首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to analyse the complex Younger Dryas event in central Scandinavia a finite-element method solution of the continuity equation has been used to describe the glaciological processes involved. In order to make the model compatible with the geologic evidence, it is suggested that the ice sheet was drained by a 'Baltic Ice Stream'. The Ice Stream was steered by differences in basal conditions. We also conclude that the climatic event responsible for the Younger Dryas stillstand was probably short (< 500 years), and that different regions of the ice sheet responded in different ways. During a simulated termination it was shown that there was broad agreement about the marginal positions in Sweden and Finland if it was assumed that there was a general sliding zone for elevations below 100 m. with an enhanced sliding zone through the centre of the Baltic and the Gulf of Bothnia. A stillstand near the position of the Younger Dryas moraines is attained with a climatic equilibrium line altitude (ELA) depression of 600 m for a period of 500 years. Agreement of simulated behaviour with observed behaviour is less consistent for the more maritime areas of western Sweden and western Norway.  相似文献   

2.
Mt. Kroppefjall is situated just south of the Middle Swedish (Younger Dryas) ice-marginal zone. Its abundance of lake basins makes it very suitable for detailed shore displacement studies close to the Younger Dryas ice margin. Altogether 12 lakes at altitudes between 157 and 78 m were studied and all but one situated above the marine limit contained marine sediments. The dating of their isolation from the sea resulted in a shore displacement curve from c. 11,200 to c. 98M)BP. The relative uplift almost ceased between 10,900 and 10,300 BP, which is mainly related to an ice readvance in the Lake Vanern basin. This period of balance between uplift and sea level rise was preceded by a relative uplift rate of 5 m/lW yr and followed by as high rates as 7–8 m/100 yr, possibly caused by a delayed uplift effect and perhaps also a local fall in sea level caused by the rapidly receding ice margin. The time difference between the formation of two delta surfaces at Odskolts Moar is estimated at 60&800 years. Shoreline diagrams along the Swedish west and east coasts, mainly based on a number of shore displacement curves, reveal large anomalies that are believed to have been caused by dammings and drainages of the Baltic basin. The southwards extrapolated shorelines indicate that the bedrock threshold in the Oresund Strait, between Denmark and Sweden, functioned as the outlet threshold for the Baltic Ice Lake during its dammed stages, while the erosion of the Store Balt and Darss Sill straits began at the culmination of the Ancylus transgression and continued during the rapid IS20 m Ancylus regression.  相似文献   

3.
A two-step climatic warming and oceanographic change during the Younger Dryas/Preboreal transition was registered by diatom, foraminiferal, mollusc, lithologic data and sediment accumulation rates in a high resolution sediment core from the Swedish west coast. An abrupt climatic warming in the surface water of the Kattegat occurred at c . 10 200 BP, resulting in a rapid increase in sea surface water temperatures. The attenuation of meltwater discharge into the Kattegat led to an increase in sea surface salinity. Consequently, the difference in salinity through the water column diminished. This change happened within less than 80 years. The warming of bottom water in the deeper parts of the region took place a few hundred years after the surface water warming. The climatic amelioration was recorded by increased meltwater discharge and a slight increase in abundance of relatively warm diatoms around 10 600 BP at the time of the recession of the Fennoscandian ice sheet. An increase in the number of arctic/subarctic benthic foraminifera shows that the bottom water temperature during this period was still relatively low.  相似文献   

4.
Radiocarbon dated lacustrine sequences in Perú show that the chronology of glaciation during the late glacial in the tropical Andes was significantly out-of-phase with the record of climate change in the North Atlantic region. Fluvial incision of glacial-lake deposits in the Cordillera Blanca, central Perú, has exposed a glacial outwash gravel; radiocarbon dates from peat stratigraphically bounding the gravel imply that a glacier advance culminated between 11,280 and 10,990 14C yr B.P.; rapid ice recession followed. Similarly, in southern Perú, ice readvanced between 11,500 and 10,900 14C yr B.P. as shown by a basal radiocarbon date of 10,870 14C yr B.P. from a lake within 1 km of the Quelccaya Ice Cap. By 10,900 14C yr B.P. the ice front had retreated to nearly within its modern limits. Thus, glaciers in central and southern Perú advanced and retreated in near lockstep with one another. The Younger Dryas in the Peruvian Andes was apparently marked by retreating ice fronts in spite of the cool conditions that are inferred from the ∂18O record of Sajama ice. This retreat was apparently driven by reduced precipitation, which is consistent with interpretations of other paleoclimatic indicators from the region and which may have been a nonlinear response to steadily decreasing summer insolation.  相似文献   

5.
We propose that prior to the Younger Dryas period, the Arctic Ocean supported extremely thick multi-year fast ice overlain by superimposed ice and firn. We re-introduce the historical term paleocrystic ice to describe this. The ice was independent of continental (glacier) ice and formed a massive floating body trapped within the almost closed Arctic Basin, when sea-level was lower during the last glacial maximum. As sea-level rose and the Barents Sea Shelf became deglaciated, the volume of warm Atlantic water entering the Arctic Ocean increased, as did the corresponding egress, driving the paleocrystic ice towards Fram Strait. New evidence shows that Bering Strait was resubmerged around the same time, providing further dynamical forcing of the ice as the Transpolar Drift became established. Additional freshwater entered the Arctic Basin from Siberia and North America, from proglacial lakes and meltwater derived from the Laurentide Ice Sheet. Collectively, these forces drove large volumes of thick paleocrystic ice and relatively fresh water from the Arctic Ocean into the Greenland Sea, shutting down deepwater formation and creating conditions conducive for extensive sea-ice to form and persist as far south as 60°N. We propose that the forcing responsible for the Younger Dryas cold episode was thus the result of extremely thick sea-ice being driven from the Arctic Ocean, dampening or shutting off the thermohaline circulation, as sea-level rose and Atlantic and Pacific waters entered the Arctic Basin. This hypothesis focuses attention on the potential role of Arctic sea-ice in causing the Younger Dryas episode, but does not preclude other factors that may also have played a role.  相似文献   

6.
The extent of glaciation in northwestern Alaska, the source of sediment supply to the Chukchi shelf and slope, and the movement of sea ice and icebergs across the shelf during the last glacial maximum (LGM) remain poorly constrained. Here we present geophysical and geological data from the outer Chukchi margin that reveal a regionally extensive, heavily ice-scoured surface ∼ 5-8 m below the modern seafloor. Radiocarbon dating of this discrete event yields age estimates between 10,600 and 11,900 14C yr BP, indicating the discharge event occurred during the Younger Dryas. Based on mineralogy of the ice-rafted debris, the icebergs appear to be sourced from the northwestern Alaskan margin, which places important constraints on the ice extent in northern Alaska during the LGM as well as existing circulation models for the region.  相似文献   

7.
The outermost moraines in front of the Scottbreen glacier in Spitsbergen date from c . AD 1900. These moraines rest on top of a marine shoreline radiocarbon-dated to about 11 200 14C yr BP and demonstrate that the AD-1900 moraines show the maximum glacier extent since late Allerød time. This means that Scottbreen was smaller during the Younger Dryas than at AD 1900, in contrast with glaciers on mainland western Europe, which were all much larger during the Younger Dryas. The explanation is probably starvation of precipitation on western Spitsbergen during the Younger Dryas. In contrast, ice sheets and glaciers in Spitsbergen reacted more or less in concert with glaciers in western Europe, during the global Last Glacial Maximum and the Little Ice Age.  相似文献   

8.
Annually resolved tree-ring width variations and radiocarbon ages were measured from a collection of 120 Lateglacial pine stumps excavated on the Swiss Plateau. These data – representing the oldest absolutely dated wood samples worldwide – extend the absolute tree-ring chronology from Central Europe by 183 years back to 12 593 cal. yr BP (10 644 cal. yr BC). They also yield a 1420-year floating chronology covering the entire Allerød and the early Younger Dryas (14 170–12 750 cal. yr BP). Radiocarbon data suggest a 250-year jump in the 14C reservoir correction around the time of the Allerød to Younger Dryas transition, although calendric dating of the floating chronology – by filling a ∼150 year gap – is necessary for confirmation. Various subgroups, based on the year of germination, were used to assess temporal changes in growth characteristics along the Allerød to Younger Dryas transition. Comparison of these Lateglacial data with a reference data set of living and historic pines from the Swiss Valais (AD 940–2000) revealed differences in both growth trend and level. The generally slower Lateglacial growth was likely influenced by higher geomorphic activity and severe climatic conditions. After removal of the biological age-trend, a strong common signal found in the tree-ring data suggests some skill in estimating interannual to multidecadal Lateglacial climatic variations.  相似文献   

9.
A GIS-based palaeogeographic reconstruction of the development of the Baltic Ice Lake (BIL) in the eastern Baltic during the deglaciation of the Scandinavian Ice Sheet is presented. A Late Glacial shoreline database containing more than 1000 sites from Finland, NW Russia, Estonia, Latvia and modern digital terrain models were used for palaeoreconstructions. The BIL occupied five different levels, represented by 492 shoreline features. The study shows that at about 13.3 cal. ka BP the BIL extended to the ice-free areas of Latvia, Estonia and NW Russia, represented by the highest shoreline in this region. Reconstructions demonstrate that BIL initially had the same water level as the Glacial Lakes Peipsi and Võrtsjärv, because these water bodies were connected via strait systems in central Estonia. These strait systems were closed at about 12.8–11.7 cal. ka BP prior to the final drainage of the BIL due to isostatic uplift. Glacial Lake Võrtsjärv was isolated from the BIL at about 12.4–12.0 cal. ka BP. Exact timing of Glacial Lake Peipsi isolation is not clear, but according to the altitude of the threshold in northeast Estonia and shore displacement data it was completed at about 12.4–11.7 cal. ka BP.  相似文献   

10.
Atmospheric radiocarbon variations over the Younger Dryas interval, from 13,000 to 11,600 cal yr BP, are of immense scientific interest because they reveal crucial information about the linkages between climate, ocean circulation and the carbon cycle. However, no direct and reliable atmospheric 14C records based on tree rings for the entire Younger Dryas have been available. In this paper, we present (1) high-precision 14C measurements on the extension of absolute tree-ring chronology from 12,400 to 12,560 cal yr BP and (2) high-precision, high-resolution atmospheric 14C record derived from a 617-yr-long tree-ring chronology of Huon pine from Tasmania, Australia, spanning the early Younger Dryas. The new tree-ring 14C records bridge the current gap in European tree-ring radiocarbon chronologies during the early Younger Dryas, linking the floating Lateglacial Pine record to the absolute tree-ring timescale. A continuous and reliable atmospheric 14C record for the past 14,000 cal yr BP including the Younger Dryas is now available. The new records indicate that the abrupt rise in atmospheric Δ14C associated with the Younger Dryas onset occurs at 12,760 cal yr BP, 240 yrs later than that recorded in Cariaco varves, with a smaller magnitude of 40‰ followed by several centennial Δ14C variations of 20–25‰. Comparing the tree-ring Δ14C to marine-derived Δ14C and modelled Δ14C based on ice-core 10Be fluxes, we conclude that changes in ocean circulation were mainly responsible for the Younger Dryas onset, while a combination of changes in ocean circulation and 14C production rate were responsible for atmospheric Δ14C variations for the remainder of the Younger Dryas.  相似文献   

11.
Core 2011804‐0010 from easternmost Lancaster Sound provides important insights into deglacial timing and style at the marine margin of the NE Laurentide Ice Sheet (LIS). Spanning 13.2–11.0 cal. ka BP and investigated for ice‐rafted debris (IRD), foraminifera, biogenic silica and total organic carbon, the stratigraphy comprises a lithofacies progression from proximal grounding line and sub‐ice shelf environments to open glaciomarine deposition; a sequence similar to deposits from Antarctic ice shelves. These results are the first marine evidence of a former ice shelf in the eastern Northwest Passage and are consistent with a preceding phase of ice streaming in eastern Lancaster Sound. Initial glacial float‐off and retreat occurred >13.2 cal. ka BP, followed by formation of an extensive deglacial ice shelf during the Younger Dryas, which acted to stabilize the retreating margin of the NE LIS until 12.5 cal. ka BP. IRD analyses of sub‐ice shelf facies indicate initial high input from source areas on northern Baffin Island delivered to Lancaster Sound by a tributary ice stream in Admiralty Inlet. After ice shelf break‐up, Bylot Island became the dominant source area. Foraminifera are dominated by characteristic ice‐proximal glaciomarine benthics (Cassidulina reniforme, Elphidium excavatum f. clavata), complemented by advected Atlantic water (Cassidulina neoteretis, Neogloboquadrina pachyderma) and enhanced current indicators (Lobatula lobatula). The biostratigraphy further supports the ice shelf model, with advection of sparse faunas beneath the ice shelf, followed by increased productivity under open water glaciomarine conditions. The absence of Holocene sediments in the core suggests that the uppermost deposits were removed, most likely due to mass transport resulting from the site's proximity to modern tidewater glacier margins. Collectively, this study presents important new constraints on the deglacial behaviour of the NE Laurentide Ice Sheet, with implications for past ice sheet stability, ice‐rafted sediment delivery, and ice−ocean interactions in this complex archipelago setting.  相似文献   

12.
通过对苏北盆地得胜湖(DS)钻孔沉积岩心的研究,进一步证实新仙女木事件具有全球性的特征.根据对苏北盆地DS钻孔湖泊沉积物质量磁化率、粒度以及地球化学元素的分析,在DS钻孔下部584~512cm深度处,发现这一深度时段内质量磁化率突然降低,中值粒径保持较低水平,Sr的质量分数降低至最小值,w(Rb)/w(Sr)比值快速增...  相似文献   

13.
新仙女木事件在罗布泊湖相沉积物中的记录   总被引:2,自引:0,他引:2  
通过对罗布泊CK-2钻孔湖相沉积物磁化率、粒度、碳酸盐和有机质含量的测定以及地球化学元素的多元统计分析, 探讨了我国西北极端干旱区域的环境对全球气候变化的响应.结果显示各代用指标均一致揭示了发生在12.8~11.6kaBP间非常明显的低温期, 且降温幅度大, 变化迅速.这次冷事件在时间坐标以及发生特点上都与格陵兰冰心记录的末次冰消期中的新仙女木事件相对应, 为新仙女木事件的全球性特征提供了新的证据.这说明在我国新疆的极端干旱区, 其气候与环境的变化也与北半球高纬度地区有着密切的联系; 由主成分分析结果, 揭示了我国西北地区的西风气候区有别于东南季风气候区的水热配置特点, 即冷期湿润, 暖期干旱, 并提出了该事件信号从北大西洋传送到罗布泊地区的潜在机制.   相似文献   

14.
Pasanen, A., Lunkka, J. P. & Putkinen, N. 2009: Reconstruction of the White Sea Basin during the late Younger Dryas. Boreas, 10.1111/j.1502‐3885.2009.00128.x. ISSN 0300‐9483 The Weichselian Scandinavian Ice Sheet (SIS) in the White Sea Basin retreated from its maximum position to the Kalevala end moraine between 17 000 and 11 500 years ago. Even though the deglaciation history is relatively well known, the palaeoenvironments in front of the ice sheet are still poorly understood and partly controversial. In the present paper, we use geomorphological, sedimentological and ground‐penetrating radar survey methods to study glaciofluvial plains and shorelines at the Kalevala end moraine. These data are used to define the shoreline gradient for the area and to numerically reconstruct the palaeotopography and the area and volume of the water body in the White Sea Basin during the late Younger Dryas 11 500 years ago. The results indicate that at three sites glaciofluvial plains represent Gilbert deltas deposited to the same water level next to the ice margin. Using the shoreline gradient of 0.42 m/km, it is shown that the water body in the White Sea Basin was extensive and relatively deep, inundating large, currently onshore, areas on the western side of the White Sea and the Arkhangelsk area to the east. The ice margin terminated in the White Sea, which was connected to the Barents Sea via the Gorlo Strait and separated from the Baltic drainage basin to the south.  相似文献   

15.
Recent studies of lake-level fluctuations during the last deglaciation in eastern France (Jura Mountains and Pre-Alps) and on the Swiss Plateau show distinct phases of higher water level developing at the beginning and during the latter part of Greenland Stade 1 (i.e., Younger Dryas event) and punctuating the early Holocene period at 11,250-11,050, 10,300-10,000, 9550-9150, 8300-8050, and 7550-7250 cal yr B.P. The phases at 11,250-11,050 and 8300-8050 cal yr B.P. appear to be related to the cool Preboreal Oscillation and the 8200 yr event assumed to be associated with deglaciation events. A comparison of this mid-European lake-level record with the outbursts from proglacial Lake Agassiz in North America suggests that, between 13,000 and 8000 cal yr B.P., phases of positive water balance were the response in west-central Europe to climate cooling episodes, which were induced by perturbation of the thermohaline circulation due to sudden freshwater releases to oceans. This probably was in response to a southward migration of the Atlantic Westerly Jet and its associated cyclonic track. Moreover, it is hypothesized that, during the early Holocene, varying solar activity could have been a crucial factor by amplifying or reducing the possible effects of Lake Agassiz outbursts on the climate.  相似文献   

16.
《Quaternary Science Reviews》2007,26(11-12):1638-1649
Surface-exposure (10Be) ages have been obtained on boulders from three post-Pinedale end-moraine complexes in the Front Range, Colorado. Boulder rounding appears related to the cirque-to-moraine transport distance at each site with subrounded boulders being typical of the 2-km-long Chicago Lakes Glacier, subangular boulders being typical of the 1-km-long Butler Gulch Glacier, and angular boulders being typical of the few-hundred-m-long Isabelle Glacier. Surface-exposure ages of angular boulders from the Isabelle Glacier moraine, which formed during the Little Ice Age (LIA) according to previous lichenometric dating, indicate cosmogenic inheritance values ranging from 0 to ∼3.0 10Be ka.1 Subangular boulders from the Butler Gulch end moraine yielded surface-exposure ages ranging from 5 to 10.2 10Be ka. We suggest that this moraine was deposited during the 8.2 cal ka event, which has been associated with outburst floods from Lake Agassiz and Lake Ojibway, and that the large age range associated with the Butler Gulch end moraine is caused by cosmogenic shielding of and(or) spalling from boulders that have ages in the younger part of the range and by cosmogenic inheritance in boulders that have ages in the older part of the range. The surface-exposure ages of eight of nine subrounded boulders from the Chicago Lakes area fall within the 13.0–11.7 10Be ka age range, and appear to have been deposited during the Younger Dryas interval. The general lack of inheritance in the eight samples probably stems from the fact that only a few thousand years intervened between the retreat of the Pinedale glacier and the advance of the Chicago Lakes glacier; in addition, bedrock in the Chicago Lakes cirque area may have remained covered with snow and ice during that interval, thus partially shielding the bedrock from cosmogenic radiation.  相似文献   

17.
From stratigraphic investigations of 38 piston and vibro cores, four fine-grained Late Weichselian sediment units can be defined in the southern Kattegat. A continuous stratigraphic record of the Late Weichselian sediments cannot be established from single cores due to the uneven distribution of the units, but by compilation of relative stratigraphies a composite record can be determined for sediments deposited between approximately 13,500 and 10,000 BP. The sediments contain both lithological and biostratigraphical evidence that the Baltic Ice Lake was suddenly drained through the Öresund Strait at about 12,700 BP. This drainage route appears to have been unchanged until about 10,300 BP when a passage opened in south central Sweden through which the final drainage of the Baltic Ice Lake took place. The Younger Dryas cold event appears to have had only marginal effects on the marine benthic life in the region. The data also indicate that drainage of fresh Baltic water through the Öresund Strait was the driving force for an inflow of marine water from the Skagerrak North Atlantic Ocean into the southern Kattegat, as occurring at the present. This paper is a contribution to IGCP 253, Termination of the Pleistocene .  相似文献   

18.
Jensen, J. B., Bennike, O., Witkowski, A., Lemke, W. & Kuijpers, A. 1997 (September): The Baltic Ice Lake in the southwestern Baltic: sequence-, chrono- and biostratigraphy. Boreas , Vol. 26, pp. 217–236. Oslo. ISSN 0300–9483.
This multidisciplinary study focuses on late-glacial deposits in the Mecklenburg Bay -Arkona Basin area. The sequence stratigraphical method has been used on shallow seismic and lithological data, in combination with biostratigraphical work and radiocarbon dating. Glacial-till deposits underlie sediments from two Baltic Ice Lake phases. Varved clay deposits from the initial phase cover the deepest parts of the basins. A prograding delta is observed at the western margin of the Arkona Basin, prograding from the Darss Sill area. The delta system is possibly related to a highstand dated at 12.8 ka. A maximum transgression level around 20 m below present sea level (b.s.l.) is inferred, followed by a drop in water level and formation of lowstand features. The final ice lake phase is characterized by a new transgression. The transgression maximum as observed in the Mecklenburg Bay is represented by transgressive and highstand deltaic deposits. These also indicate a maximum shore level of 20 m b.s.l. The deltaic sediments that contain macroscopic plant remains and diatoms have yielded Younger Dryas ages. Mapping of the late-glacial morphology of the Darss Sill area reveals a threshold at 23 to 24 m b.s.l. This means that the Baltic Ice Lake highstand phases inundated the Darss Sill, which implies that the westernmost extension of the Baltic Ice Lake reached as far as Kiel Bay. Forced regressive coastal deposits at the western margin of the Arkona Basin mark a lowstand level of around 40 m b.s.l. caused by the final drainage of the Baltic Ice Lake. The lowstand deposits predate lacustrine deposits from the Ancylus Lake, which date to approximately 9.6 ka BP.  相似文献   

19.
To investigate land–sea interactions during deglaciation, we compared proxies for continental (pollen percentages and accumulation rates) and marine conditions (dinoflagellate cyst percentages and alkenone-derived sea surface temperatures). The proxies were from published data from an AMS-radiocarbon-dated sedimentary record of core GeoB 1023-5 encompassing the past 21,000 years. The site is located at ca. 2000 m water depth just north of the Walvis Ridge and in the vicinity of the Cunene River mouth. We infer that the parallelism between increasing sea surface temperatures and a southward shift of the savanna occurred only during the earliest part of the deglaciation. After the Antarctic Cold Reversal, southeast Atlantic sea surface temperatures no longer influenced the vegetation development in the Kalahari. Stronger trade winds during the Antarctic Cold Reversal and the Younger Dryas period probably caused increased upwelling off the coast of Angola. A southward shift of the Atlantic anti-cyclone could have resulted in both stronger trade winds and reduced impact of the Westerlies on the climate of southwestern Africa.  相似文献   

20.
The geomorphology of the south‐western and central Lake District, England is used to reconstruct the mountain palaeoglaciology pertaining to the Lateglacial and Younger Dryas. Limitations to previous ice‐mass reconstructions and consequent palaeoclimatic inferences include: (i) the use of static (steady‐state) glacier reconstructions, (ii) the assumption of a single‐stage Younger Dryas advance, (iii) greatly varying ice‐volume estimates, (iv) inexplicable spatial variations in ELA (Equilibrium Line Altitude), and (v) a lack of robust extent chronology. Here we present geomorphological mapping based on aerial photography and the NextMap Britain Digital Elevation Model, checked by ground survey. Former glacier extents were inferred and ELAs were calculated using the Balance Ratio method of Osmaston. Independently, a time‐dependant 2‐D ice‐flow model was forced by a regional ELA history that was scaled to the GRIP record. This provided a dynamic reconstruction of a mountain ice field that allowed for non‐steady‐state glacier evolution. Fluctuations in climate during the Younger Dryas resulted in multiple glacial advance positions that show agreement with the location of mapped moraines, and may further explain some of the ELA variations found in previous local and static reconstructions. Modelling based on the GRIP record predicts three phases: an initial maximum extent, a middle minor advance or stillstand, and a pronounced but less extensive final advance. The comparisons find that the reconstructions derived from geomorphological evidence are effective representations of steady‐state glacier geometries, but we do propose different extents for some glaciers and, in particular, a large former glacier in Upper Eskdale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号