首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large nearly vertical, normal faulting earthquake ( M w = 7.1) took place in 1997 in the Cocos plate, just beneath the ruptured fault zone of the great 1985 Michoacan thrust event ( M w = 8.1). Dynamic rupture and resultant stress change during the 1997 earthquake have been investigated on the basis of near-source strong-motion records together with a 3-D dynamic model.
Dynamically consistent waveform inversion reveals a highly heterogeneous distribution of stress drop, including patch-like asperities and negative stress-drop zones. Zones of high stress drop are mainly confined to the deeper, southeastern section of the vertical fault, where the maximum dynamic stress drop reaches 280 bars (28 MPa). The dynamically generated source time function varies with location on the fault, and yields a short slip duration, which is caused by a short scalelength of stress-drop heterogeneities. The synthetic seismograms calculated from the dynamic model are generally consistent with the strong-motion velocity records in the frequency range lower than 0.5 Hz.
The pattern of stress-drop distribution appears, in some sense, to be consistent with that of coseismic changes in shear stress resulting from the 1985 thrust event. This consistency suggests that the stress transfer from the 1985 event to the subducting plate could be one of the possible mechanisms that increased the chance of the occurrence of the 1997 earthquake.  相似文献   

2.
高地震烈度区堆积体边坡动力响应时程特征分析   总被引:10,自引:0,他引:10  
考虑到在地震过程中,工程边坡的动安全系数最小值出现在某一瞬间,而用这个值评价边坡在地震荷载作用下的抗滑稳定性不合适宜。在简单分析地震荷载作用下边坡稳定性评价的主要方法及差异基础上,介绍了地震动力响应时程分析法的基本原理和计算过程,明确指出了边坡动力稳定分析时应注意的边界条件、材料参数等问题,建立了评价动力稳定性的有限元应力法表达式。基于地震动力时程反应,结合金安桥水电站库岸堆积体边坡工程,用动力有限元计算获得了边坡的动力响应在空间的变化规律(包括动应力和加速度等)和整体稳定性,计算成果合理地评价了其稳定性。  相似文献   

3.
10 M ≥ 6.7 earthquakes ruptured 1000 km of the North Anatolian fault (Turkey) during 1939–1992, providing an unsurpassed opportunity to study how one large shock sets up the next. We use the mapped surface slip and fault geometry to infer the transfer of stress throughout the sequence. Calculations of the change in Coulomb failure stress reveal that nine out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 1–10 bar, equivalent to 3–30 years of secular stressing. We translate the calculated stress changes into earthquake probability gains using an earthquake-nucleation constitutive relation, which includes both permanent and transient effects of the sudden stress changes. The transient effects of the stress changes dominate during the mean 10 yr period between triggering and subsequent rupturing shocks in the Anatolia sequence. The stress changes result in an average three-fold gain in the net earthquake probability during the decade after each event. Stress is calculated to be high today at several isolated sites along the fault. During the next 30 years, we estimate a 15 per cent probability of a M ≥ 6.7 earthquake east of the major eastern centre of Ercinzan, and a 12 per cent probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere.  相似文献   

4.
We derive a set of non-hypersingular boundary integral equations, both elastodynamic and elastostatic, for the analysis of arbitrarily shaped 2-D anti-plane and in-plane cracks located in an infinite homogeneous isotropic medium, rendered in a unified nomenclature for all cases. The hypersingularities that appear in the usual formulations for the dynamic cases, existent both at the source point and at the wavefront, are removed by way of a regularization technique based on integration by parts. The equations for the in-plane cases are presented in terms of a local Cartesian coordinate system, one of the axes of which is always held locally tangential to the crack trace. The expressions for the elastic field at any point on the model plane are also given.
Our formulations are shown to yield accurate numerical results, as long as appropriate stabilization measures are taken in the numerical scheme. The numerical applicability of our method to non-planar crack problems is illustrated by simulations of dynamic growth of a hackly crack which has small off-plane side-branches. The results imply that the branching of a crack brings about a significant decrease in the crack-tip stress concentration level and consequently may play an essential role in the arrest of earthquake rupturing.  相似文献   

5.
The 2003 August 21 Fiordland earthquake ( M L7.0, M W7.2) was the largest earthquake to occur in New Zealand for 35 yr and the fifth of M6+ associated with shallow subduction in Fiordland in the last 15 yr. The aftershocks are diffuse and do not distinguish between the two possible main shock fault planes implied by the Harvard CMT solution, one corresponding to subduction interface thrusting and the other corresponding to steeply seaward dipping thrusting. The distinction is important for calculating the induced stress changes on the overlying Alpine Fault which has a history of very large earthquakes, the last possibly in 1717. We have relocated the aftershocks, using data from temporary seismographs in the epicentral region and the double difference technique. We then use the correlation between aftershock hypocentres and regions of positive changes in Coulomb Failure Stress (CFS) due to various candidate main shock fault planes to argue for concentrated slip on the shallow landward dipping subduction interface. Average changes in CFS on the offshore segments of the Alpine Fault are then negative, retarding any future large events. In our models the change in CFS is evaluated on faults of optimal orientation in the regional stress field as determined by inversion of P -wave polarities.  相似文献   

6.
Source models such as the k -squared stochastic source model with k -dependent rise time are able to reproduce source complexity commonly observed in earthquake slip inversions. An analysis of the dynamic stress field associated with the slip history prescribed in these kinematic models can indicate possible inconsistencies with physics of faulting. The static stress drop, the strength excess, the breakdown stress drop and critical slip weakening distance D c distributions are determined in this study for the kinematic k -squared source model with k -dependent rise time. Several studied k -squared models are found to be consistent with the slip weakening friction law along a substantial part of the fault. A new quantity, the stress delay, is introduced to map areas where the yielding criterion of the slip weakening friction is violated. Hisada's slip velocity function is found to be more consistent with the source dynamics than Boxcar, Brune's and Dirac's slip velocity functions. Constant rupture velocities close to the Rayleigh velocity are inconsistent with the k -squared model, because they break the yielding criterion of the slip weakening friction law. The bimodal character of D c / D tot frequency–magnitude distribution was found. D c approaches the final slip D tot near the edge of both the fault and asperity. We emphasize that both filtering and smoothing routinely applied in slip inversions may have a strong effect on the space–time pattern of the inferred stress field, leading potentially to an oversimplified view of earthquake source dynamics.  相似文献   

7.
The controls on an earthquake's size are examined in a heterogeneous cellular automaton that includes stress concentrations which scale with rupture size. Large events only occur when stress is highly correlated with strength over the entire fault. Although the largest events occur when this correlation is the highest, the magnitude of the correlation has no predictive value as events of all magnitudes occur during times of high stress/strength correlation. Rather, the size of any particular event depends on the local stress heterogeneity encountered by the growing rupture. Patterns of energy release with time for individual ruptures reflect this heterogeneity and many show nucleation-type behaviour, although there is no relation between the duration of nucleation phase and the size of the event. These results support the view that earthquake size is determined by complex interactions between previous event history and dynamic stress concentrations and suggest that deterministic earthquake prediction based on monitoring nucleation zones will not be possible.  相似文献   

8.
The M w 5.4 Roermond earthquake of 1992 April 13 was one of the strongest events during the last 500 years in Central Europe. For the period March–May 1992, we collected records of 194 continuously operating well-level sensors, mostly located within 120  km of the epicentre. Nearly all wells penetrate unconfined or poorly confined Quaternary deposits with high hydraulic conductivities. 81 out of 194 raw data sets show a significant dynamic or step-like response of centimetre amplitude to the passage of seismic waves. Precursory anomalies are not obvious in these records. Coseismic well-level fluctuations could reflect a redistribution of stress and pore pressure in the brittle crust. Systematic analyses of such fluctuations may improve our knowledge of the role of pore fluids in crustal rheology and earthquake mechanics. The rather high number of individual observational records for a single event allows a regional correlation of the signs and amplitudes of the coseismic steps to changes in volume strain caused by the earthquake. The coseismic strain field at the surface was calculated for a homogeneous and a layered half-space. The results show reasonable agreement in the sign of the well-level steps but the amplitudes predicted from the wells' volumetric strain responses are much smaller than those that were recorded. Clearly, the coseismic well-level steps cannot be explained by volume strain changes, as derived from linear elastic models.  相似文献   

9.
An isolated swarm of small earthquakes occurred in 1992, near Dongfang on Hainan Island, southern China. The Institute of Geophysics, State Seismological Bureau of China, monitored the swarm with five DCS-302 digital accelerometers for three months from 1992 June 1. 18 earthquakes, with magnitudes M L ranging from 1.8 to 3.6, were well located by five stations, and shear-wave splitting varying azimuthally was analysed on 27 seismic records from these events. The mean polarization azimuth of the faster shear wave was WNW. Time delays between the split shear waves at two stations varied with time and space. The time delays at one station fell abruptly after earthquakes of magnitudes 3.1 and 3.6, but did not change significantly at the second station. This behaviour is consistent with the delay-time changes being caused by changes in the aspect ratio of vertical liquid-filled (EDA) cracks. Thus, the variation in shear-wave-splitting time delay could be due to changes in crustal stress related to nearby small-magnitude earthquake activity. The connection between earthquake activity and crustal stress variation measured by shear-wave splitting leaves the door open for possible observations of crustal stress transients related to the onset of an earthquake; however, our data cannot be considered as definite evidence for such precursors.  相似文献   

10.
Earthquake magnitude prediction is of vital importance for human safety. The earthquake is a very complicated and non-linear dynamic process. It cannot be described adequately by any deterministic models. In this paper a neural dynamic modelling for earthquake magnitude prediction is reported. Historical records of earthquake magnitude series are used to construct the optimal non-linear dynamic model, and the consequent outcome of the earthquake behaviour is then predicted by this model. In turn, the latest recorded data set can be fed back to improve the accuracy of the neural dynamic model. The modelling of experiments of three earthquake magnitude series in China and Japan and their extrapolated predictions are included in this paper. The values predicted by extrapolation are in good agreement with the historical data.  相似文献   

11.
A Bayesian approach to estimating tectonic stress from seismological data   总被引:2,自引:0,他引:2  
Earthquakes are conspicuous manifestations of tectonic stress, but the non-linear relationships between the stresses acting on a fault plane, its frictional slip, and the ensuing seismic radiation are such that a single earthquake by itself provides little information about the ambient state of stress. Moreover, observational uncertainties and inherent ambiguities in the nodal planes of earthquake focal mechanisms preclude straightforward inferences about stress being drawn on the basis of individual focal mechanism observations. However, by assuming that each earthquake in a small volume of the crust represents a single, uniform state of stress, the combined constraints imposed on that stress by a suite of focal mechanism observations can be estimated. Here, we outline a probabilistic (Bayesian) technique for estimating tectonic stress directions from primary seismological observations. The Bayesian formulation combines a geologically motivated prior model of the state of stress with an observation model that implements the physical relationship between the stresses acting on a fault and the resultant seismological observation. We show our Bayesian formulation to be equivalent to a well-known analytical solution for a single, errorless focal mechanism observation. The new approach has the distinct advantage, however, of including (1) multiple earthquakes, (2) fault plane ambiguities, (3) observational errors and (4) any prior knowledge of the stress field. Our approach, while computationally demanding in some cases, is intended to yield reliable tectonic stress estimates that can be confidently compared with other tectonic parameters, such as seismic anisotropy and geodetic strain rate observations, and used to investigate spatial and temporal variations in stress associated with major faults and coseismic stress perturbations.  相似文献   

12.
We explore the possible stress triggering relationship of the   M ≥ 6.4  earthquakes that occurred in Kerman Province, southern Iran since 1981. We calculated stress changes due to both coseismic sudden movement in the upper crust and the time-dependent viscous relaxation of the lower crust and/or upper mantle following the event. Four events of   M ≥ 6.4  occurred between 1981 and 2005, on and close to the Gowk fault, show a clear Coulomb stress load to failure relationship. The  2003 M = 6.5  Bam earthquake, however, which occurred approximately 95 km SW of the closest Gowk event, shows a very weak stress relation to preceding earthquakes. The coseismic static stress change at the hypocentre of the Bam earthquake is quite small (∼0.006 bars). The time-dependent post-seismic stress change could be 26 times larger or 7 times lower than that of coseismic static stress alone depending on the choice of viscoelastic crustal model and the effective coefficient of friction. Given the uncertainties in the viscoelastic earth models and the effective coefficient of friction, we cannot confidently conclude that the 2003 Bam event was brought closer to failure through coseismic or post-seismic stress loading. Interestingly, the southern Gowk segment with a similar strike to that of the Bam fault, experienced a stress load of up to 8.3 bars between 1981 and 2003, and is yet to have a damaging earthquake.  相似文献   

13.
Most seismic hazard estimations are based on the assumption of a Poisson process for earthquake occurrence, even though both observations and models indicate a departure of real seismic sequences from this simplistic assumption. Instrumental earthquake catalogues show earthquake clustering on regional scales while the elastic rebound theory predicts a periodic recurrence of characteristic earthquakes on longer timescales for individual events. Recent implementations of time-dependent hazard calculations in California and Japan are based on quasi-periodic recurrences of fault ruptures according to renewal models such as the Brownian Passage Time model. However, these renewal models neglect earthquake interactions and the dependence on the stressing history which might destroy any regularity of earthquake recurrences in reality. To explore this, we investigate the (coupled) stress release model, a stochastic version of the elastic rebound hypothesis. In particular, we are interested in the time-variability of the occurrence of large earthquakes and its sensitivity to the occurrence of Gutenberg–Richter type earthquake activity and fault interactions. Our results show that in general large earthquakes occur quasi-periodically in the model: the occurrence probability of large earthquakes is strongly decreased shortly after a strong event and becomes constant on longer timescales. Although possible stress-interaction between adjacent fault zones does not affect the recurrence time distributions in each zone significantly, it leads to a temporal clustering of events on larger regional scales. The non-random characteristics, especially the quasi-periodic behaviour of large earthquakes, are even more pronounced if stress changes due to small earthquakes are less important. The recurrence-time distribution for the largest events is characterized by a coefficient of variation from 0.6 to 0.84 depending on the relative importance of small earthquakes.  相似文献   

14.
A group of three earthquakes in 2000 June in SW Iceland included the two largest earthquakes in Iceland in the past 30 yr. Previously, temporal changes in shear-wave splitting had not been recognized before these earthquakes as there were too few small earthquakes to provide adequate shear-wave data, and they were not stress forecast, even with hindsight. These large earthquakes were subject to a special investigation by the European Community funded PREPARED Project during which the seismic catalogue was extended to include smaller magnitude earthquakes. This more detailed data set, together with a semi-automatic programme for measuring the parameters of shear-wave splitting greatly increased the number of time-delay measurements.
The new measurements displayed the typical temporal variations before larger earthquakes as seen elsewhere: a long-term increase in time delays, interpreted as stress accumulation before the earthquake; and a decrease, interpreted as crack coalescence, immediately prior to the earthquake. The logarithms of the durations of both the implied accumulation of stress and the crack coalescence have the same self-similar relationships to earthquake magnitude as found elsewhere in Iceland. This means that, in principle, the time and magnitude of the larger earthquakes could have been stress forecast in real time had the smaller source earthquakes of the extended catalogue and the improved measuring procedures been available at the time.  相似文献   

15.
Summary. The 1973 Hawaii earthquake occurred north of Hilo, at a depth of 40 to 50km. The location was beneath the east flank of Mauna Kea, a volcano dormant historically, but active within the last 4000 yr. Aftershocks were restricted to a depth of 55–35km. The event and its aftershock sequence are located in an area not normally associated with the seismicity of the Mauna Loa and Kilauea calderas. The earthquake was a double event, the epicentres trending NE-SW. The events were of similar size and faulting mechanism. The fault plane solutions obtained by seismic waveform analysis are a strike-slip fault striking EW and dipping 55° S, the auxiliary plane a NS vertical plane with a faulting plunge of 35°. The axis of maximum compressive stress is aligned with the direction of the gravity gradient associated with the island of Hawaii. The fault plane striking EW parallels a surface feature, the Mauna Kea east rift zone. The earthquakes were clearly not associated with volcanic activity normally associated with Mauna Loa and Kilauea and may indicate a deep seated prelude to a resumption of activity at Mauna Kea.  相似文献   

16.
Summary. Almost all shear-waves from local earthquakes recorded on closely-spaced three-component seismometer networks deployed near the North Anatolian Fault, Turkey, in two experiments in 1979 and 1980, display shear-wave splitting. The observations are consistent with the presence of EDA (extensive-dilatancy anisotropy), distributions of fluid-filled cracks and microcracks aligned by the regional stress field. Temporal changes in the stress-field, which may occur before an earthquake, may modify the geometry and possibly the orientation of the EDA-microcracks, and lead to corresponding changes in the behaviour of the split shear-waves. A third experiment was undertaken in 1984 to investigate EDA further and to search for possible temporal variations of the polarization of the leading split shear-wave and the time delay between split shear-waves. Observations indicate that the polarization alignments, which are parallel to the strike of the parallel vertical EDA-cracks, are unaltered between 1979 and 1984, implying that the direction of the regional stress field has not changed significantly. Temporal changes in the stress field are more likely to cause changes in the crack density and/or aspect ratio, which would result in a corresponding change in time delay between the split shear-waves. We examine observations of time delay in relation to their propagation path with respect to the crack geometry since it is then possible to separate the effects of changes in crack density and changes in aspect ratio. With this procedure, a small temporal variation of time delays is found between 1979 and 1984, consistent with a decrease in crack density, and consequently a relaxation of stress, in this time period. No evidence was found for any observable variation of time delay over a six month observation span in 1984. We suggest that analysis of repeated shear-wave VSPs offers a technique for monitoring stress changes before earthquakes.  相似文献   

17.
Summary. The Turkish Dilatancy Projects (TDP1 in 1979 and TDP2 in 1980) recorded small earthquakes near the North Anatolian Fault with closely-spaced networks of three-component seismometers in order to investigate the possibility of diagnosing dilatancy from its effects of shear-wave propagation. This paper examines the polarizations of shear wavetrains recorded in the shear-wave window immediately above the earthquake foci. Abrupt changes in the orientation and/or ellipticity of the shear-wave polarizations are almost always observed during the first few cycles following the initial shear-wave arrival on each seismogram. The horizontal projections of the polarizations of the first shear-wave arrivals at any given station show nearly parallel alignments with approximately the same orientations at each of the recording sites (with one exception). It is difficult to explain this uniform alignment over a wide area in terms of scattering at the irregular surface topography or by earthquake focal mechanisms. We demonstrate that the shear-wave splitting is likely to be the result of anisotropy in the region above the earthquake foci, which could produce polarizations displaying the observed alignments. The temporal change of the azimuth of alignment, observed at one locality between 1979 and 1980, may be due to the release of a local stress anomaly by a very near earthquake.  相似文献   

18.
Okada (1992) provided expressions for the displacement and strain fields due to a finite rectangular source in an elastic, homogeneous and isotropic half-space. Starting with these results, we applied the correspondence principle of linear viscoelasticity to derive the quasi-static displacement, strain and stress fields in a viscoelastic, homogeneous and isotropic half-space. We assume that the medium deforms viscoelastically with respect to both the shear and the normal stresses but keeps a constant bulk modulus; in particular, the shear modulus relaxes as Maxwell fluid. We presented the viscoelastic effect on displacement, displacement gradient and stress fields, for a choice of parameter values. The viscoelastic effect due to the sudden dislocation reaches a limit value after about 10 times the Maxwell time. The expressions obtained here provide tools for the study of viscoelastic relaxation of lithosphere associated with seismic and volcanic phenomena.  相似文献   

19.
Summary. The motion excited in a rotating earth model by a kinematically prescribed earthquake fault is solved for in closed form. In addition, expressions for the total energy released and the energy dissipated by bodily friction subsequent to faulting are obtained in terms of the normal-mode excitation amplitudes.  相似文献   

20.
There have been several claims that seismic shear waves respond to changes in stress before earthquakes. The companion paper develops a stress-sensitive model (APE) for the behaviour of low-porosity low-permeability crystalline rocks containing pervasive distributions of fluid-filled intergranular microcracks, and this paper uses APE to model the behaviour before earthquakes. Modelling with APE shows that the microgeometry and statistics of distributions of such fluid-filled microcracks respond almost immediately to changes in stress, and that the behaviour can be monitored by analysing seismic shear-wave splitting. The physical reasons for the coupling between shear-wave splitting and differential stress are discussed.
In this paper, we extend the model by using percolation theory to show that large crack densities are limited at the grain-scale level by the percolation threshold at which interacting crack clusters lead to pronounced increases in rock-matrix permeability. In the simplest formulation, the modelling is dimensionless and almost entirely constrained without free parameters. Nevertheless, APE modelling of the evolution of fluid-saturated rocks under stress reproduces the observed fracture criticality and the narrow range of shear-wave azimuthal anisotropy in crustal rocks. It also reproduces the behaviour of temporal variations in shear-wave splitting observed before and after the 1986, M = 6, North Palm Springs earthquake, Southern California, and several other smaller earthquakes.
The agreement of APE modelling with a wide range of observations confirms that fluid-saturated crystalline rocks are stress-sensitive and respond to changes in stress by critical fluid-rock interactions at the microscale level. This means that the effects of changes in stress and other parameters can be numerically modelled and monitored by appropriate observations of seismic shear waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号