. The DHGwA exponent β, which expresses the rate at which bankfull stream width scales with drainage area, fell into three distinct clusters ranging from 0.22 to 0.38. Width increases more rapidly with basin area in the humid Eastern Highlands (encompassing the Northern and Southern Appalachians and the Ozark Mountains) and the Upper Midwest (Great Lakes region) than for the West (both mountainous and xeric areas), the southeastern Coastal Plain, and the Northern Plains (the Dakotas and Montana). Stream width increases least rapidly with basin area in the Temperate Plains (cornbelt) and Southern Plains (Great Prairies) in the heartland. The coefficient of determination (r2) was least in the noncoastal plains (0.36–0.41) and greatest in the Appalachians and Upper Midwest (0.68–0.77). DHGwA equations differed between streams with dominantly fine bed material (silt/sand) and those with dominantly coarse bed material (gravel/cobble/boulder) in six of the nine analysis regions. Where DHGwA equations varied by sediment size, fine-bedded streams were consistently narrower than coarse-bedded streams. Within the Western Mountains ecoregion, where there were sufficient sites to develop DHGwA relationships at a finer spatial scale, α and β ranged from 1.23 to 3.79 and 0.23 to 0.40, respectively, with r2 > 0.50 for 10 of 13 subregions (range: 0.36 to 0.92). Enhanced DHG equations incorporating additional data for three landscape variables that can be derived from GIS—mean annual precipitation, elevation, and mean reach slope—significantly improved equation fit and predictive value in several regions, most notably the Western Mountains and the Temperate Plains. Channel width was also related to human disturbance. We examined the influence of human disturbance on channel width using several indices of local and basinwide disturbance. Contrary to our expectations, the data suggest that the dominant response of channel width to human disturbance in the United States is a reduction in bankfull width in streams with greater disturbance, particularly in the Western Mountains (where population density, road density, agricultural land use, and local riparian disturbance were all negatively related to channel width) and in the Appalachians and New England (where urban and agricultural land cover and riparian disturbance were all negatively associated with channel width).  相似文献   

10.
Iraq has experienced significant agricultural land use changes throughout its history, including recent changes initiated by the 2003 US-led military invasion, the end of United Nations' economic sanctions and the onset of overt domestic conflict. Conflict and sociopolitical forces are important drivers of land use/land cover change and often have disproportionate impacts on agricultural systems. However, there has been little research to investigate recent changes in agricultural land use/land cover in Iraq over the recent tumultuous period that has included war and the transition of its political system from a dictatorship to an emerging but beleaguered democracy. Our objectives were to (1) determine if cropland area in Iraq changed significantly between 2001 and 2012, (2) identify regional patterns of cropland area change, and (3) identify sociopolitical forces driving those changes. We used MODIS Land Cover Product yearly data to quantify the amount of land cover dedicated to croplands. We regressed cropland area (ha) on time (2001, 2002, 2003,…) and years with drought influence (yes, no). The results revealed significant changes in cropland area for Iraq as a whole, with cropland area decreasing over 30,000 ha per year. Regionally, there were significant decreases in the Kurdish Autonomous Region and central Iraq, and initial increases in the southern marshlands followed by decreases related to drought.  相似文献   

11.
Communal rangelands provide diverse ecosystem services to millions of pastoralists and agro-pastoralists. Resettling destitute communities into hitherto uninhabited communal rangelands and forests, a common practice throughout Sub-Saharan Africa, is a threat to the sustainable use of range and forest land resources. In order to understand the effect of resettlement on a semi-arid woodland in northwestern Ethiopia, satellite imagery of 23 resettlement villages taken over a period of fourteen years, and woody vegetation floristic data for three old resettlements, three new resettlements, two refugee camps and one protected area were analyzed using ANOVA and canonical correspondence analysis (CCA). The normalized differential vegetation index (NDVI) and canopy cover around all village types decreased with disturbance gradients, while the magnitude of change varied according to the type of settlement. Limited canopy cover was observed in refugee camps and new resettlements, compared to old resettlements and protected areas. Woody vegetation height class showed a J shaped distribution in all sites except refugee camps (RC), indicating a decline in vegetation. CCA showed that variables like site type, altitude and disturbance gradient significantly affected the diversity of woody species at the different sites. Comparison of individual species responses to disturbances indicated that low fodder value invaders like Dichrostachys cinerea, and many Acacia species were increasing in proportion and coverage at the expense of some multipurpose species including Tamarindus indica, Diospyros mespiliformis, and Pterocarpus lucens. In the absence of regulated vegetation use, resettlements result in a decline in overall vegetation cover and a shift in floristic diversity in favor of invasive species.  相似文献   

12.
Severe erosion, initiated by climatic changes during the Late Pleistocene-Early Holocene period and resultant declines in dust deposition, causes the formation of waterfalls during the winter floods in many wadi systems in the central Negev desert of Israel. In some areas, erosion of the original loess substrate has been complete, so that the underlying rock has been exposed. We examined the effects of this erosion in four wadis in the central Negev desert on soil nutrients, plant community structure and plant quality. We predicted that erosion has caused reductions in soil nutrients. Reductions in soil nutrients should result in reductions in plant cover. Furthermore, reduced soil nutrient availability should cause reductions in the nutrient status and quality of the plants growing there. In addition to the loss of biodiversity that may result, this erosion may result in economic hardship for the Bedouin peoples whose herds depend on these resources. In this study, there were significant negative effects of erosion on soil organic carbon, nitrate nitrogen and water-holding capacity, but not on soil phosphorus, conductivity or pH. Furthermore, there was a negative effect of soil erosion on an overall measure of soil quality derived from a principal components analysis in three of the four wadis we studied. Erosion resulted in an increase in plant species richness and significantly altered plant community structure in eroded areas of wadis. Increased plant species richness in eroded sites is consistent with the intermediate disturbance hypothesis of plant community structure. Plants growing in eroded areas did not differ in two quality indices (nitrogen content and digestibility), although plants typical of eroded areas had significantly lower levels of common digestion inhibitors (total polyphenols) and toxins (alkaloids) than plants from undisturbed sites. These last-mentioned results are contrary to our prediction and are consistent with the notion that plants growing in disturbed (e.g. eroded) sites maximize growth at the expense of investments in defense.  相似文献   

13.
Snow deposition and redistribution are major drivers of snow cover dynamics in mountainous terrain and contribute to the mass balance of alpine glaciers. The quantitative understanding of inhomogeneous snow distribution in mountains has recently benefited from advances in measuring technologies, such as airborne laser scanning (ALS). This contribution further advances the quantitative understanding of snow distribution by analysing the areas of maximum surface elevation changes in a mountain catchment with large and small glaciers. Using multi‐annual ALS observations, we found extreme surface elevation changes on rather thin borders along the glacier margins. While snow depth distribution patterns in less extreme terrain have presented high inter‐annual persistence, there is little persistence of those extreme glacier accumulations between winters. We therefore interpret the lack of persistence as the result of a predominance of gravity‐driven redistribution, which has an inherently higher random component because it does not occur with all conditions in all winters. In highly crevassed zones, the lidar‐derived surface elevation changes are caused by a complex interaction of ice flux divergence, the propagation of crevasses and snow accumulation. In general, the relative contribution of gravitational mass transport to glacier snow cover volume was found to decrease for glaciers larger than 5 km2 in the investigated region. We therefore suggest that extreme accumulations caused by gravitational snow transport play a significant role in the glacier mass balance of small to medium‐size glaciers and that they may be successfully parameterized by simple mass redistribution algorithms, which have been presented in the literature.  相似文献   

14.
We examined changes in and relationships between radial growth and intrinsic water-use efficiency (iWUE) of ponderosa pine (Pinus ponderosa) trees, climate, and atmospheric CO2 in the western United States since the mid-nineteenth century. We developed tree-ring chronologies for eight sites in three climate regions and used carbon isotope data to calculate pentadal values of iWUE. We examined relationships among radial growth, climate, iWUE, and CO2 via correlation and regression analyses. Significant upward trends in iWUE occurred at all sites, and despite an absence of climate changes that would favor growth, upward radial growth trends occurred at five sites. Our findings suggest that increased iWUE associated with rising CO2 can positively impact tree growth rates in the western United States and are thus an evolving component of forest ecosystem processes.  相似文献   

15.
We attribute changes in the morphology of relay ramp channels (increased slope and decreased width) to variations in displacement rate on ramp‐adjacent normal faults. We map the faults and fluvial channels associated with four sites in different stages of fault interaction and linkage on the Volcanic Tableland, a Late Pleistocene ash‐flow tuff in east‐central California. Because these channels are inactive today, we estimate downstream changes in channel width and depth using HEC‐RAS, a one‐dimensional open channel flow model. Our results show that channel slope must be greater than about 0.05 before there are substantial decreases in width or substantial increases in depth. Displacement rate increases during interaction between en echelon segments results in the increases in channel slope and decreases in channel width. Moreover, our data show that these changes begin to occur during the very early stages of fault interaction, well before the fault geometry would indicate ongoing or imminent linkage.  相似文献   

16.
Small mountain glaciers have short mass balance response times to climate change and are consequently very important for short‐term contributions to sea level. However, a distinct research and knowledge gap exists between (1) wider regional studies that produce overview patterns and trends in glacier changes, and (2) in situ local scale studies that emphasise spatial heterogeneity and complexity in glacier responses to climate. This study of a small glacier in central Austria presents a spatiotemporally detailed analysis of changes in glacier geometry and changes in glaciological behaviour. It integrates geomorphological surveys, historical maps, aerial photographs, airborne LiDAR data, ground‐based differential global positioning surveys and Ground Penetrating Radar surveys to produce three‐dimensional glacier geometry at 13 time increments spanning from 1850 to 2013. Glacier length, area and volume parameters all generally showed reductions with time. The glacier equilibrium line altitude increased by 90 m between 1850 and 2008. Calculations of the mean bed shear stress rapidly approaching less than 100 kPA, of the volume–area ratio fast approaching 1.458, and comparison of the geometric reconstructions with a 1D theoretical model could together be interpreted to suggest evolution of the glacier geometry towards steady state. If the present linear trend in declining ice volume continues, then the Ödenwinkelkees will disappear by the year 2040, but we conceptualise that non‐linear effects of bed overdeepenings on ice dynamics, of supraglacial debris cover on the surface energy balance, and of local topographically driven controls, namely wind‐redistributed snow deposition, avalanching and solar shading, will become proportionally more important factors in the glacier net balance.  相似文献   

17.
Although missing as a land use category in all or most land classification systems, many land designation systems recognize research as the primary use of specific land areas. Research lands may be extensive and take up large areas; they may also be widespread systems of smaller designated sites that cover a significant total area. They are designated at the scale of international, national, subnational and smaller systems. New Mexico and Oregon, USA, illustrate extensive designation of lands for research purposes, including the variety of types and scales of research lands. In New Mexico, over a million hectares of land have been designated for research. This amounts to about 3.3 per cent of the state's area. Recognition of research as a land use, and of lands designated for research or scientific purposes, opens up many topics for further investigation.  相似文献   

18.
The Donbas Foldbelt (DF) is the compressionally deformed segment of a large Late Palaeozoic rift cross‐cutting the southern part of the East European Craton and is traditionally described as a classic example of an inverted intracratonic rift basin. Proposed formational models are often controversial and numerous issues are still a matter of speculation, primarily due to the lack of absolute time constraints and insufficient knowledge of the thermal evolution. We investigate the low‐temperature thermal history of the DF by means of zircon fission track and apatite fission track (AFT) thermochronology applied to Upper Carboniferous sediments. In all samples, the AFT chronometer was reset shortly after deposition in the Early Permian (~275 Ma). Samples contained kinetically variable apatites that are sensitive to different temperatures and using statistic‐based component analysis incorporating annealing characteristics of individual grains assessed by Dpar , we identified several distinct age populations, ranging from the Late Permian (~265 Ma) to the Late Cretaceous (~70 Ma). We could thus constrain the thermal history of the DF during a ~200 Myr long period following the thermal maximum. We found that earliest cooling of Permian and Permo‐Triassic age is recorded on the basin margins whereas the central parts were residing in or slowly cooling through the apatite partial annealing zone during Jurassic and most of Cretaceous times, and then finally cooled to near‐surface conditions latest around the Cretaceous/Palaeogene boundary. Our data show that Permian erosion was less significant and Mesozoic erosion more significant than generally assumed. Inversion and pop‐up of the DF occurred in the Cretaceous and not in the Permian as previously thought. This is indicated by overall Cretaceous AFT ages in the central parts of the basin.  相似文献   

19.
In this short communication, we report on dissolved organic and inorganic carbon concentrations from a summer stream monitoring campaign at the main hydrological catchment of the Tarfala Research Station in northern Sweden. Further, we place these unique high‐alpine observations in the context of a relevant subset of Sweden's national monitoring programme. Our analysis shows that while the monitoring programme (at least for total organic carbon) may have relatively good representativeness across a range of forest coverages, alpine/tundra environments are potentially underrepresented. As for dissolved inorganic carbon, there is currently no national monitoring in Sweden. Since the selection of stream water monitoring locations and monitored constituents at the national scale can be motivated by any number of goals (or limitations), monitoring at the Tarfala Research Station along with other research catchment sites across Fennoscandia becomes increasingly important and can offer potential complementary data necessary for improving process understanding. Research catchment sites (typically not included in national monitoring programmes) can help cover small‐scale landscape features and thus complement national monitoring thereby improving the ability to capture hot spots and hot moments of biogeochemical export. This provides a valuable baseline of current conditions in high‐alpine environments against which to gauge future changes in response to potential climatic and land cover shifts.  相似文献   

20.
The late‐stage evolution of the southern central Pyrenees has been well documented but controversies remain concerning potential Neogene acceleration of exhumation rates and the influence of tectonic and/or climatic processes. A popular model suggests that the Pyrenees and their southern foreland were buried below a thick succession of conglomerates during the Oligocene, when the basin was endorheic. However, both the amount of post‐orogenic fill and the timing of re‐excavation remain controversial. We address this question by revisiting extensive thermochronological datasets of the Axial Zone. We use an inverse approach that couples the thermo‐kinematic model Pecube and the Neighbourhood inversion algorithm to constrain the history of exhumation and topographic changes since 40 Ma. By comparison with independent geological data, we identified a most probable scenario involving rapid exhumation (>2.5 km Myr?1) between 37 and 30 Ma followed by a strong decrease to very slow rates (0.02 km Myr?1) that remain constant until the present. Therefore, the inversion does not require a previously inferred Pliocene acceleration in regional exhumation rates. A clear topographic signal emerges, however: the topography has to be infilled by conglomerates to an elevation of 2.6 km between 40 and 29 Ma and then to remain stable until ca. 9 Ma. We interpret the last stage of the topographic history as recording major incision of the southern Pyrenean wedge, due to the Ebro basin connection to the Mediterranean, well before previously suggested Messinian ages. These results thus demonstrate temporally varying controls of different processes on exhumation: rapid rock uplift in an active orogen during late Eocene, whereas base‐level changes in the foreland basin control the post‐orogenic evolution of topography and exhumation in the central Pyrenees. In contrast, climate changes appear to play a lesser role in the post‐orogenic topographic and erosional evolution of this mountain belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号