首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a model of a coronal loop in the form of a cord surrounded by a coaxial shell. Two slow magnetosonic waves longitudinally propagate within a thin flux tube on the m=0 cylindrical mode with velocities close to the tube velocities in the cord and the shell. One wave propagates inside the cord, while the other propagates inside the shell. A peculiar feature of the second wave is that the plasma in the cord and the shell oscillates with opposite phases. There are two fast magnetosonic waves on each of the cylindrical modes with m>0. If the plasma density in the shell is lower than that in the surrounding corona, then one of the waves is radiated into the corona, which causes the loop oscillations to be damped, while the other wave is trapped by the cord, but can also be radiated out under certain conditions. If the plasma density in the shell is higher than that in the cord, then one of the waves is trapped by the shell, while the other wave can also be trapped by the shell under certain conditions. In the wave trapped by the shell and the wave radiated by the tube, the plasma in the cord and the shell oscillates with opposite phases.  相似文献   

2.
Murawski  K.  Aschwanden  M. J.  Smith  J. M. 《Solar physics》1998,179(2):313-326
Impulsively generated magnetohydrodynamic waves in solar coronal loops, with arbitrary plasma , are studied numerically by a flux-corrected transport algorithm. Numerical results show that the total reflection which occurs in the region of low Alfvén speed leads to trapped fast kink magnetosonic waves. These waves propagate along the slab and exhibit periodic, quasi-periodic, and decay phases. As a consequence of the difference in wave propagation speeds, the time signatures of the slow magnetosonic waves are delayed in time in comparison to the time signatures of the fast magnetosonic and Alfvén waves. An interaction between the waves can generate a longer lasting and complex quasi-periodic phase of the fast wave. We discuss also the observational detectability of such MHD waves in optical, radio, and soft X-ray wavelenghts.  相似文献   

3.
Joarder  P. S.  Nakariakov  V. M.  Roberts  B. 《Solar physics》1997,176(2):285-297
Magnetosonic modes of magnetic structures of the solar atmosphere in the presence of inhomogeneous steady flows are considered. It is shown that, when the speed of the steady flow exceeds the phase speed of one of the modes, the mode has negative energy, and can be subject to an over-stability due to the negative energy wave instabilities. It is shown that registered steady flows in the solar atmosphere, with speeds below the threshold of the Kelvin–Helmholtz instability, can provide the existence of the magnetosonic negative energy wave phenomena. In particular, in isolated photospheric magnetic flux tubes, there are kink surface modes with negative energy, produced by the external granulation downflows. Dissipative instability of these modes due to finite thermal conductivity and explosive instability due to nonlinear coupling of these modes with Alfvén waves are discussed. For coronal loops, it is found that only very high-speed flows (>300 km s-1) can produce negative energy slow body modes. In solar wind flow structures, both slow and fast body modes have negative energy and are unstable.  相似文献   

4.
Roberts  B. 《Solar physics》2000,193(1-2):139-152
It has long been suggested on theoretical grounds that MHD waves must occur in the solar corona, and have important implications for coronal physics. An unequivocal identification of such waves has however proved elusive, though a number of events were consistent with an interpretation in terms of MHD waves. Recent detailed observations of waves in events observed by SOHO and TRACE removes that uncertainty, and raises the importance of MHD waves in the corona to a higher level. Here we review theoretical aspects of how MHD waves and oscillations may occur in a coronal medium. Detailed observations of waves and oscillations in coronal loops, plumes and prominences make feasible the development of coronal seismology, whereby parameters of the coronal plasma (notably the Alfvén speed and through this the magnetic field strength) may be determined from properties of the oscillations. MHD fast waves are refracted by regions of low Alfvén speed and slow waves are closely field-guided, making regions of dense coronal plasma (such as coronal loops and plumes) natural wave guides for MHD waves. There are analogies with sound waves in ocean layers and with elastic waves in the Earth's crust. Recent observations also indicate that coronal oscillations are damped. We consider the various ways this may be brought about, and its implications for coronal heating.  相似文献   

5.
The influence of a constant coronal magnetic field on solar global oscillations is investigated for a simple planar equilibrium model. The model consists of an atmosphere with a constant horizontal magnetic field and a constant sound speed, on top of an adiabatic interior having a linear temperature profile. The focus is on the possible resonant coupling of global solar oscillation modes to local slow continuum modes of the atmosphere and the consequent damping of the global oscillations. In order to avoid Alfvén resonances, the analysis is restricted to propagation parallel to the coronal magnetic field. Parallel propagating oscillation modes in this equilibrium model have already been studied by Evans and Roberts (1990). However, they avoided the resonant coupling to slow continuum modes by a special choice of the temperature profile. The physical process of resonant absorption of the acoustic modes with frequency in the cusp continuum is mathematically completely described by the ideal MHD differential equations which for this particular equilibrium model reduce to the hypergeometric differential equation. The resonant layer is correctly dealt with in ideal MHD by a proper treatment of the logarithmical branch cut of the hypergeometric function. The result of the resonant coupling with cusp waves is twofold. The eigenfrequencies become complex and the real part of the frequency is shifted. The shift of the real part of the frequency is not negligible and within the limit of observational accuracy. This indicates that resonant interactions should definitely be taken into account when calculating the frequencies of the global solar oscillations.  相似文献   

6.
A possible mechanism for the formation and heating of coronal loops through the propagation and damping of fast mode waves is proposed and studied in detail. Loop-like field structures are represented by a dipole field with the point dipole at a given distance below the solar surface. The density of the medium is determined by hydrostatic equilibrium along the field lines in an isothermal atmosphere. The fast mode waves propagating outward from the coronal base are refracted into regions with a low Alfvén speed and suffer collisionless damping when the gas pressure becomes comparable to the magnetic pressure. The propagation and damping of these waves are studied for three different cases: a uniform density at the coronal base, a density depletion within a given flux tube, and a density enhancement within a given flux tube. The fast mode waves are found to be important in the formation and heating of the loops if the wave energy flux density is of the order 105 ergs cm-2 s-1 at the coronal base.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

7.
Alfvén ionization is offered as a possible mechanism underlying the enhanced population of low first ionization potential (FIP) species in the solar corona. In this process, the photospheric flow impinging on the magnetic structure of a coronal flux tube collides with, and displaces, ions in the magnetised plasma within the flux tube. This leads to pockets of charge imbalance that persist due to the impeded electron transport perpendicular to the magnetic field. The localised electric field then energises electrons to the impact ionization energy threshold of low-FIP components in the surface flow. Such species remain trapped in the plasma, and drift up the magnetic structure, causing a localised population enhancement compared to photospheric levels. We find that this mechanism successfully accounts for observed biases for flow speeds known to exist in the photosphere, and moreover explains certain anomalous abundances which do not fit into existing theories.  相似文献   

8.
Rekha Jain  B. Roberts 《Solar physics》1991,133(2):263-280
The occurrence of magnetoacoustic surface waves at a single magnetic interface one side of which is field-free is explored for the case of non-parallel propagation. Phase-speeds and penetration depths of the waves are investigated for various Alfvén speeds, sound speeds and angles of propagation to the applied field. Both slow and fast magnetoacoustic surface waves can exist depending on the values of sound speeds and propagation angle. The fast waves penetrate more than the slow waves.The parallel propagation of fast and slow magnetoacoustic surface waves on a magnetic-magnetic interface is investigated. The slow surface wave is unable to propagate below a critical sound speed. In a low -plasma, only the fast mode exists (0 0).  相似文献   

9.
The magnetosonic modes of magnetic plasma structures in the solar atmosphere are considered taking into account steady flows of plasma in the internal and external media and using a slab geometry. The investigation brings nearer the theory of magnetosonic waveguides, in such structures as coronal loops and photospheric flux tubes, to realistic conditions of the solar atmosphere. The general dispersion relation for the magnetosonic modes of a magnetic slab in magnetic surroundings is derived, allowing for field-aligned steady flows in either region. It is shown that flows change both qualitatively and quantitatively the characteristics of magnetosonic modes. The flow may lead to the appearance of a new type of trapped mode, namelybackward waves. These waves are the usual slab modes propagating in the direction opposite to the internal flow, but advected with the flow. The disappearance of some modes due to the flow is also demonstrated.The results are applied to coronal and photospheric magnetic structures. In coronal loops, the appearance of backward slow body waves or the disappearance of slow body waves, depending upon the direction of propagation, is possible if the flow speed exceeds the internal sound speed ( 300 km s–1). In photospheric tubes, the disappearance of fast surface and slow body waves may be caused by an external downdraught of about 3 km s–1.  相似文献   

10.
The solar corona, modeled by a low-, resistive plasma slab, sustains MHD wave propagations due to footpoint motions in the photosphere. Simple test cases are undertaken to verify the code. Uniform, smooth and steep density, magnetic profile and driver are considered. The numerical simulations presented here focus on the evolution and properties of the Alfvén, fast and slow waves in coronal loops. The plasma responds to the footpoint motion by kink or sausage waves depending on the amount of shear in the magnetic field. The larger twist in the magnetic field of the loop introduces more fast-wave trapping and destroys initially developed sausage-like wave modes. The transition from sausage to kink waves does not depend much on the steep or smooth profile. The slow waves develop more complex fine structures, thus accounting for several local extrema in the perturbed velocity profiles in the loop. Appearance of the remnants of the ideal singularities characteristic of ideal plasma is the prominent feature of this study. The Alfvén wave which produces remnants of the ideal x –1 singularity, reminiscent of Alfvén resonance at the loop edges, becomes less pronounced for larger twist. Larger shear in the magnetic field makes the development of pseudo-singularity less prominent in case of a steep profile than that in case of a smooth profile. The twist also causes heating at the edges, associated with the resonance and the phase mixing of the Alfvén and slow waves, to slowly shift to layers inside the slab corresponding to peaks in the magnetic field strength. In addition, increasing the twist leads to a higher heating rate of the loop. Remnants of the ideal log ¦x¦ singularity are observed for fast waves for larger twist. For slow waves they are absent when the plasma experiences large twist in a short time. The steep profiles do not favour the creation of pseudo-singularities as easily as in the smooth case.  相似文献   

11.
High resolution observations of quiescent filaments show oscillations that are strongly tied to their fine threads. It is shown that neither slow nor fast MHD modes may account for the observations, which rather are in accordance with Alfvén waves.  相似文献   

12.
At the 1980 total solar eclipse, we searched for high-frequency (0.1–2 Hz) oscillations in the intensity of the 5303-Å coronal green line, as a test of predictions of theories of coronal heating via magnetohydrodynamic waves. Portions of the image 2.5- or 5-arc sec across were fed to cooled photomultipliers using fiber-optic probes. We detected excess power in Fourier transforms of the data for the region between 0.5 and 2 Hz at the level of 1% or 2% of the incident power. Such oscillations could be associated with Alfvén waves that are trapped on loops a few thousand kilometers long or with fast waves that are trapped on loops a few thousand kilometers in diameter. Additional observations at the 1983 eclipse are planned to resolve atmospheric and instrumental contributions.  相似文献   

13.
The role of leaky waves in the coronal loop oscillations observed by TRACE is not yet clearly understood. In this work, the excitation of fast waves in solar coronal loops modelled as dense plasma cylindrical tubes in a uniform straight magnetic field is investigated. We study the trapped and especially leaky modes (whose energy escapes from the tube) that result from an initial disturbance by solving the time-dependent problem numerically. We find that the stationary state of the tube motion is given by the trapped normal modes. By contrast, the transient behaviour between the initial and the stationary phase is dominated by wave leakage. The so-called trig leaky modes are clearly identified since the transient behaviour shows periods and damping times that are in agreement with the values calculated from the normal-mode analysis. Consequently, these radiating modes have physical significance. However, we have not found any evidence for the excitation of other types of modes, such as the principal leaky kink mode. J. Andries is postdoctoral Fellow of the National Fund for Scientific Research – Flanders (Belgium) (F.W.O.-Vlaanderen).  相似文献   

14.
E. N. Parker 《Solar physics》1974,37(1):127-144
The properties of Alfvén waves in a vertical column of field are pointed out as a guide in treating the complicated problem of overstability. There are internal Alfvén waves of arbitrary form propagating along the magnetic field, without disturbing the fluid outside the column. There are also surface waves which involve the fluid both inside and outside the column of field. The surface waves propagate at a speed less than the Alfvén speed.Convective forces couple the internal and external fluid motions. If the forces are not too strong, the identity of the modes, as internal waves or surface waves, is maintained. The surface waves are unstable and, we suggest, may contribute to some of the activity of a sunspot. We suggest that the internal Alfvén wave modes are of more central interest for producing the basic sunspot phenomena. They represent the degenerate case, and their form is worked out in some detail. The overstable Alfvén wave modes peak sharply near the outer edge of the field, and do not strongly disturb the fluid outside. We suggest that this effect contributes to the sharp edge of the sunspot umbra.Recent observations by Giovanelli show intense wave activity originating inside the edge of the umbra. We tentatively identify the activity with the peak in the overstable modes within the umbra.This work was supported in part by the National Aeronautics and Space Administration under Grant NGL 14-001-001.  相似文献   

15.
Oscillations of magnetic structures in the solar corona have often been interpreted in terms of magnetohydrodynamic waves. We study the adiabatic magnetoacoustic modes of a prominence plasma slab with a uniform longitudinal magnetic field, surrounded by a prominence – corona transition region (PCTR) and a coronal medium. Considering linear small-amplitude oscillations, we deduce the dispersion relation for the magnetoacoustic slow and fast modes by assuming evanescentlike perturbations in the coronal medium. In the system without PCTR, a classification of the oscillatory modes according to the polarisation of their eigenfunctions is made to distinguish modes with fastlike or slowlike properties. Internal and external slow modes are governed by the prominence and coronal properties, respectively, and fast modes are mostly dominated by prominence conditions for the observed wavelengths. In addition, the inclusion of an isothermal PCTR does not substantially influence the mode frequencies, but new solutions (PCTR slow modes) are present.  相似文献   

16.
Discrete Alfvén waves in coronal loops and prominences are investigated in non-ideal magnetohydrodynamics. The non-ideal effects included are anisotropic, thermal conduction, and optically thin radiation. The classic ideal Alfvén continuum is not altered by these non-ideal effects, but the discrete Alfvén modes, which exist under certain conditions above or below the Alfvén continuum in ideal MHD, are shown to be influenced by non-adiabatic effects.The existence of discrete, non-adiabatic Alfvén waves, and their damping and overstability are examined for 1D cylindrical equilibrium states with twisted magnetic fields. First, analytic results are obtained for modes of high radial order by means of a WKB-analysis. The subspectrum of discrete Alfvén modes is computed with a numerical code, with particular emphasis on the modes of low radial order. The results show that discrete Alfvén waves are of potential importance for solar applications and also that the information obtained with the WKB-analysis is of limited use in this context.Research Assistant of the Belgian National for Scientific Research.  相似文献   

17.
K. Murawski 《Solar physics》1992,139(2):279-297
The nonlinear propagation of the Alfvén and magnetosonic waves in the solar corona is investigated in terms of model equations. Due to viscous effects taken into account the propagation of the fast wave itself is governed by Burgers type equations possessing both expansion and compression shock solutions. Numerical simulations show that both parallely and perpendicularly propagating fast waves can steepen into shocks if their amplitudes are in excess of some sizeable fraction of the Alfvén velocity. However, if the magnetic field changes linearly in the perpendicular direction, then formation of perpendicular shocks can be hindered. The Alfvén waves exhibit a tendency to drive both the slow and fast magnetosonic waves whose propagation is described by linearized Boussinesq type equations with ponderomotive terms due to the Alfvén wave. The limits of the slow and fast waves are investigated.  相似文献   

18.
Y. Chen  Y.Q. Hu 《Solar physics》2001,199(2):371-384
This paper presents a two-dimensional, Alfvén-wave-driven solar wind model, in which the wave energy is assumed to cascade from the low-frequency Alfvén waves to high-frequency ion cyclotron waves and to be transferred to the solar wind protons by cyclotron resonance at the Kolmogorov rate. A typical structure in the meridional plane consisting of a coronal streamer near the Sun, a fast wind in high latitudes, and a slow wind across the heliospheric current sheet, is found. The fast wind obtained in the polar region is essentially similar to that derived by previous one-dimensional flow-tube models, and its density profile in the vicinity of the Sun roughly matches relevant observations. The proton conditions at 1 AU are also consistent with observations for both the fast and slow winds. The Alfvén waves appear in the fast- and slow-wind regions simultaneously and have comparable amplitudes, which agrees with Helios observations. The acceleration and heating of the solar wind by the Alfvén waves are found to occur mainly in the near-Sun region. It is demonstrated in terms of one-dimensional calculations that the distinct properties of the fast and slow winds are mainly attributed to different geometries of the flow tubes associated with the two sorts of winds. In addition, the 2-D and 1-D simulations give essentially the same results for both the fast and the slow winds.  相似文献   

19.
V. I. Zhukov 《Solar physics》1992,138(1):201-203
The properties of the resonator are considered for fast magnetoacoustic waves. It is shown that tunnel penetration of waves from the resonator leads either to heating of the medium in the Alfvén resonance vicinity (if the inclination angle of the magnetic field is smaller than the critical angle), or to excitation of Alfvén waves at the Alfvén resonance (if the inclination angle is larger than the critical angle). This suggests that non-radiative heating of the corona can be due to solar p-mode oscillations.  相似文献   

20.
Nakariakov  V. M.  Roberts  B.  Murawski  K. 《Solar physics》1997,175(1):93-105
The nonlinear excitation of fast magnetosonic waves by phase mixing Alfvén waves in a cold plasma with a smooth inhomogeneity of density across a uniform magnetic field is considered. If initially fast waves are absent from the system, then nonlinearity leads to their excitation by transversal gradients in the Alfvén wave. The efficiency of the nonlinear Alfvén–fast magnetosonic wave coupling is strongly increased by the inhomogeneity of the medium. The fast waves, permanently generated by Alfvén wave phase mixing, are refracted from the region with transversal gradients of the Alfvén speed. This nonlinear process suggests a mechanism of indirect plasma heating by phase mixing through the excitation of obliquely propagating fast waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号