首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   

2.
In Rogaland, South Norway, a polycyclic granulite facies metamorphic domain surrounds the late‐Sveconorwegian anorthosite–mangerite–charnockite (AMC) plutonic complex. Integrated petrology, phase equilibria modelling, monazite microchemistry, Y‐in‐monazite thermometry, and monazite U–Th–Pb geochronology in eight samples, distributed across the apparent metamorphic field gradient, imply a sequence of two successive phases of ultrahigh temperature (UHT) metamorphism in the time window between 1,050 and 910 Ma. A first long‐lived metamorphic cycle (M1) between 1,045 ± 8 and 992 ± 11 Ma is recorded by monazite in all samples. This cycle is interpreted to represent prograde clockwise P–T path involving melt production in fertile protoliths and culminating in UHT conditions of ~6 kbar and 920°C. Y‐in‐monazite thermometry, in a residual garnet‐absent sapphirine–orthopyroxene granulite, provides critical evidence for average temperature of 931 and 917°C between 1,029 ± 9 and 1,006 ± 8 Ma. Metamorphism peaked after c. 20 Ma of crustal melting and melt extraction, probably supported by a protracted asthenospheric heat source following lithospheric mantle delamination. Between 990 and 940 Ma, slow conductive cooling to 750–800°C is characterized by monazite reactivity as opposed to silicate metastability. A second incursion (M2) to UHT conditions of ~3.5–5 kbar and 900–950°C, is recorded by Y‐rich monazite at 930 ± 6 Ma in an orthopyroxene–cordierite–hercynite gneiss and by an osumilite gneiss. This M2 metamorphism, typified by osumilite paragenesis, is related to the intrusion of the AMC plutonic complex at 931 ± 2 Ma. Thermal preconditioning of the crust during the first UHT metamorphism may explain the width of the aureole of contact metamorphism c. 75 Ma later, and also the rarity of osumilite‐bearing assemblages in general.  相似文献   

3.
Migmatites comprise a minor volume of the high‐grade part of the Damara orogen of Namibia that is dominated by granite complexes and intercalated metasedimentary units. Migmatites of the Southern Central Zone of the Damara orogen consist of melanosomes with garnet+cordierite+biotite+K‐feldspar, and leucosomes, which are sometimes garnet‐ and cordierite‐bearing. Field evidence, petrographic observations, and pseudosection modelling suggest that, in contrast to other areas where intrusion of granitic magmas is more important, in situ partial melting of metasedimentary units was the main migmatite generation processes. Pseudosection modelling and thermobarometric calculations consistently indicate that the peak‐metamorphic grade throughout the area is in the granulite facies (~5 kbar at ~800°C). Cordierite coronas around garnet suggest some decompression from peak‐metamorphic conditions and rare andalusite records late, near‐isobaric cooling to <650°C at low pressures of ~3 kbar. The inferred clockwise P–T path is consistent with minor crustal thickening through continent–continent collision followed by limited post‐collisional exhumation and suggests that the granulite facies terrane of the Southern Central Zone of the Damara orogen formed initially in a metamorphic field gradient of ~35–40°C/km at medium pressures. New high‐precision Lu–Hf garnet‐whole rock dates are 530 ± 13 Ma, 522.0 ± 0.8 Ma, 520.8 ± 3.6 Ma, and 500.3 ± 4.3 Ma for the migmatites that record temperatures of ~800°C. This indicates that high‐grade metamorphism lasted for c. 20–30 Ma, which is compatible with previous estimates using Sm–Nd garnet‐whole rock systematics. In previous studies on Damara orogen migmatites where both Sm–Nd and Lu–Hf chronometers have been applied, the dates (c. 520–510 Ma) agree within their small uncertainties (0.6–0.8% for Sm–Nd and 0.1–0.2% for Lu–Hf). This implies rapid cooling after high‐grade conditions and, by implication, rapid exhumation at that time. The cause of the high geothermal gradient inferred from the metamorphic conditions is unknown but likely requires some extra heat that was probably added by intrusion of magmas from the lithospheric mantle, i.e., syenites that have been recently re‐dated at c. 545 Ma. Some granites derived from the lower crust at c. 545 Ma are the outcome rather than the cause of high‐T metamorphism. In addition, high contents of heat‐producing elements K, Th, and U may have raised peak temperatures by 150–200°C at the base of the crust, resulting in the widespread melting of fertile crustal rocks. The continuous gradation from centimetre‐scale leucosomes to decametre‐scale leucogranite sheets within the high‐grade metamorphic zone suggests that leucosome lenses coalesced to form larger bodies of anatectic leucogranites, thereby documenting a link between high‐grade regional metamorphism and Pan‐African magmatism. In view of the close association of the studied high‐T migmatites with hundreds of synmetamorphic high‐T granites that invaded the terrane as metre‐ to decametre‐wide sills and dykes, we postulate that crystallization of felsic lower crustal magma is, at least partly, responsible for heat supply. Late‐stage isobaric cooling of these granites may explain the occurrence of andalusite in some samples.  相似文献   

4.
High‐P (HP) eclogite and associated garnet–omphacite granulite have recently been discovered in the Mulantou area, northeastern Hainan Island, South China. These rocks consist mainly of garnet, omphacite, hornblende, quartz and rutile/ilmenite, with or without zoisite and plagioclase. Textural relationships, mineral compositions and thermobarometric calculations demonstrate that the eclogite and garnet–omphacite granulite share the same three‐stage metamorphic evolution, with prograde, peak and retrograde P?T conditions of 620–680°C and 8.7–11.1 kbar, 820–860°C and 17.0–18.2 kbar, and 700–730°C and 7.1–8.5 kbar respectively. Sensitive high‐resolution ion microprobe U–Pb zircon dating, coupled with the identification of mineral inclusions in zircon, reveals the formation of mafic protoliths before 355 Ma, prograde metamorphism at c. 340–330 Ma, peak to retrograde metamorphism at c. 310–300 Ma, and subsequent pegmatite intrusion at 295 Ma. Trace element geochemistry shows that most of the rocks have a MORB affinity, with initial εNd values of +2.4 to +6.7. As with similar transitional eclogite–HP granulite facies rocks in the thickened root in the European Variscan orogen, the occurrence of relatively high P?T metamorphic rocks of oceanic origin in northeastern Hainan Island suggests Carboniferous oceanic subduction leading to collision of the Hainan continental block, or at least part of it, with the South China Block in the eastern Palaeo‐Tethyan tectonic domain.  相似文献   

5.
Amphibolite facies metasedimentary schists within the Yukon‐Tanana terrane in the northern Canadian Cordillera reveal a two‐stage, polymetamorphic garnet growth history. In situ U‐Th‐Pb Sensitive High Resolution Ion Microprobe dating of monazite provide timing constraints for the late stages of garnet growth, deformation and subsequent decompression. Distinct textural and chemical growth zoning domains, separated by a large chemical discontinuity, reveal two stages of garnet growth characterized in part by: (i) a syn‐kinematic, inclusion‐rich stage‐1 garnet core; and (ii) an inclusion‐poor, stage‐2 garnet rim that crystallized with syn‐ to post‐kinematic staurolite and kyanite. Phase equilibria modelling of garnet molar and compositional isopleths suggest stage‐1 garnet growth initiated at ~600 °C, 8 kbar along a clockwise P–T path. Growth of the compositionally distinct, grossular‐rich, pyrope‐poor inner portion of the stage‐2 overgrowth is interpreted to have initiated at higher pressure and/or lower temperature than the stage‐1 core along a separate P–T loop, culminating at peak P–T conditions of ~650–680 °C and 9 kbar. Stage‐2 metamorphism and the waning development of a composite transposition foliation (ST) are dated at c. 118 Ma from monazite aligned parallel to ST, and inclusions in syn‐ to post‐ST staurolite and kyanite. Slightly younger ages (c. 112 Ma) are obtained from Y‐rich monazite that occurs within resorbed areas of both stage‐1 and stage‐2 garnet, together with retrograde staurolite and plagioclase. The younger ages obtained from these texturally and chemically distinct grains are interpreted, with the aid of phase equilibria calculations, to date the growth of monazite from the breakdown of garnet during decompression at c. 112 Ma. Evidence for continued near‐isothermal decompression is provided by the presence of retrograde sillimanite, and cordierite after staurolite, which indicates decompression below ~4–5 kbar prior to cooling below ~550 °C. As most other parts of the Yukon‐Tanana terrane were exhumed to upper crustal levels in the Early Jurassic, these data suggest this domain represents a tectonic window revealing a much younger, high‐grade tectono‐metamorphic core (infrastructure) within the northern Cordilleran orogen. This window may be akin to extensional core complexes identified in east‐central Alaska and in the southeastern Canadian Cordillera.  相似文献   

6.
This study places new constraints on the pressure–temperature (P–T) path and duration of high‐temperature (HT) metamorphism recorded by Archean granulite facies metasedimentary rocks from the northern Wyoming Province in the eastern Beartooth Mountains, MT and WY, USA. These rocks exist as m‐ to km‐scale xenoliths within a c. 2.8 Ga calc‐alkaline granitoid batholith. Different interpretations of the timing of HT metamorphism relative to batholith intrusion in previous works have led to ambiguity over the mechanism by which these rocks were heated (i.e. batholith intrusion v. a later, cryptic event). The P–T path recorded by these rocks and the duration of this path may be indicative of the heating mechanism but are not currently well constrained. Here, we combine phase equilibria thermobarometry and diffusion modelling of major element zonation in garnet in order to constrain the P–T path of HT metamorphism and the durations of different parts of this path. It is shown that these rocks record a tight, clockwise P–T path characterized by near‐isobaric heating at ~6.5–7 kbar to ?770–800°C, HT decompression to ~6 kbar, 780–800°C, followed by limited decompression while cooling. Diffusion modelling of major element zonation in garnet suggests that HT decompression was brief (likely <1 Ma), and that cooling rates following this decompression were on the order of 10–100°C/Ma. Substantial changes in apparent thermal gradient along this P–T path indicate that the rocks record a significant but short‐lived thermal anomaly that occurred in the Wyoming mid‐crust in the Late Archean.  相似文献   

7.
Incipient charnockites have been widely used as evidence for the infiltration of CO2‐rich fluids driving dehydration of the lower crust. Rocks exposed at Kakkod quarry in the Trivandrum Block of southern India allow for a thorough investigation of the metamorphic evolution by preserving not only orthopyroxene‐bearing charnockite patches in a host garnet–biotite felsic gneiss, but also layers of garnet–sillimanite metapelite gneiss. Thermodynamic phase equilibria modelling of all three bulk compositions indicates consistent peak‐metamorphic conditions of 830–925 °C and 6–9 kbar with retrograde evolution involving suprasolidus decompression at high temperature. These models suggest that orthopyroxene was most likely stabilized close to the metamorphic peak as a result of small compositional heterogeneities in the host garnet–biotite gneiss. There is insufficient evidence to determine whether the heterogeneities were inherited from the protolith or introduced during syn‐metamorphic fluid flow. U–Pb geochronology of monazite and zircon from all three rock types constrains the peak of metamorphism and orthopyroxene growth to have occurred between the onset of high‐grade metamorphism at c. 590 Ma and the onset of melt crystallization at c. 540 Ma. The majority of metamorphic zircon growth occurred during protracted melt crystallization between c. 540 and 510 Ma. Melt crystallization was followed by the influx of aqueous, alkali‐rich fluids likely derived from melts crystallizing at depth. This late fluid flow led to retrogression of orthopyroxene, the observed outcrop pattern and to the textural and isotopic modification of monazite grains at c. 525–490 Ma.  相似文献   

8.
The metamorphic evolution of rocks cropping out near Stoer, within the Assynt terrane of the central region of the mainland Lewisian complex of NW Scotland, is investigated using phase equilibria modelling in the NCKFMASHTO and MnNCKFMASHTO model systems. The focus is on the Cnoc an t’Sidhean suite, garnet‐bearing biotite‐rich rocks (brown gneiss) with rare layers of white mica gneiss, which have been interpreted as sedimentary in origin. The results show that these rocks are polymetamorphic and experienced granulite facies peak metamorphism (Badcallian) followed by retrograde fluid‐driven metamorphism (Inverian) under amphibolite facies conditions. The brown gneisses are inferred to have contained an essentially anhydrous granulite facies peak metamorphic assemblage of garnet, quartz, plagioclase and ilmenite (±rutile, K‐feldspar and pyroxene) with biotite, hornblende, muscovite, chlorite and/or epidote as hydrous retrograde minerals. P–T constraints imposed by phase equilibria modelling imply conditions of 13–16 kbar at >900 °C for the Badcallian granulite facies metamorphic peak, consistent with the field evidence for partial melting in most lithologies. The white mica gneiss comprises a muscovite‐dominated matrix containing porphyroblasts of staurolite, corundum, kyanite and rare garnet. Previous studies have suggested that staurolite, corundum, kyanite and muscovite all grew at the granulite facies peak, with partial melting and melt loss producing a highly aluminous residue. However, at the inferred peak P–T conditions, staurolite and muscovite are not predicted to be stable, suggesting they are retrograde phases that grew during amphibolite facies retrograde metamorphism. The large proportion of mica suggests extensive H2O‐rich fluid‐influx, consistent with the retrograde growth of hornblende, biotite, epidote and chlorite in the brown gneisses. P–T conditions of 5.0–6.5 kbar at 520–550 °C are derived for the Inverian event. In situ dating of zircon from samples of the white mica gneiss yield apparent ages that are difficult to interpret. However, the data are permissive of granulite facies (Badcallian) metamorphism having occurred at c. 2.7–2.8 Ga with subsequent fluid driven (Inverian) retrogression at c. 2.5–2.6 Ga, consistent with previous interpretations.  相似文献   

9.
The Red River shear zone (RRSZ) is a major left‐lateral strike‐slip shear zone, containing a ductilely deformed metamorphic core bounded by brittle strike‐slip and normal faults, which stretches for >1000 km from Tibet through Yunnan and North Vietnam to the South China Sea. The RRSZ exposes four high‐grade metamorphic core complexes along its length. Various lithologies from the southernmost core complex, the Day Nui Con Voi (DNCV), North Vietnam, provide new constraints on the tectonic and metamorphic evolution of this region prior to and following the initial India–Asia collision. Analysis of a weakly deformed anatectic paragneiss using PT pseudosections constructed in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNCKFMASHTO) system provides prograde, peak and retrograde metamorphic conditions, and in situ U–Th–Pb geochronology of metamorphic monazite yields texturally controlled age constraints. Tertiary metamorphism and deformation, overprinting earlier Triassic metamorphism associated with the Indosinian orogeny and possible Cretaceous metamorphism, are characterized by peak metamorphic conditions of ~805 °C and ~8.5 kbar between c. 38 and 34 Ma. Exhumation occurred along a steep retrograde P–T path with final melt crystallizing at the solidus at ≥~5.5 kbar at ~790 °C. Further exhumation at ~640–700 °C and ~4–5 kbar at c. 31 Ma occurred at subsolidus conditions. U–Pb geochronological analysis of monazite from a strongly deformed pre‐kinematic granite dyke from the flank of the DNCV provides further evidence for exhumation at this time. Magmatic grains suggest initial emplacement at 66.0 ± 1.0 Ma prior to the India–Asia collision, whereas grains with metamorphic characteristics indicate later growth at 30.6 ± 0.4 Ma. Monazite grains from a cross‐cutting post‐kinematic dyke within the core of the DNCV antiform provide a minimum age constraint of 25.2 ± 1.4 Ma for the termination of fabric development. A separate and significant episode of monazite growth at c. 83–69 Ma is suggested to be the result of fluid‐assisted recrystallization following the emplacement of magmatic units.  相似文献   

10.
Pelitic schists from contact aureoles surrounding mafic–ultramafic plutons in Westchester County, NY record a high‐P (~0.8 GPa) high‐T (~790 °C) contact overprint on a Taconic regional metamorphic assemblage (~0.5 GPa). The contact metamorphic assemblage of a pelitic sample in the innermost aureole of the Croton Falls pluton, a small (<10 km2) gabbroic body, consists of quartz–plagioclase–biotite–garnet–sillimanite–ilmenite–graphite–Zn‐rich Al‐spinel. Both K‐feldspar and muscovite are absent, and abundant biotite, plagioclase, sillimanite, quartz and ilmenite inclusions are found within subhedral garnet crystals. Unusually low bulk‐rock Na and K contents imply depletion of alkalic components and silica through anatexis and melt extraction during contact heating relative to typical metapelites outside the aureole. Thermobarometry on nearby samples lacking a contact overprint yields 620–640 °C and 0.5–0.6 GPa. In the aureole sample, WDS X‐ray chemical maps show distinct Ca‐enriched rims on both garnet and matrix plagioclase. Furthermore, biotite inclusions within garnet have significantly higher Mg concentration than matrix biotite. Thermobarometry using GASP and garnet–biotite Mg–Fe exchange equilibria on inclusions and adjacent garnet host interior to the high‐Ca rim zone yield ~0.5 ± 0.1 GPa and ~620 ± 50 °C. Pairs in the modified garnet rim zone yield ~0.9 ± 0.1 GPa and ~790 ± 50 °C. Thermocalc average P–T calculations yield similar results for core (~0.5 ± ~0.1 GPa, ~640 ± ~80 °C) and rim (~0.9 ± ~0.1 GPa, ~800 ± ~90 °C) equilibria. The core assemblages are interpreted to record the P–T conditions of peak metamorphism during the Taconic regional event whereas the rim compositions and matrix assemblages are interpreted to record the P–T conditions during the contact event. The high pressures deduced for this later event are interpreted to reflect loading due to the emplacement of Taconic allochthons in the northern Appalachians during the waning stages of regional metamorphism (after c. 465 Ma) and before contact metamorphism (c. 435 Ma). In the absence of contact metamorphism‐induced recrystallization, it is likely that this regional‐scale loading would remain cryptic or unrecorded.  相似文献   

11.
Here, we present results of the first 40Ar/39Ar dating of osumilite, a high‐T mineral that occurs in some volcanic and high‐grade metamorphic rocks. The metamorphic osumilite studied here is from a metapelitic rock within the Rogaland–Vest Agder Sector, Norway, an area that experienced regional granulite facies metamorphism and subsequent contact metamorphism between 1,100 Ma and 850 Ma. The large grain size (~1 cm) of osumilite in the studied rock, which preserves a nominally anhydrous assemblage, increases the potential for large portions of individual grains to have remained essentially unaffected by the effects of diffusive argon loss, potentially preserving prograde ages. Step‐heating diffusion experiments yielded a maximum activation energy of ~461 kJ/mol and a pre‐exponential factor of ~8.34 × 108 cm2/s for Ar diffusion in osumilite. These parameters correspond to a relatively high closure temperature of ~620°C for a cooling rate of 10°C/Ma in an osumilite crystal with a 175 µm radius. Fragments of osumilite separated from the sample preserve a range of ages between c. 1,070 and 860 Ma. The oldest ages are inferred to date the growth of coarse‐grained osumilite during prograde granulite facies regional metamorphism, which pre‐date contact metamorphism that has historically been ascribed to the growth of osumilite in the region. The majority of fragments record ages between c. 920 and 860 Ma, inferred to reflect the growth of osumilite and/or diffusive argon loss during contact metamorphism. The retention of old 40Ar/39Ar dates was facilitated by the low diffusivity of Ar in osumilite (i.e. a closed system), large grain sizes, and anhydrous metamorphic conditions. The ability to date osumilite with the 40Ar/39Ar method provides a valuable new thermochronometer that may constrain the timing and duration of high‐T magmatic and metamorphic events.  相似文献   

12.
The recent identification of multiple strike‐parallel discontinuities within the exhumed Himalayan metamorphic core has helped revise the understanding of convergence accommodation processes within the former mid‐crust exposed in the Himalaya. Whilst the significance of these discontinuities to the overall development of the mountain belt is still being investigated, their identification and characterization has become important for potential correlations across regions, and for constraining the kinematic framework of the mid‐crust. The result of new phase equilibria modelling, trace element analysis and high‐precision Lu–Hf garnet dating of the metapelites from the Likhu Khola region in east central Nepal, combined with the previously published monazite petrochronology data confirms the presence of one of such cryptic thrust‐sense tectonometamorphic discontinuities within the lower portion of the exhumed metamorphic core and provides new constraints on the P–T estimates for that region. The location of the discontinuity is marked by an abrupt change in the nature of P–T–t paths of the rocks across it. The rocks in the footwall are characterized by a prograde burial P–T path with peak metamorphic conditions of ~660°C and ~9.5 kbar likely in the mid‐to‐late Miocene, which are overlain by the hanging wall rocks, that preserve retrograde P–T paths with P–T conditions of >700°C and ~7 kbar in the early Miocene. The occurrence of this thrust‐sense structure that separates rock units with unique metamorphic histories is compatible with orogenic models that identify a spatial and temporal transition from early midcrustal deformation and metamorphism in the deeper hinterland to later deformation and metamorphism towards the shallower foreland of the orogen. Moreover, these observations are comparable with those made across other discontinuities at similar structural levels along the Himalaya, confirming their importance as important orogen‐scale structures.  相似文献   

13.
Garnet amphibolites can provide valuable insights into geological processes of orogenic belts, but their metamorphic evolution is still poorly constrained. Garnet amphibolites from the Wutai–Hengshan area of the North China Craton mainly consist of garnet, hornblende, plagioclase, quartz, rutile and ilmenite, with or without titanite and epidote. Four samples selected in a south–north profile were studied by the pseudosection approach in order to elucidate the characteristics of their metamorphic evolution, and to better reveal the northwards prograde change in P–T conditions as established previously. For the sample from the lower Wutai Subgroup, garnet exhibits obvious two‐substage growth zoning characteristic of pyrope (Xpy) increasing but grossular (Xgr) decreasing outwards in the core, and both Xpy and Xgr increasing outwards in the rim. Phase modelling using thermocalc suggests that the garnet cores were formed by chlorite breakdown over 7–9 kbar at 530–600 °C, and rims grew from hornblende and epidote breakdown over 9.5–11.5 kbar at 600–670 °C. The isopleths of the minimum An in plagioclase and maximum Xpy in garnet were used to constrain the peak P–T conditions of ~11.5 kbar/670 °C. The modelled peak assemblage garnet + hornblende + epidote+ plagioclase + rutile + quartz matches well the observed one. Plagioclase–hornblende coronae around garnet indicate post‐peak decompression and fluid ingress. For the samples from the south Hengshan Complex, the garnet zoning weaken gradually, reflecting modifications during decompression of the rocks. Using the same approach, the rocks are inferred to have suprasolidus peak conditions, increasing northwards from 11.5 kbar/745 °C, 12.5 kbar/780 °C to 13 kbar/800 °C. Their modelled peak assemblages involve diopside, garnet, hornblende, plagioclase, rutile and quartz, yet diopside is not observed petrographically. The post‐peak decompression is characterized by diopside + garnet + quartz + melt = hornblende + plagioclase, causing the diopside consumption and garnet compositions to be largely modified. Thus, the pesudosection approach is expected to provide better pressure results than conventional thermobarometry, because the later approach cannot be applied with confidence to rocks with multi‐generation assemblages. U–Pb dating of zircon in the Wutai sample records a protolith age of c. 2.50 Ga, and a metamorphic age of c. 1.95 Ga, while zircon in the Hengshan samples records metamorphic ages of c. 1.92 Ga. The c. 1.95 Ga is interpreted to represent the pre‐peak or peak metamorphic stages, and the ages of c. 1.92 Ga are assigned to represent the cooling stages. All rocks in the Wutai–Hengshan area share similar clockwise P–T morphologies. They may represent metamorphic products at different crustal depths in one orogenic event, which included a main thickening stage at c. 1.95 Ga followed by a prolonged uplift and cooling after 1.92 Ga.  相似文献   

14.
LAICPMS in situ U–Pb monazite geochronology and P–T pseudosections are combined to evaluate the timing and physical conditions of metamorphism in the SE Anmatjira Range in the Aileron Province, central Australia. All samples show age peaks at c. 15801555 Ma, with three of five samples showing additional discrete age peaks between c. 1700 and 1630 Ma. P–T phase diagrams calculated for garnetsillimanitecordieriteK‐feldsparilmenite–melt bearing metapelitic rocks have overlapping peak mineral assemblage stability fields at ~870920 °C and ~6.57.2 kbar. P–T modelling of a fine‐grained spinelcordieritegarnetbiotite reaction microstructure suggests retrograde P–T conditions evolved down pressure and temperature to ~3–5.5 kbar and ~610–850 °C. The combined geochronological and P–T results indicate the SE Anmatjira Range underwent high‐temperature, low‐pressure metamorphism at c. 15801555 Ma, and followed an apparently clockwise retrograde path. The high apparent thermal gradient necessary to produce the estimated P–T conditions does not appear to reflect decompression of high‐P assemblages, nor is there syn‐metamorphic magmatism or structural evidence for extension. Similar to previous workers, we suggest the high‐thermal gradient P–T conditions could have been achieved by heating, largely driven by high heat production from older granites in the region.  相似文献   

15.
The South Altyn orogen in West China contains ultra high pressure (UHP) terranes formed by ultra‐deep (>150–300 km) subduction of continental crust. Mafic granulites which together with ultramafic interlayers occur as blocks in massive felsic granulites in the Bashiwake UHP terrane, are mainly composed of garnet, clinopyroxene, plagioclase, amphibole, rutile/ilmenite, and quartz with or without kyanite and sapphirine. The kyanite/sapphirine‐bearing granulites are interpreted to have experienced decompression‐dominated evolution from eclogite facies conditions with peak pressures of 4–7 GPa to high pressure (HP)–ultra high temperature (UHT) granulite facies conditions and further to low pressure (LP)–UHT facies conditions based on petrographic observations, phase equilibria modelling, and thermobarometry. The HP–UHT granulite facies conditions are constrained to be 2.3–1.6 GPa/1,000–1,070°C based on the observed mineral assemblages of garnet+clinopyroxene+rutile+plagioclase+amphibole±quartz and measured mineral compositions including the core–rim increasing anorthite in plagioclase (XAn = 0.52–0.58), core–rim decreasing jadeite in clinopyroxene (XJd = 0.20–0.15), and TiO2 in amphibole (TiM2/2 = 0.14–0.18). The LP–UHT granulite facies conditions are identified from the symplectites of sapphirine+plagioclase+spinel, formed by the metastable reaction between garnet and kyanite at <0.6–0.7 GPa/940–1,030°C based on the calculated stability of the symplectite assemblages and sapphirine–spinel thermometer results. The common granulites without kyanite/sapphirine are identified to record a similar decompression evolution, including eclogite, HP–UHT granulite, and LP–UHT granulite facies conditions, and a subsequent isobaric cooling stage. The decompression under HP–UHT granulite facies is estimated to be from 2.3 to 1.3 GPa at ~1,040°C on the basis of textural records, anorthite content in plagioclase (XAn = 0.25–0.32), and grossular content in garnet (XGrs = 0.22–0.19). The further decompression to LP–UHT facies is defined to be >0.2–0.3 GPa based on the calculated stability for hematite‐bearing ilmenite. The isobaric cooling evolution is inferred mainly from the amphibole (TiM2/2 = 0.14–0.08) growth due to the crystallization of residual melts, consistent with a temperature decrease from >1,000°C to ~800°C at ~0.4 GPa. Zircon U–Pb dating for the two types of mafic granulite yields similar protolith and metamorphic ages of c. 900 Ma and c. 500 Ma respectively. However, the metamorphic age is interpreted to represent the HP–UHT granulite stage for the kyanite/sapphirine‐bearing granulites, but the isobaric cooling stage for the common granulites on the basis of phase equilibria modelling results. The two types of mafic granulite should share the same metamorphic evolution, but show contrasting features in petrography, details of metamorphic reactions in each stage, thermobarometric results, and also the meaning of zircon ages as a result of their different bulk‐rock compositions. Moreover, the UHT metamorphism in UHP terranes is revealed to represent the lower pressure overprinting over early UHP assemblages during the rapid exhumation of ultra‐deep subducted continental slabs, in contrast to the cause of traditional UHT metamorphism by voluminous heat addition from the mantle.  相似文献   

16.
The Fuping Complex is one of the important basement terranes within the central segment of the Trans‐North China Orogen (TNCO) where mafic granulites are exposed as boudins within tonalite–trondhjemite–granodiorite (TTG) gneisses. Garnet in these granulites shows compositional zoning with homogeneous cores formed in the peak metamorphic stage, surrounded by thin rims with an increase in almandine and decrease in grossular contents suggesting retrograde decompression and cooling. Petrological and phase equilibria studies including pseudosection calculation using thermocalc define a clockwise P–T path. The peak mineral assemblages comprise garnet+clinopyroxene+amphibole+quartz+plagioclase+K‐feldspar+ilmenite±orthopyroxene±magnetite, with metamorphic P–T conditions estimated at 8.2–9.2 kbar, 870–882 °C (15FP‐02), 9.6–11.3 kbar, 855–870 °C (15FP‐03) and 9.7–10.5 kbar, 880–900 °C (15FP‐06) respectively. The pseudosections for the subsequent retrograde stages based on relatively higher H2O contents from P/T–M(H2O) diagrams define the retrograde P–T conditions of <6.1 kbar, <795 °C (15FP‐02), 5.6–5.8 kbar, <795 °C (15FP‐03), and <9 kbar, <865 °C (15FP‐06) respectively. Data from LA‐ICP‐MS zircon U–Pb dating show that the mafic dyke protoliths of the granulite were emplaced at c. 2327 Ma. The metamorphic zircon shows two groups of ages at 1.96–1.90 Ga (peak at 1.93–1.92 Ga) and 1.89–1.80 Ga (peak at 1.86–1.83 Ga), consistent with the two metamorphic events widely reported from different segments of the TNCO. The 1.93–1.92 Ga ages are considered to date the peak granulite facies metamorphism, whereas the 1.86–1.83 Ga ages are correlated with the retrograde event. Thus, the collisional assembly of the major crustal blocks in the North China Craton (NCC) might have occurred during 1.93–1.90 Ga, marking the final cratonization of the NCC.  相似文献   

17.
The East Hebei terrane of North China Craton is characterized by the dome-and-keel structure, a common feature in most Archean cratons, where supracrustal rocks of granulite facies commonly occur as enclaves or rafts in tonalite–trondhjemite–granodiorite (TTG) gneisses. The metamorphic P–T paths of the granulites are significant for addressing the Archean tectonic regimes. Two types of granulite facies paragneiss with pelitic and greywacke compositions from the western margin of Qian'an gneiss dome are documented for their petrography, mineral chemistry, phase equilibria modelling using thermocalc, and zircon dating. Anticlockwise P–T paths involving the pre-peak pressure increase to the ultra-high temperature peak conditions and post-peak cooling and decompression processes were recognized. The pre-peak pressure increase process was constrained for a pelitic granulite mainly based on the spinel and cordierite inclusions in garnet and rutile corona around ilmenite, where the transition from spinel to garnet is modelled at 6–7 kbar at a fixed T = 1,000°C. For greywacke granulite, the pre-peak pressure increase evolution can be ascertained from the textural relation that orthopyroxene is surrounded by garnet, and the outwards increasing grossular (from 0.03 to 0.05) in the core of the atoll-like garnet (Grt-A), to occur from ~7 kbar at ~1,000°C. The peak P–T conditions for pelitic granulite are roughly limited to 7–11 kbar/890–1,050°C on the basis of the stability of the inferred peak assemblage involving garnet, perthite, sillimanite, rutile/ilmenite, and quartz. The peak P–T condition for greywacke granulite can be well constrained as 9–10 kbar/>1,000°C on the basis of the maximum grossular content (XGrs = 0.045–0.050) in the core of subhedral garnet (Grt-B) and the mantle of Grt-A together with an average re-integrated anorthite content (XAn = 0.07) in K-feldspar. The peak temperature condition is consistent with the ternary feldspar thermometer results mostly of 950–1,020°C for antiperthite and perthite in greywacke granulite, and in accordance with the development of oriented needle-like exsolution of Ti±Fe oxides in garnet from pelitic granulite. The post-peak cooling and decompression process was consistent with the decreasing XGrs in the mantle of Grt-A and core of Grt-B in greywacke sample, and the final-stage cooling conditions can be well constrained from the stability of final assemblages marked by the later growth of biotite, as 8–9 kbar/820–880°C for pelitic granulite and 6–9 kbar/840–890°C for greywacke granulite. Zircon dating yields provenance ages from 3.34 to 2.57 Ga and metamorphic ages of c. 2.50 Ga for the two types of granulite. The metamorphic ages overlap the final pulse of the Neoarchean magmatic activity of TTGs that ranges from c. 2.56 to c. 2.48 Ga with a peak at c. 2.52 Ga. Combining the development of dome-and-keel structures, the penecontemporaneity between the metamorphism of supracrustal rocks and TTG magmatic activity, and also the unique anticlockwise P–T paths, we prefer a vertical sagduction regime to interpret the tectonic evolution of the East Hebei terrane, which may be also significant for other Archean cratons.  相似文献   

18.
The Shirokaya Salma eclogite‐bearing complex is located in the Archean–Palaeoproterozoic Belomorian Province (Russia). Its eclogites and eclogitic rocks show multiple clinopyroxene breakdown textures, characterized by quartz–amphibole, orthopyroxene and plagioclase lamellae. Representative samples, a fresh eclogite, two partly retrograded eclogites, and a strongly retrograded eclogitic rock, were collected for this study. Two distinct mineral assemblages—(1) omphacite+garnet+quartz+rutile±amphibole and (2) clinopyroxene+garnet+amphibole+plagioclase+quartz+rutile+ilmenite±orthopyroxene—are described. Based on phase equilibria modelling, these assemblages correspond to the eclogite and granulite facies metamorphism that occurred at 16–18 kbar, 750–800°C and 11–15 kbar, 820–850°C, respectively. The quartz–amphibole lamellae in clinopyroxene formed during retrogression with water ingress, but do not imply UHP metamorphism. The superfine orthopyroxene lamellae developed due to breakdown of an antecedent clinopyroxene (omphacite) during retrogression that was triggered by decompression from the peak of metamorphism, while the coarser orthopyroxene grains and rods formed afterwards. The P–T path reconstructed for the Shirokaya Salma eclogites is comparable to that of the adjacent 1.9 Ga Uzkaya Salma eclogite (Belomorian Province), and those of several other Palaeoproterozoic high‐grade metamorphic terranes worldwide, facts allowing us to debate the exact timing of eclogite facies metamorphism in the Belomorian Province.  相似文献   

19.
The time‐scales and P–T conditions recorded by granulite facies metamorphic rocks permit inferences about the geodynamic regime in which they formed. Two compositionally heterogeneous cordierite–spinel‐bearing granulites from Vizianagaram, Eastern Ghats Province (EGP), India, were investigated to provide P–T–time constraints using petrography, phase equilibrium modelling, U–Pb geochronology, the rare earth element composition of zircon and monazite, and Ti‐in‐zircon thermometry. These ultrahigh temperature (UHT) granulites preserve discrete compositional layering in which different inferred peak assemblages are developed, including layers bearing garnet–sillimanite–spinel, and others bearing orthopyroxene–sillimanite–spinel. These mineral associations cannot be reproduced by phase equilibrium modelling of whole‐rock compositions, indicating that the samples became domainal on a scale less than that of a thin section, even at UHT conditions. Calculation of the P–T stability fields for six compositional domains within which the main rock‐forming minerals are considered to have attained equilibrium suggests peak metamorphic conditions of ~6.8–8.3 kbar at ~1,000°C. In most of these domains, the subsequent evolution resulted in the growth of cordierite and final crystallization of melt at an elevated (residual) H2O‐undersaturated solidus, consistent with <1 kbar of decompression. Concordant U–Pb ages obtained by SHRIMP from zircon (spread 1,050–800 Ma) and monazite (spread 950–800 Ma) demonstrate that crystallization of these minerals occurred during an interval of c. 250 Ma. By combining LA‐ICP‐MS U–Pb zircon ages with Ti‐in‐zircon temperatures from the same analysis sites, we show that the crust may have remained above 900°C for a minimum of c. 120 Ma between c. 1,000 and c. 880 Ma. Overall, the results suggest that, in the interval 1,050 to 800 Ma, the evolution of the Vizianagaram granulites culminated with UHT conditions from c. 1,000 Ma to c. 880 Ma, associated with minor decompression, before further zircon crystallization at c. 880–800 Ma during cooling to the solidus. However, these rocks are adjacent to the Paderu–Anantagiri–Salur crustal block to the NW that experienced counterclockwise P–T–t paths, and records similar UHT peak metamorphic conditions (7–8 kbar, ~950°C) followed by near‐isobaric cooling, and has a similar chronology during the Neoproterozoic. The limited decompression inferred at Vizianagaram may be explained by partial exhumation due to thrusting of this crustal block over the adjacent Paderu–Anantagiri–Salur crustal block. The residual granulites in both blocks have high concentrations of heat‐producing elements and likely remained hot at mid‐crustal depths throughout a period of relative tectonic quiescence in the interval 800–550 Ma. During the Cambrian Period, the EGP was located in the hinterland of the Denman–Pinjarra–Prydz orogen. A later concordant population of zircon dated at 511 ± 6 Ma records crystallization at temperatures of ~810°C. This age may record a low‐degree of melting due to limited influx of fluid into hot, weak crust in response to convergence of the Crohn craton with a composite orogenic hinterland comprising the Rayner terrane, EGP, and cratonic India.  相似文献   

20.
Reconstructing late Palaeozoic metamorphism of the Central Asian Orogenic Belt (CAOB) can provide a better understanding of how the CAOB formed. The petrology of sillimanite-bearing metapelitic schists from high-grade portions of the Permian Chinese Altai metamorphic belt (andalusite-type) reflects the effects of poorly understood high-T, low-P metamorphism. Phase equilibria modelling in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–TiO2–O (NCKFMASHTO) system restricts PT conditions of the sillimanite schists to approximately 635–670°C at approximately 5.8–6.8 kbar. SHRIMP U–Pb analyses of zircon from the rocks yield a concordant age of 299.2 ± 3.4 Ma. Combined with the slightly younger (292.8 ± 2.3 Ma) areally restricted pelitic granulite with peak P?T conditions of approximately 780–800°C at approximately 5–6 kbar and high-T granulite with P?T conditions of approximately 860°C at approximately 6 kbar, these metamorphic rocks reflect prograde heating at relatively low pressure in early Permian time. Together with contemporary and widespread magmatic activities, they are best explained in the context of a post-orogenic extensional environment related to a mantle plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号