首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Isochemical conversion of garnet-biotite bearing paragneiss to charnockite in the Precambrian Khondalite belt of southern Kerala is described from Ponmudi area. Petrographic evidences indicate the formation of hypersthene by the breakdown of biotite in the presence of quartz following the reaction: Biotite + quartz → hypersthene + K-feldspar + vapour. The estimated pressure — temperature conditions of metamorphism are around 5–7 kbars and 750° ± 40°C. Presence of CO2-rich, mixed CO2-H2O and H2O-rich inclusions were noticed in gneiss as well as in charnockites. Charnockites contain abundant CO2-rich inclusions.  相似文献   

2.
Arrested charnockite formation in southern India and Sri Lanka   总被引:7,自引:3,他引:7  
Arrested prograde charnockite formation in quartzofeldspathic gneisses is widespread in the high-grade terrains of southern India and Sri Lanka. Two major kinds of orthopyroxene-producing reactions are recognized. Breakdown of calcic amphibole by reaction with biotite and quartz in tonalitic/granitic gray gneiss produced the regional orthopyroxene isograd, manifest in charnockitic mottling and veining of mixed-facies exposures, as at Kabbal, Karnataka, and in the Kurunegala District of the Sri Lanka Central Highlands. Chemical and modal analyses of carefully chosen immediately-adjacent amphibole gneiss and charnockite pairs show that the orthopyroxene is produced by an open system reaction involving slight losses of CaO, MgO and FeO and gains of SiO2 and Na2O. Rb and Y are depleted in the charnockite. Another kind of charnockitization is found in paragneisses throughout the southern high-grade area, and involves the reaction of biotite and quartz±garnet to produce orthopyroxene and K-feldspar. Although charnockite formation along shears and other deformation zones at such localities as Ponmudi, Kerala is highly reminiscent of Kabbal, close pair analyses are not as suggestive of open-system behavior. This type of charnockite formation is found in granulite facies areas where no prograde amphibole-bearing gneisses exist and connotes a higher-grade reaction than that of the orthopyroxene isograd. Metamorphic conditions of both Kabbaltype and Ponmudi-type localities were 700°–800° C and 5–6 kbar. Lower P(H2O) in the Ponmudi-type metamorphism was probably the definitive factor.CO2-rich fluid inclusions in quartz from the Kabbaltype localities support the concept that this type of charnockite formation was driven by influx of CO2 from some deep-seated source. The open-system behavior and high oxidation states of the metamorphism are in accord with the CO2-streaming hypothesis. CO2-rich inclusions in graphitebearing charnockites of the Ponmudi type, however, commonly have low densities and compositions not predictable by vapor-mineral equilibrium calculations. These inclusions may have suffered post-metamorphic H2 leakage or some systematic contamination.Neither the close-pair analyses nor the fluid inclusions strongly suggest an influx of CO2 drove charnockite formation of the Ponmudi type. The possibility remains that orthopyroxene and CO2-rich fluids were produced by reaction of biotite with graphite without intervention of fluids of external origin. Further evidence, such as oxygen isotopes, is necessary to test the CO2-streaming hypothesis for the Ponmudi-type localities.  相似文献   

3.
Amphibolite facies metamorphic grade gives way southward to the granulite grade in southern Karnataka, as acid gneisses develop charnockite patches and streaks and basic enclaves develop pyroxenes. Petrologic investigations in the transitional zone south of Mysore have established the following points:
  1. The transition is prograde. Amphibole-bearing gneisses intimately associated with charnockite at Kabbal and several similar localities are not retrogressive after charnockite, as proved by patchy obliteration of their foliation by transgressive, very coarse-grained charnockite, high fluorine content of biotite and amphibole in gneisses, and high large-ion lithophile element contents in gneisses and charnockites. These features are in contrast to very low fluorine in retrogressive amphiboles and biotites, very low large-ion lithophile element contents, and zonal bleaching of charnockite, in clearly retrogressive areas, as at Bhavani Sagar, Tamil Nadu.
  2. Metamorphic temperatures in the transitional areas were 700°–800° C, pressures were 5–7 kbar, and H2O pressures were 0.1–0.3 times total pressures, based on thermodynamic calculations using mineral analyses. Dense CO2-rich fluid inclusions in the Kabbal rocks confirm the low H2O pressures at the first appearance of orthopyroxene. Farther to the south, in the Nilgiri Hills and adjacent granulite massif areas, peak metamorphic temperatures were 800°–900° C, pressures were 7–9 kbar, and water pressures were very low, so that primary biotites and amphiboles (those with high F contents) are rare.
  3. The incipient granulite-grade metamorphism of the transitional areas was introduced by a wave of anatexis and K-metasomatism. This process was arrested by drying out under heavy CO2 influx. Charnockites so formed are hybrids of anatectic granite and metabasite, of metabasite and immediately adjacent gneiss, or are virtually isochemical with pre-existing gneiss despite gross recrystallization to granulite mineralogy. These features show that partial melting and metasomatism are attendant, rather than causative, in charnockite development. Copious CO2 from a deep-crustal or mantle source pushed ahead of it a wave of more aqueous solutions which promoted anatexis. Granulite metamorphism of both neosome and paleosome followed. The process is very similar to that deduced for the Madras granulites by Weaver (1980). The massif charnockites, for the most part extremely depleted in lithophile minor elements, show many evidences of having gone through the same process.
A major problem remaining to be solved is the origin of the large amount of CO2 needed to charnockitize significant portions of the crust. The most important possibilities include CO2 from carbonate minerals in a mantle “hot spot” or diapir, from emanations from a crystallizing basaltic underplate, or from shelf sediments trapped at the continent-continent interface in continental overthrusting. Ancient granulite massifs may be such suture zones of continental convergence.  相似文献   

4.
The Southern Marginal Zone of the Limpopo Belt in South Africa is characterised by a granulite and retrograde hydrated granulite terrane. The Southern Marginal Zone is, therefore, perfectly suitable to study fluids during and after granulite facies metamorphism by means of fluid inclusions and equilibrium calculations. Isolated and clustered high-salinity aqueous and CO2(-CH4) fluid inclusions within quartz inclusions in garnet in metapelites demonstrate that these immiscible low H2O activity fluids were present under peak metamorphic conditions (800-850 °C, 7.5-8.5 kbar). The absence of widespread high-temperature metasomatic alteration indicates that the brine fluid was probably only locally present in small quantities. Thermocalc calculations demonstrate that the peak metamorphic mineral assemblage in mafic granulites was in equilibrium with a fluid with a low H2O activity (0.2-0.3). The absence of water in CO2-rich fluid inclusions is due to either observation difficulties or selective water leakage. The density of CO2 inclusions in trails suggests a retrograde P-T path dominated by decompression at T<600 °C. Re-evaluation of previously published data demonstrates that retrograde hydration of the granulites at 600 °C occurred in the presence of H2O and CO2-rich fluids under P-T conditions of 5-6 kbar and ~600 °C. The different compositions of the hydrating fluid suggest more than one fluid source.  相似文献   

5.
Abstract Incipient charnockite formation within amphibolite facies gneisses is observed in South India and Sri Lanka both as isolated sheets, associated with brittle fracture, and as patches forming interconnected networks. For each mode of formation, closely spaced drilled samples across charnockite/gneiss boundaries have been obtained and δ13C and CO2 abundances determined from fluid inclusions by stepped-heating mass spectrometry. Isolated sheets of charnockite (c.50 mm wide) within biotite–garnet gneiss at Kalanjur (Kerala, South India) have developed on either side of a fracture zone. Phase equilibria indicate low-pressure charnockite formation at pressures of 3.4 ± 1.0 kbar and temperatures of about 700°C (for XH2O= 0.2). Fluid inclusions from the charnockite are characterized by δ13C values of ?8% and from the gneiss, 2 m from the charnockite, by values of ?15%. The large CO2 abundances and relatively heavy carbon-isotope signature of the charnockite can be traced into the gneiss over a distance of at least 280 mm from the centre of the charnockite, whereas the reaction front has moved only 30 mm. This suggests that fluid advection has driven the carbon-isotope front through the rock more rapidly than the reaction front. The carbon-front/reaction-front separation at Kalanjur is significantly larger than the value determined from a graphite-bearing incipient charnockite nearby, consistent with the predictions of one-dimensional advection models. Incipient charnockites from Kurunegala (Sri Lanka) have developed as a patchy network within hornblende–biotite gneiss. CO2 abundances rise to a peak near one limb of the charnockite, and isotopic values vary from δ13C of c.?5.5% in the gneiss to ?9.5% in the charnockite. The shift to lighter values in the charnockite can be ascribed to the formation of a CO2-saturated partial melt in response to influx of an isotopically light carbonic fluid. Thus, incipient charnockites from the high-grade terranes of South India and Sri Lanka reflect a range of mechanisms. At shallower structural levels non-pervasive CO2 influxed along zones of brittle fracture, possibly associated with the intrusion of charnockitic dykes. At deeper levels, in situ melting occurred under conditions of ductile deformation, leading to the development of patchy charnockites.  相似文献   

6.
http://www.sciencedirect.com/science/article/pii/S1674987112000655   总被引:1,自引:1,他引:0  
Four different varieties of charnockitic rocks,with different modes of formation,from the Mesoproterozoic Natal belt are described and new C isotope data presented.Excellent coastal exposures in a number of quarries and river sections make this part of the Natal belt a good location for observing charnockitic field relationships.Whereas there has been much debate on genesis of charnockites and the use of the term charnockite.it is generally recognized that the stabilization of orthopyroxene relative to biotite in granitoid rocks is a function of low aH2O(±high CO2),high temperature,and composition (especially Fe/(Fe +Mg)).From the Natal belt exposures,it is evident that syn-emplacement.magmatic crystallization of chamockite can arise from mantle-derived differentiated melts that are inherently hot and dry(as in the Oribi Gorge granites and Munster enderbite),as well as from wet granitic melts that have been affected through interaction with dry country rock to produce localized charnockitic marginal facies in plutons(as in the Portobello Granite).Two varieties of post-emplacement sub-solidus chamockites are also evident.These include charnockitic aureoles developed in leucocratic,biotite.garnet granite adjacent to cross-cutting enderbitic veins that are attributed to metamorphic-metasomatic processes(as in the Nicholson’s Point granite,a part of the Margate Granite Suite),as well as nebulous,patchy charnockitic veins in the Margate Granite that are attributed to anatectic metamorphic processes under low-aHO fluid conditions during a metamorphic event.These varieties of chamockite show that the required physical conditions of their genesis can be achieved through a number of geological processes,providing some important implications for the classification of charnockites,and for the interpretation of charnockite genesis in areas where poor exposure obscures field relationships.  相似文献   

7.
We report a new occurrence of incipient charnockite from Mavadi in the Trivandrum Granulite Block (TGB), southern India, and discuss the petrogenesis of granulite formation in an arrested stage on the basis of petrography, geothermobarometry, and mineral equilibrium modeling. In Mavadi, patches and lenses of charnockite (Kfs?+?Qtz?+?Pl?+?Bt?+?Grt?+?Opx?+?Ilm?+?Mag) of about 30 to 220 cm in length occur within Opx-free Grt-Bt gneiss (Kfs?+?Qtz?+?Pl?+?Bt?+?Grt?+?Ilm). The application of mineral equilibrium modeling on the charnockite assemblage in the NCKFMASHTO system to constrain the conditions of charnockitization defines a PT range of 800 °C at 4.5 kbar to 850 °C at 8.5 kbar, which is broadly consistent with the results from the conventional geothermobarometry (810–880 °C at 7.7–8.0 kbar) on these rocks. The PT conditions are lower than the peak metamorphic conditions reported for the ultrahigh-temperature granulites from this area (T?>?900 °C). The heterogeneity in peak PT conditions within the same crustal block might be related to local buffering of metamorphic temperatures by the Opx-Bt-Kfs-Qtz assemblage. The result of T versus mole H2O (M(H2O)) modeling demonstrated that the Opx-free assemblage in the Grt-Bt gneiss is stable at M(H2O)?=?0.3 to 1.5 mol%, and orthopyroxene occurs as a stable mineral at M(H2O) <0.3 mol%, which is consistent with the petrogenetic model of incipient charnockite related to the lowering of the water activity and stabilization of orthopyroxene through the breakdown of biotite by dehydration caused by the infiltration of CO2-rich fluid from external sources. We also propose a possible alternative mechanism to form charnockite from Grt-Bt gneiss through slight variations in bulk-rock chemistry (particularly for the K- and Fe-rich portion of Grt-Bt gneiss) that can enhance the stability of orthopyroxene rather than that of biotite, with K-metasomatism playing a possible role.  相似文献   

8.
Fluid inclusions in quartz grains from five samples of high-grade rocks (two paragneisses, an amphibolite, a mafic gneiss and a tonalite dike) from the 2.7 Ga Kapuskasing structural zone (KSZ), Ontario, were examined with petrographic, microthermometric and laser Raman techniques. Three types of fluid inclusions were observed: CO2-rich, H2O-rich and mixed CO2-H2O. CO2-rich fluid inclusions are pseudosecondary or secondary in nature and are generally pure CO2; a few contain varying amounts of CH4·H2O-rich fluid inclusions are secondary in nature, contain variable amounts of dissolved salts, and generally contain daughter crystals. Mixed CO2-H2O fluid inclusions occur where trails of H2O-rich inclusions intersect trails of CO2-rich inclusions. Isochores for high density (p=1.03 g/cm3) pseudosecondary, pure CO2 inclusions intersect the lower pressure portion of the estimated P-T field for high-grade metamorphism, implying that pure CO2 was the peak metamorphic fluid. The variable CH4 content of CO2 inclusions within graphite-bearing samples suggests that CH4 was introduced locally after the formation of the CO2 inclusions; however the origin of the CH4 remains problematic. An aqueous fluid clearly penetrated the gneisses after the peak metamorphism (during uplift/erosion), forming secondary inclusions and contributing to the minor retrogressive hydration observed in these rocks. The presence of the pseudosecondary, high-density CO2 inclusions in quartz crystals in the KSZ rocks constrains the uplift/ erosion path for the KSZ to one of simultaneous decrease in pressure and temperature.  相似文献   

9.
Abstract Fluid evolution paths in the COHN system can be calculated for metamorphic rocks if there are relevant data regarding the mineral assemblages present, and regarding the oxidation and nitrodation states throughout the entire P-T loop. The compositions of fluid inclusions observed in granulitic rocks from Rogaland (south-west Norway) are compared with theoretical fluid compositions and molar volumes. The fluid parameters are calculated using a P-T path based on mineral assemblages, which are represented by rocks within the pigeonite-in isograd and by rocks near the orthopyroxene-in isograd surrounding an intrusive anorthosite massif. The oxygen and nitrogen fugacities are assumed to be buffered by the coexisting Fe-Ti oxides and Cr-carlsbergite, respectively. Many features of the natural fluid inclusions, including (1) the occurrence of CO2-N2-rich graphite-absent fluid inclusions near peak M2 metamorphic conditions (927° C and 400 MPa), (2) the non-existence of intermediate ternary CO2-CH4-N2 compositions and (3) the low-molar-volume CO2-rich fluid inclusions (36–42 cm3 mol?1), are reproduced in the calculated fluid system. The observed CO2-CH4-rich inclusions with minor N2 (5 mol%) should also include a large proportion of H2O according to the calculations. The absence of H2O from these natural high-molar-volume CO2-CH4-rich inclusions and the occurrence of natural CH4-N2-rich inclusions are both assumed to result from preferential leakage of H2O. This has been previously experimentally demonstrated for H2O-CO2-rich fluid inclusions, and has also been theoretically predicted. Fluid-deficient conditions may explain the relatively high molar volumes, but cannot be used to explain the occurrence of CH4-N2-rich inclusions and the absence of H2O.  相似文献   

10.
Non-aqueous CO2 and CO2-rich fluid inclusions are found in the vein quartz hosting mesothermal gold-sulphide mineralization at Bin Yauri, northwestern Nigeria. Although mineralizing fluids responsible for gold mineralization are thought to be CO2-rich, the occurrence of predominantly pure to nearly pure CO2 inclusions is nevertheless unusual for a hydrothermal fluid system. Many studies of similar CO2-rich fluid inclusions, mainly in metamorphic rocks, proposed preferential loss (leakage) of H2O from H2O-CO2 inclusions after entrapment. In this study however, it is proposed that phase separation (fluid immiscibility) of low salinity CO2-rich hydrothermal fluids during deposition of the gold mineralization led to the loss of the H2O phase and selective entrapment of the CO2. The loss of H2O to the wallrocks resulted in increasing oxidizing effects. There is evidence to suggest that the original CO2-rich fluid was intrinsically oxidized, or perhaps in equilibrium with oxidizing conditions in the source rocks. The source of the implicated fluid is thought to be subducted metasediments, subjected to dehydration and devolatilization reactions along a transcurrent Anka fault/shear system, which has been described as a Pan-African (450–750 Ma) crustal suture.  相似文献   

11.
Field evidence and fluid inclusion studies on South Indian incipient charnockites suggest that charnockite formation occurred during a decompressional brittle regime following the ‘peak’ of metamorphism and regional deformation. The most abundant type of inclusions in quartz and garnet grains in these charnockites contain high-density carbonic fluids, although lower-density fluids occur in younger arrays of inclusions. Discrete fluid inclusion generations optically are observed to decrepitate over well-defined temperature intervals, and quantitative measurements of CO2 abundance released from these inclusions by stepped thermal decrepitation show up to a four-fold increase (by volume) in the incipient charnockites relative to the adjacent gneisses from which they are derived. Studies based on optical thermometry, visual decrepitation and stepped-heating inclusion release together indicate that entrapment of carbonic fluids coincided with charnockite formation. We confirm that an influx of carbon dioxide-rich fluids is associated with the amphibolite-granulite transition, as recorded by the incipient charnockites, the remnants of which are commonly preserved as the earliest generation of high-density fluid inclusions.  相似文献   

12.
The Khtada Lake. British Columbia, metamorphic complex consists of high grade amphibolite and metasedimentary units with development of gneiss, migmatite and homogeneous autochthonous plutons. Maximum metamorphic conditions are estimated to have exceeded 5 kbar and 700°C.Fluid inclusions in matrix quartz are highly variable in density and composition, ranging from apparently pure CO2 (gas or liquid or both at room temperature) through CO2 + H2O ± CH4 mixtures to inclusions which are entirely aqueous. They occur along cracks, in groups without planar features and as isolated inclusions. The latter and some which occur in groups, are interpreted to most nearly approximate, in density and composition, the fluids present during the peak of metamorphism.The density and fluid composition data are derived from direct observations of phase changes between ? 180 and + 380°C and from the application of published experimental data in the system CH4-CO2-H2O-NaCl. The most dense, pure CO2 inclusions indicate a pressure of entrapment at 5 kbar, if a temperature of 700°C is assumed. This is in close agreement with the minimum P-T estimates from the mineral assemblages. Methane was positively identified in inclusions in graphite-bearing specimens. Salt content is concluded to be about 5–6 wt% NaCl equivalent in the aqueous phase in both aqueous and CO2 + H2O inclusions. There is evidence of immiscible separation of CO2-rich and H2O-rich fluids at temperatures at least as high as 375°C.  相似文献   

13.
The fluid inclusions in samples of quartz, apatite, epidote, diopside, beryl and phenakite from Alpine veins in gneisses, amphibolites and mica schists from the western Tauern Window were analysed by microthermometrical, chemical and neutron activation methods. The inclusions of the eclogites contain a high density CO2 phase without optically detectable H2. In the Greiner Schieferserie the fluid inclusions show high CO2/H2O ratios and low salt contents. In the Zentralgneis area inclusions with low CO2/H2O ratios and high salt contents are typical. In the calcareous mica schists of the lower Schieferhülle, in the eastern part of the investigated area, generally no CO2 could be detected in the inclusions. These inclusions contain aqueous solutions showing a low salt content. The only CO2 bearing inclusions observed here were in the graphite-rich rocks of the so-called Habachzungen and in the eclogites from south of the Großvenediger. Trapping pressures estimated from the fluid inclusions are up to 7.5 kbar in the eclogites, but in general the pressures are between 2 and 4 kbar. These pressure data are in good agreement with the pressure data of mineral equilibria. The chemically analysed elements in the fluid inclusions are Na, K, Cs, Mg, Ca, Mn, As, Cl and Br. From the K/Na ratios temperatures between 435 and 490°C can be deduced. The very low Cl/Br ratios (<110) suggest that the dissolved elements came from the country rocks. The alkali/chlorine ratios (~1) indicate that the positive loadings of the cations are balanced by Cl.  相似文献   

14.
http://www.sciencedirect.com/science/article/pii/S1674987112000643   总被引:2,自引:1,他引:1  
Incipient charnockites represent granulite formation on a mesoscopic scale and have received considerable attention in understanding fluid processes in the deep crust.Here we report new petrological data from an incipient charnockite locality at Rajapalaiyam in the Madurai Block,southern India,and discuss the petrogenesis based on mineral phase equilibrium modeling and pseudosection analysis. Rajapalaiyam is a key locality in southern India from where diagnostic mineral assemblages for ultrahigh-temperature(UHT) metamorphism have been reported.Proximal to the UHT rocks are patches and lenses of charnockite(Kfs + Qtz + Pl + Bt + Opx + Grt + Ilm) occurring within Opx-free Grt-Bt gneiss(Kfs + Pl + Qtz + Bt + Grt + Ilm + Mt) which we report in this study.The application of mineral equilibrium modeling on the charnockitic assemblage in NCKFMASHTO system yields a p-T range of~820℃and~9 kbar.Modeling of the charnockite assemblage in the MnNCKFMASHTO system indicates a slight shift of the equilibrium condition toward lower p and T(~760℃and~7.5 kbar). which is consistent with the results obtained from geothermobarometry(710—760℃,6.7—7.5 kbar). but significantly lower than the peak temperatures(>1000℃) recorded from the UHT rocks in this locality,suggesting that charnockitization is a post-peak event.The modeling of T versus molar H2O content in the rock(M(H2O)) demonstrates that the Opx-bearing assemblage in charnockite and Opxfree assemblage in Grt-Bt gneiss are both stable at M(H2O) = 0.3 mol%-0.6 mol%.and there is no significant difference in water activity between the two domains.Our finding is in contrast to the previous petrogenetic model of incipient charnockite formation which envisages lowering of water activity and stabilization of orthopyroxene through breakdown of biotite by dehydration caused by the infiltration of CO2-rich fluid.T-XFe3+(= Fe2O3/(FeO + Fe2O3) in mole) pseudosections suggest that the oxidation condition of the rocks played a major role on the stability of orthopyroxene:Opx is stable at XFe3+ <0.03 in charnockite.while Opx-free assemblage in Grt-Bt gneiss is stabilized at XFe3+ >0.12.Such low oxygen fugacity conditions of XFe3+ <0.03 in the charnockite compared to Grt-Bt gneiss might be related to the infiltration of a reduced fluid(e.g.,H2O + CH4) during the retrograde stage.  相似文献   

15.
The occurrence of a charnockitised felsic gneiss adjacent to a marble/calc-silicate horizon at Nuliyam, southern India, has been cited in recent literature as a classic example of the dehydration of crustal rocks resulting from the advective infiltration of CO2-rich fluids generated from a local carbonate source. Petrographic study of the Nuliyam calc-silicate, however, reveals it to consist of abundant wollastonite and scapolite and contain locally discordant veins rich in wollastonite. At the pressure—temperature conditions proposed for charnockite formation in recent studies, 5 kbar and 725°C, this wollastonite-bearing mineral assemblage was stable in the presence of a fluid phase only if X CO2 was near 0.25 and could not have coexisted with the fluid causing biotite breakdown and charnockite development in adjacent rocks (X CO2>0.85). The stable coexistence of wollastonite and scapolite prohibits the calc-silicate from being a source for fluid driving charnockitisation at the required P-T conditions. Textural observations such as the limited replacement of wollastonite by calcite+quartz symplectites and mosaics, are consistent with late fluid infiltration into the calc-silicate. The extensive isotopic, chemical and mineral abundance data of Jackson and Santosh (1992) are re-interpreted and integrated with these observations to develop a model involving the infiltration of an externally derived CO2-rich fluid during high-temperature decompression. Increased charnockite development next to the calc-silicate has arisen because the calc-silicate acted as a relatively unreactive and impermeable barrier to fluid transport and caused fluid ponding beneath antiformal closures. The Nuliyam charnockite/calc-silicate locality is an example of a structural trap in a metamorphic setting rather than a site where charnockite formation can be attributed to local fluid sources.  相似文献   

16.
ABSTRACT The metasedimentary sequence of the Deep Freeze Range (northern Victoria Land, Antarctica) experienced high-T/low-F metamorphism during the Cambro-Ordovician Ross orogeny. The reaction Bt + Sil + Qtz = Grt + Crd + Kfs + melt was responsible for the formation of migmatites. Peak conditions were c. 700–750° C, c. 3.5–5 kbar and xH2Oc. 0.5). Distribution of fluid inclusions is controlled by host rock type: (1) CO2-H2O fluid inclusions occur only in graphite-free leucosomes; (2) CO2–CH4± H2O fluid inclusions are the most common type in leucosomes, and in graphite-bearing mesosomes and gneiss; and (3) CO2–N2–CH4 fluid inclusions are observed only in the gneiss, and subordinately in mesosomes. CO2–H2O mixtures (41% CO2, 58% H2O, 1% Nad mol.%) are interpreted as remnants of a synmig-matization fluid; their composition and density are compatible P–T–aH2O conditions of migmatization (c. 750° C, c. 4 kbar, xH2Oc. 0.5). CO2-H2O fluid in graphite-free leucosomes cannot originate via partial melting of graphite-bearing mesosomes in a closed system; this would have produced a mixed CO2–CH4 fluid in the leucosomes by a reaction such as Bt + Sil + Qtz + C ± H2O = Grt + Crd + Kfs + L + CO2+ CH4. We conclude that an externally derived oxidizing CO2-H2O fluid was present in the middle crust and initiated anatexis. High-density CO2-rich fluid with traces of CH4 characterizes the retrograde evolution of these rocks at high temperatures and support isobaric cooling (P–T anticlockwise path). In unmigmatized gneiss, mixed CO2–N2–CH4 fluid yields isochores compatible with peak metamorphic conditions (c. 700–750° C, c. 4–4.5 kbar); they may represent a peak metamorphic fluid that pre-dated the migmatization.  相似文献   

17.
《Ore Geology Reviews》1999,14(3-4):203-225
The auriferous veins at Yirisen, Masumbiri, Sierra Leone, occurring mainly in the form of sericitic quartz-sulphide lodes and stringers, are hosted in metamorphosed volcano-sedimentary assemblages invaded by at least two generations of granitic intrusions. Detailed microthermometric studies of fluid inclusions from the veins coupled with laser Raman spectroscopic analysis show that the inclusions contain aqueous fluids of variable salinity (5 to 60 wt.% NaCl equivalent) and dense carbonic fluids (pure CO2: 1.08>d>0.88 g/cm3). Optical observations and analysis on opened inclusions by scanning electron microscopy (SEM) reveal that some of the aqueous inclusions contain a number of daughter minerals: halite, sylvite, Ca-, Fe-, Mg- and possibly Li-bearing chlorides, and anhydrite; nahcolite occurs also in some of the CO2 inclusions. The SEM runs also detected a small amount of electrum, suggesting that silver might be a bi-product of the mineralisation. The aqueous and carbonic fluids remained immiscible throughout the formation and evolution of the hydrothermal veins. A few mixed (H2O+CO2) inclusions apparently resulted from accidental trapping of both fluids in the same cavity. The wide range of salinities observed in the aqueous inclusions is attributed to the mixing of relatively hot, low-salinity aqueous fluids and colder, high-salinity brines. The CO2-rich and low-salinity H2O inclusions are considered to be derived from the metamorphic decarbonation/dehydration of the greenstone pile whilst the high-salinity brines are believed to be basinal in origin. Pressure–temperature (PT) conditions of entrapment, inferred from the intersection of representative isochores of the immiscible fluids, indicate that the formation of the veins started at T=400°C and P about 4 kbar, in the presence of the high-density CO2 and low-salinity H2O fluids. At about 200°C, pressure fluctuations (incremental opening of the vein) correspond to the trapping of the lower-density CO2 inclusions and high-salinity brines. It is proposed that the decarbonation/dehydration processes (possibly aided by later magmatic processes) expelled and mobilised the gold from the greenstone pile and concentrated it in the CO2-bearing hydrothermal fluid in the form of Au–chloride complexes. High thermal gradients are believed to have caused the upward migration of this fluid from the bottom of the greenstone pile through structurally controlled conduits. We contend that phase separation of the H2O–CO2 metamorphic fluid, aided possibly by some wall–rock alteration, most probably triggered a decrease in ligand activity and thus, precipitation of the gold into lodes. Percolation of the basinal brines is thought to have remobilised some of the gold together with some silver.  相似文献   

18.
The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitoid source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration of crustally derived felsic melts and incipient charnockite formation, resulting in an igneous charnockite – I-type granite – incipient charnockite association.Editorial responsibility: T.L. Grove  相似文献   

19.
Well-formed, texturally-early fluid inclusions in garnets from the Archean Pikwitonei granulite domain, Manitoba, Canada, have been analyzed using microthermometric methods. The mean CO2 homogenization temperature (to liquid) for inclusions in 12 of 13 samples from the Cauchon Lake-Nelson River area is +15.2° C (n=125, 2σ=8.2° C), corresponding to a CO2 density of 0.82 g/cm3. Inclusions in the remaining sample have somewhat lower CO2 homogenization temperatures (mean=+5.4° C, n=24). The studied inclusions contain an estimated 10 to 20 vol. percent H2O, with minor amounts of other fluid species such as CH4, N2, and/or H2S. The fluid inclusions were probably trapped during early garnet growth at relatively low pressures (≤5 kbar if at 750° C), and appear to have undergone only limited or possibly no subsequent re-equilibration. This interpretation is consistent with the “anti-clock-wise” P-T-t path (heating before loading) determined for the Pikwitonei region by other workers. For such a prograde path, inclusions entrapped early, at high temperatures but at relatively low pressures, would experience internal underpressures during most of the subsequent prograde and retrograde phases of metamorphism. The texturally-early fluid inclusions in garnets from the Pikwitonei region therefore cannot be used to provide direct information about the highest metamorphic temperature and pressure conditions (750° C and 7 kbar). However, the results obtained in this study suggest that texturally-early fluid inclusions in garnets may, in some cases, retain evidence of the prograde metamorphic path.  相似文献   

20.
Synorogenic veins from the Proterozoic Eastern Mount Isa Fold Belt contain three different types of fluid inclusions: CO2-rich, aqueous two-phase and rare multiphase. Inclusions of CO2 without a visible H2O phase are particularly common. The close association of CO2-rich inclusions with aqueous two-phase, and possibly multiphase inclusions suggests that phase separation of low- to -moderate salinity CO2-rich hydrothermal fluids led to the selective entrapment of the CO2. Microthermometric results indicate that CO2-rich inclusions homogenize between –15.5 and +29.9 °C which corresponds to densities of 0.99 to 0.60 g.cm−3. The homogenization temperatures of the associated aqueous two-phase inclusions are 127–397 °C, with salinities of 0.5 to 18.1 wt.% NaCl equivalent. The rarely observed multiphase inclusions homogenize between 250 and 350 °C, and have salinities ranging from 34.6 to 41.5 wt.% NaCl equivalent. Evidence used to support the presence of fluid immiscibility in this study is mainly derived from observations of coexisting H2O-rich and CO2-rich inclusions in groups and along the same trail. In addition, these two presumably unmixed fluids are also found on adjacent fractures where monophase CO2-rich inclusions are closely related to H2O-rich inclusions. Similar CO2-rich inclusions are widespread in mineral deposits in this region, which are simply metal-enriched synorogenic veins. Therefore, we argue that fluid immiscibility caused volatile species such as CO2 and H2S to be lost from liquid, thus triggering ore deposition by increasing the fluid pH and decreasing the availability of complexing ligands. Received: 28 April 1997 / Accepted: 4 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号