首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degree of recrystallization of carbonaceous material (CM), as monitored by Raman microspectroscopy, was examined as a function of metamorphic grade in two well‐studied contact aureoles containing carbonaceous pelites: the Nelson aureole, British Columbia and the Ballachulish aureole, Scotland. Here, we use (a) the R2 ratio extracted from the Raman spectrum of CM as a proxy for the degree of graphitization (0.0 in perfect graphite then increasing with structural defects) and (b) the second‐order S1 band (~2,700 cm?1) as a marker for the tridimensional ordering of CM. The Nelson aureole (garnet–staurolite–andalusite–sillimanite–K‐feldspar sequence, ~550–650°C, 3.5–4.0 kbar) was developed in rocks that were unmetamorphosed prior to contact metamorphism, whereas the Ballachulish aureole (cordierite–andalusite–K‐feldspar–sillimanite sequence, ~550–700°C, ~3.0 kbar) was developed in rocks that had been metamorphosed to garnet grade conditions (~7 kbar, ~500°C) c. 45 Ma before contact metamorphism. Thirty‐one samples were examined from Nelson and 29 samples from Ballachulish. At Nelson, the R2 ratio steadily decreases from ~0.25 to 0.0 as the igneous contact is approached, whereas at Ballachulish, the R2 ratio remains largely unchanged from regional values (~0.20–0.25) until less than 100 m from the igneous contact. The second‐order S1 band reveals that carbonaceous material (CM) was transformed to highly “ordered” locally tridimensional graphitic carbon at Ballachulish by regional metamorphism prior to contact metamorphism, whereas CM was still a disordered turbostratic (bidimensional) material before contact metamorphism in the case of Nelson. Pretexturation of CM likely induced sluggish recrystallization of CM and delayed graphitization in the Ballachulish aureole. Temperatures of recrystallization of the CM in the two aureoles were estimated using different published calibrations of the thermometry based on Raman Spectroscopy of Carbonaceous Material (RSCM), with differences among the calibrations being minor. In the Nelson aureole, temperatures are in reasonable agreement with those indicated by the metapelitic phase equilibria (all within 50°C, most within 25°C). In the Ballachulish aureole, the retarded crystallization noted above results in increasing underestimates of temperatures compared to the metapelitic phase equilibria (up to ~75°C too low within 200 m of the igneous contact). Our study calls for careful attention when using RSCM thermometry in complexly polymetamorphosed rocks to assess properly the meaning of the calculated temperature.  相似文献   

2.
This study places new constraints on the pressure–temperature (P–T) path and duration of high‐temperature (HT) metamorphism recorded by Archean granulite facies metasedimentary rocks from the northern Wyoming Province in the eastern Beartooth Mountains, MT and WY, USA. These rocks exist as m‐ to km‐scale xenoliths within a c. 2.8 Ga calc‐alkaline granitoid batholith. Different interpretations of the timing of HT metamorphism relative to batholith intrusion in previous works have led to ambiguity over the mechanism by which these rocks were heated (i.e. batholith intrusion v. a later, cryptic event). The P–T path recorded by these rocks and the duration of this path may be indicative of the heating mechanism but are not currently well constrained. Here, we combine phase equilibria thermobarometry and diffusion modelling of major element zonation in garnet in order to constrain the P–T path of HT metamorphism and the durations of different parts of this path. It is shown that these rocks record a tight, clockwise P–T path characterized by near‐isobaric heating at ~6.5–7 kbar to ?770–800°C, HT decompression to ~6 kbar, 780–800°C, followed by limited decompression while cooling. Diffusion modelling of major element zonation in garnet suggests that HT decompression was brief (likely <1 Ma), and that cooling rates following this decompression were on the order of 10–100°C/Ma. Substantial changes in apparent thermal gradient along this P–T path indicate that the rocks record a significant but short‐lived thermal anomaly that occurred in the Wyoming mid‐crust in the Late Archean.  相似文献   

3.
The degree of graphitization of carbonaceous material (CM) has been widely used as an indicator of metamorphic grade. Previous work has demonstrated that peak metamorphic temperature (T) of regional metamorphic rocks can be estimated by an area ratio (R2) of peaks recognized in Raman spectra of CM. The applicability of this method to low‐pressure (<3 kbar) contact metamorphism was tested using Raman spectroscopic analyses of samples from two contact‐metamorphic aureoles in Japan (Daimonji and Kasuga areas). A suitable measurement procedure allows the dependence of the geothermometer on sample type (thin section, chip) and incident angle of laser beam relative to the c‐axes of CM to be tested. Two important general results are: (i) in addition to standard thin sections, chips are also suitable for spectral analysis; and (ii) the incident angle of the laser beam does not significantly affect the temperature estimation, i.e. spectral measurements for the geothermometer can be carried out irrespective of the crystallographic orientation. A laser wavelength of 532 nm was used in this study compared with 514.5 nm in an independent previous study. A comparison shows that the use of a 532‐nm laser results in a slightly, but systematically larger R2 ratio than that of a 514.5‐nm laser. Taking this effect into account, our results show that there is a slight but distinct difference between the R2–T correlations shown by contact and regional metamorphic rocks: the former are slightly better‐crystallized (have slightly lower R2 values) than the latter at the same temperature. This difference is interpreted as due to the degree of associated deformation. Despite the slight difference, the results of this study coincide within the estimated errors of ±50 °C with those of the previously proposed Raman CM geothermometer, thus demonstrating the applicability of this method to contact metamorphism. To facilitate more precise temperature estimates in regions of contact metamorphism, a new calibration for analyses using a 532‐nm laser is derived. Another important observation is that the R2 ratio of metamorphosed CM in pelitic and psammitic rocks is highly heterogeneous with respect to a single sample. To obtain a reliable temperature estimate, the average R2 value must be determined by using a substantial number of measurements (usually N > 50) that adequately reflects the range of sample heterogeneity. Using this procedure (with 532‐nm laser) and adapting our new calibration, the errors of the Raman CM geothermometer for contact metamorphic rocks decrease to ~±30 °C.  相似文献   

4.
Sedimentary basins containing igneous intrusions within sedimentary reservoir units represent an important risk in petroleum exploration. The Upper Triassic to Lower Jurassic sediments at Wilhelm?ya(Svalbard) contains reservoir heterogeneity as a result of sill emplacement and represent a unique case study to better understand the effect of magmatic intrusions on the general burial diagenesis of siliciclastic sediments. Sills develop contact metamorphic aureoles by conduction as presented in many earlier studies. However, there is significant impact of localized hydrothermal circulation systems affecting reservoir sediments at considerable distance from the sill intrusions. Dolerite sill intrusions in the studied area are of limited vertical extent(~12 m thick), but created localized hydrothermal convection cells affecting sediments at considerable distance(more than five times the thickness of the sill)from the intrusions. We present evidence that the sedimentary sequence can be divided into two units:(1) the bulk poorly lithified sediment with a maximum burial temperature much lower than 60-70 ℃,and(2) thinner intervals outside the contact zone that have experienced hydrothermal temperatures(around 140 ℃). The main diagenetic alteration associated with normal burial diagenesis is minor mechanical plastic deformation of ductile grains such as mica. Mineral grain contacts show no evidence of pressure dissolution and the vitrinite reflectance suggests a maximum temperature of ~40 ℃. Contrary to this, part of the sediment, preferentially along calcite cemented flow baffles, show evidence of hydrothermal alteration. These hydrothermally altered sediment sections are characterized by recrystallized carbonate cemented intervals. Further, the hydrothermal solutions have resulted in localized sericitization(illitization) of feldspars, albitization of both K-feldspar and plagioclase and the formation of fibrous illite nucleated on kaolinite. These observations suggest hydrothermal alteration at T 120-140 ℃ at distances considerably further away than expected from sill heat dissipation by conduction only, which commonly affect sediments about twice the thickness of the sill intrusion. We propose that carbonate-cemented sections acted as flow baffles already during the hydrothermal fluid mobility and controlled the migration pathways of the buoyant hot fluids. Significant hydrothermally induced diagenetic alterations affecting the porosity and hence reservoir quality was not noted in the noncarbonate-cemented reservoir intervals.  相似文献   

5.
Low‐pressure and high‐temperature (LP–HT) metamorphism of basaltic rocks, which occurs globally and throughout geological time, is rarely constrained by forward phase equilibrium modelling, yet such calculations provide valuable supplementary thermometric information and constraints on anatexis that are not possible to obtain from conventional thermometry. Metabasalts along the southern margin of the Sudbury Igneous Complex (SIC) record evidence of high‐grade contact metamorphism involving partial melting and melt segregation. Peak metamorphic temperatures reached at least ~925°C at ~1–3 kbar near the SIC contact. Preservation of the peak mineral assemblage indicates that most of the generated melt escaped from these rocks leaving a residuum characterized by a plagioclase–orthopyroxene–clinopyroxene–ilmenite‐magnetite±melt assemblage. Peak temperatures reached ~875°C up to 500 m from the SIC lower contact, which marks the transition to metabasalts that only experienced incipient partial melting without melt loss. Metabasalts ~500 to 750 m from the SIC contact are characterized by a similar two‐pyroxene mineral assemblage, but typically contain abundant hornblende that overgrew clino‐ and orthopyroxene along an isobaric cooling path. Metabasalts ~750 to 1,000 m from the SIC contact are characterized by a hornblende–plagioclase–quartz–ilmenite assemblage indicating temperatures up to ~680°C. Mass balance and phase equilibria calculations indicate that anatexis resulted in 10–20% melt generation in the inner ~500 m of the aureole, with even higher degrees of melting towards the contact. Comparison of multiple models, experiments, and natural samples indicates that modelling in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCFMASHTO) system results in the most reliable predictions for the temperature of the solidus. Incorporation of K2O in the most recent amphibole solution model now successfully predicts dehydration melting by the coexistence of high‐Ca amphibole and silicate melt at relatively low pressures (~1.5 kbar). However, inclusion of K2O as a system component results in prediction of the solidus at too low a temperature. Although there are discrepancies between modelling predictions and experimental results, this study demonstrates that the pseudosection approach to mafic rocks is an invaluable tool to constrain metamorphic processes at LP–HT conditions.  相似文献   

6.
The combination of cathodoluminescence (CL) analysis, temperature and temperature–time calculations, and microstructural numerical modelling offers the possibility to derive the time-resolved evolution of a metamorphic rock. This combination of techniques is applied to a natural laboratory, namely the Ballachulish contact aureole, Scotland. Analysis of the Appin Quartzite reveals that the aureole was produced by two distinct magmatic events and infiltrated by associated fluids. Developing microstructures allow us to divide the aureole into three distinct regions. Region A (0–400?m, 663°C?<?T max?<?714°C) exhibits a three-stage grain boundary migration (GBM) evolution associated with heating, fluid I and fluid II. GBM in region B (400–700?m, 630°C?<?T max?<?663°C) is associated with fluid II only. Region C (>700?m of contact, T max?<?630°C) is characterised by healed intragranular cracks. The combination of CL signature analysis and numerical modelling enables us to recognise whether grain size increase occurred mainly by surface energy-driven grain growth (GG) or strain-induced grain boundary migration (SIGBM). GG and SIGBM result in either straight bands strongly associated with present-day boundaries or highly curved irregular bands that often fill entire grains, respectively. At a temperature of ~620°C, evidence for GBM is observed in the initially dry, largely undeformed quartzite samples. At this temperature, evidence for GG is sparse, whereas at ~663°C, CL signatures typical for GG are commonplace. The grain boundary network approached energy equilibrium in samples that were at least 5?ka above 620°C.  相似文献   

7.
We evaluated the crystallization regime of a zoned pegmatite dike and the degree of magma undercooling at the onset of crystallization by analyzing coeval fluid and melt inclusion assemblages. The liquidus temperature of the pegmatite magma was ~720°C, based on re-melting of crystallized-melt inclusions in heating experiments. The magma crystallized sequentially starting with a thin border zone, which formed in less than one day at an average temperature of ~480°C based on primary fluid inclusions, meaning 240°C undercooling. The primary inclusions from the outer zones were postdated by secondary inclusions trapped between 580 and 720°C, representing fluid exsolved from hotter, still crystallizing inner pegmatite units. The huge temperature contrast between the pegmatite’s inner and outer zones was simulated by conductive-heat numerical modeling. A 2.5 m wide dike emplaced in 220°C rocks cools entirely to <400°C in less than 50 days. Unidirectional and skeletal textures also indicate rapid, disequilibrium crystallization.  相似文献   

8.
The results of the study of clay mineral alterations in Upper Pleistocene sediments of the southern trough in the Guaymas Basin (Gulf of California) due to the influence of hydrothermal solutions and heat produced by sill intrusions are discussed. Core samples from DSDP Holes 477 and 477A were taken for the analysis of clay minerals. Application of the method of modeling X-ray diffraction patterns of oriented specimens of the finely dispersed particles made it possible to establish the phase composition of clay minerals, determine their structural parameters, and obtain reliable quantitative estimates of their contents in natural mixtures. The modeling data allowed us to characterize reliably the transformation of clay minerals in sediments of the hydrothermally active southern trough in the Guaymas Basin. In Upper Pleistocene sandy–clayey sediments of the southern trough, changes in the composition of clay minerals occurred under the influence of a long-living hydrothermal system. Its lower part (interval 170.0–257.5 m) with maximum temperatures (~300°C) was marked by the formation of chlorite. Terrigenous clay minerals are not preserved here. Saponite appears at a depth of 248 m in the chlorite formation zone. Higher in the sedimentary section, the interval 146–170 m is also barren of terrigenous clay minerals. Sediments of this interval yielded two newly formed clay minerals (chlorite and illite), which were formed at lower temperatures (above 180°C and below 300°C, approximately up to ~250°C), while the relatively low-temperature upper part (110–146 m) of the hydrothermal system (from ~140°C to ~180°C) includes the mixture of terrigenous and newly formed clay minerals. Terrigenous illite is preserved here. Illitization of the mixed-layer illite–smectite was subjected to illitization. The terrigenous montmorillonite disappeared, and chlorite–smectite with 5–10% of smectite layers were formed. In the upper interval (down to approximately 110 mbsf), the composition of terrigenous clay minerals remains unchanged. They are composed of the predominant mixed-layer illite–smectite and montmorillonite, the subordinate illite, mixed-layer chlorite–smectite with 5% of smectite layers, mixed-layer kaolinite–smectite with 30% of smectite layers, and kaolinite. This composition of clay minerals changed under the influence of sill intrusions into the sedimentary cover at 58–105 m in the section of Hole 477. The most significant changes are noted in the 8-m-thick member above the sill at 50–58 m. The upper part of this interval is barren of the terrigenous mixed-layer illite–smectite, which is replaced by the newly formed trioctahedral smectite (saponite). At the same time, the terrigenous dioctahedral smectite (montmorillonite) is preserved. The composition of terrigenous clay minerals remains unchanged at the top of the unit underlying the sill base.  相似文献   

9.
Raman spectra of carbonaceous material in metasediments: a new geothermometer   总被引:13,自引:0,他引:13  
Metasedimentary rocks generally contain carbonaceous material (CM) deriving from the evolution of organic matter originally present in the host sedimentary rock. During metamorphic processes, this organic matter is progressively transformed into graphite s.s. and the degree of organisation of CM is known as a reliable indicator of metamorphic grade. In this study, the degree of organisation of CM was systematically characterised by Raman microspectroscopy across several Mesozoic and Cenozoic reference metamorphic belts. This degree of organisation, including within‐sample heterogeneity, was quantified by the relative area of the defect band (R2 ratio). The results from the Schistes Lustrés (Western Alps) and Sanbagawa (Japan) cross‐sections show that (1) even through simple visual inspection, changes in the CM Raman spectrum appear sensitive to variations of metamorphic grade, (2) there is an excellent agreement between the R2 values calculated for the two sections when considering samples with an equivalent metamorphic grade, and (3) the evolution of the R2 ratio with metamorphic grade is controlled by temperature (T). Along the Tinos cross‐section (Greece), which is characterised by a strong gradient of greenschist facies overprint on eclogite facies rocks, the R2 ratio is nearly constant. Consequently, the degree of organisation of CM is not affected by the retrogression and records peak metamorphic conditions. More generally, analysis of 54 samples representative of high‐temperature, low‐pressure to high‐pressure, low‐temperature metamorphic gradients shows that there is a linear correlation between the R2 ratio and the peak temperature [T(°C) = ?445 R2 + 641], whatever the metamorphic gradient and, probably, the organic precursor. The Raman spectrum of CM can therefore be used as a geothermometer of the maximum temperature conditions reached during regional metamorphism. Temperature can be estimated to ± 50 °C in the range 330–650 °C. A few technical indications are given for optimal application.  相似文献   

10.
New petrological and geochronological data are presented on high‐grade ortho‐ and paragneisses from northwestern Ghana, forming part of the Paleoproterozoic (2.25–2.00 Ga) West African Craton. The study area is located in the interference zone between N–S and NE–SW‐trending craton‐scale shear zones, formed during the Eburnean orogeny (2.15–2.00 Ga). High‐grade metamorphic domains are separated from low‐grade greenstone belts by high‐strain zones, including early thrusts, extensional detachments and late‐stage strike‐slip shear zones. Paragneisses sporadically preserve high‐pressure, low‐temperature (HP–LT) relicts, formed at the transition between the blueschist facies and the epidote–amphibolite sub‐facies (10.0–14.0 kbar, 520–600 °C), and represent a low (~15 °C km?1) apparent geothermal gradient. Migmatites record metamorphic conditions at the amphibolite–granulite facies transition. They reveal a clockwise pressure–temperature–time (P–T–t) path characterized by melting at pressures over 10.0 kbar, followed by decompression and heating to peak temperatures of 750 °C at 5.0–8.0 kbar, which fit a 30 °C km?1 apparent geotherm. A regional amphibolite facies metamorphic overprint is recorded by rocks that followed a clockwise P–T–t path, characterized by peak metamorphic conditions of 7.0–10.0 kbar at 550–680 °C, which match a 20–25 °C km?1 apparent geotherm. These P–T conditions were reached after prograde burial and heating for some rock units, and after decompression and heating for others. The timing of anatexis and of the amphibolite facies metamorphic overprint is constrained by in‐situ U–Pb dating of monazite crystallization at 2138 ± 7 and 2130 ± 7 Ma respectively. The new data set challenges the interpretation that metamorphic breaks in the West African Craton are due to diachronous Birimian ‘basins’ overlying a gneissic basement. It suggests that the lower crust was exhumed along reverse, normal and transcurrent shear zones and juxtaposed against shallow crustal slices during the Eburnean orogeny. The craton in NW Ghana is made of distinct fragments with contrasting tectono‐metamorphic histories. The range of metamorphic conditions and the sharp lateral metamorphic gradients are inconsistent with ‘hot orogeny’ models proposed for many Precambrian provinces. These findings shed new light on the geodynamic setting of craton assembly and stabilization in the Paleoproterozoic. It is suggested that the metamorphic record of the West African Craton is characteristic of Paleoproterozoic plate tectonics and illustrates a transition between Archean and Phanerozoic orogens.  相似文献   

11.
New pseudosection modelling was applied to better constrain the P–T conditions and evolution of glaucophane‐bearing rocks in the Tamayen block of the Yuli belt, recognized as the world's youngest known blueschist complex. Based on the predominant clinoamphibole, textural relationships, and mineral compositions, these glaucophane‐bearing high‐P rocks can be divided into four types. We focused on the three containing garnet. The chief phase assemblages are (in decreasing mode): amphibole + quartz + epidote + garnet + chlorite + rutile/titanite (Type‐I), phengite + amphibole + quartz + garnet + chlorite + epidote + titanite + biotite + magnetite (Type‐II), and amphibole + quartz + albite + epidote + garnet + rutile + hematite + titanite (Type‐III). Amphibole exhibits compositional zoning from core to rim as follows: glaucophane → pargasitic amphibole → actinolite (Type‐I), barroisite → Mg‐katophorite/taramite → Fe‐glaucophane (Type‐II), glaucophane → winchite (Type‐III). Using petrographic data, mineral compositions and Perple_X modelling (pseudosections and superimposed isopleths), peak P–T conditions were determined as 13 ± 1 kbar and 550 ± 40 °C for Type‐I, 10.5 ± 0.5 kbar and 560 ± 30 °C for Type‐II (thermal peak) and 11 ± 1 kbar and 530 ± 30 °C for Type‐III. The calculations yield higher pressures and temperatures than previously thought; the difference is ~1–6 kbar and 50–200 °C. The three rock types record similar P–T retrograde paths with clockwise trajectories; all rocks followed trajectories with substantial pressure decrease under near‐isothermal conditions (Type‐I and Type‐III), with the probable exception of Type‐II where decompression followed colder geotherms. The P–T paths suggest a tectonic environment in which the rocks were exhumed from maximum depths of ~45 km within a subduction channel along a relative cold geothermal gradient of ~11–14 °C km?1.  相似文献   

12.
Pelitic schists from contact aureoles surrounding mafic–ultramafic plutons in Westchester County, NY record a high‐P (~0.8 GPa) high‐T (~790 °C) contact overprint on a Taconic regional metamorphic assemblage (~0.5 GPa). The contact metamorphic assemblage of a pelitic sample in the innermost aureole of the Croton Falls pluton, a small (<10 km2) gabbroic body, consists of quartz–plagioclase–biotite–garnet–sillimanite–ilmenite–graphite–Zn‐rich Al‐spinel. Both K‐feldspar and muscovite are absent, and abundant biotite, plagioclase, sillimanite, quartz and ilmenite inclusions are found within subhedral garnet crystals. Unusually low bulk‐rock Na and K contents imply depletion of alkalic components and silica through anatexis and melt extraction during contact heating relative to typical metapelites outside the aureole. Thermobarometry on nearby samples lacking a contact overprint yields 620–640 °C and 0.5–0.6 GPa. In the aureole sample, WDS X‐ray chemical maps show distinct Ca‐enriched rims on both garnet and matrix plagioclase. Furthermore, biotite inclusions within garnet have significantly higher Mg concentration than matrix biotite. Thermobarometry using GASP and garnet–biotite Mg–Fe exchange equilibria on inclusions and adjacent garnet host interior to the high‐Ca rim zone yield ~0.5 ± 0.1 GPa and ~620 ± 50 °C. Pairs in the modified garnet rim zone yield ~0.9 ± 0.1 GPa and ~790 ± 50 °C. Thermocalc average P–T calculations yield similar results for core (~0.5 ± ~0.1 GPa, ~640 ± ~80 °C) and rim (~0.9 ± ~0.1 GPa, ~800 ± ~90 °C) equilibria. The core assemblages are interpreted to record the P–T conditions of peak metamorphism during the Taconic regional event whereas the rim compositions and matrix assemblages are interpreted to record the P–T conditions during the contact event. The high pressures deduced for this later event are interpreted to reflect loading due to the emplacement of Taconic allochthons in the northern Appalachians during the waning stages of regional metamorphism (after c. 465 Ma) and before contact metamorphism (c. 435 Ma). In the absence of contact metamorphism‐induced recrystallization, it is likely that this regional‐scale loading would remain cryptic or unrecorded.  相似文献   

13.
The Eger Complex in the northwestern Bohemian Massif consists mainly of amphibolite facies granitic gneisses containing a subordinate volume of felsic granulites. Microstructural changes and modelling of metamorphic conditions for both rock types suggest a short‐lived static heating from ~760 to ~850 °C at a constant pressure of ~16 kbar, which led to the partial granulitization of the granitoid rocks. Detailed study of the protolith zircon modifications and modelling of the Zr re‐distribution during the transition from amphibolite to granulite facies suggests that the development of c. 340 Ma old zircon rims in the granulite facies sample is the result of recrystallization of older (c. 475 Ma) protolith zircon. This study suggests that the partial granulitization is a result of a short exposure of the Eger Complex metagranitoids to a temperature of ~850 °C at the base of an arc/fore‐arc domain and their subsequent rapid exhumation during the Lower Carboniferous collision along the western margin of the Bohemian Massif.  相似文献   

14.
We combine structural observations, petrological data and 40Ar–39Ar ages for a stack of amphibolite facies metasedimentary units that rims high‐P (HP) granulite facies felsic bodies exposed in the southern Bohemian Massif. The partly migmatitic Varied and Monotonous units, and the underlying Kaplice unit, show a continuity of structures that are also observed in the adjacent Blanský les HP granulite body. They all exhibit an earlier NE?SW striking and steeply NW‐dipping foliation (S3), which is transposed into a moderately NW‐dipping foliation (S4). In both the Varied and Monotonous units, the S3 and S4 foliations are characterized by a Sil–Bt–Pl–Kfs–Qtz–Ilm±Grt assemblage, with occurrences of post‐D4 andalusite, cordierite and muscovite. In the Monotonous unit, minute inclusions of garnet, kyanite, sillimanite and biotite are additionally found in plagioclase from a probable leucosome parallel to S3. The Kaplice unit shows rare staurolite and kyanite relicts, a Sil–Ms–Bt–Pl–Qtz±Grt assemblage associated with S3, retrogressed garnet?staurolite aggregates during the development of S4, and post‐D4 andalusite, cordierite and secondary muscovite. Mineral equilibria modelling for representative samples indicates that the Varied unit records conditions higher than ~7 kbar at 725 °C during the transition from S3 to S4, followed by a P?T decrease from ~5.5 kbar/750 °C to ~4.5 kbar/700 °C. The Monotonous unit shows evidence of partial melting in the S3 fabric at P?T above ~8 kbar at 740–830 °C and a subsequent P?T decrease to 4.5–5 kbar/700 °C. The Kaplice unit preserves an initial medium‐P prograde path associated with the development of S3 reaching peak P?T of ~6.5 kbar/640 °C. The subsequent retrograde path records 4.5 kbar/660 °C during the development of S4. 40Ar–39Ar geochronology shows that amphibole and biotite ages cluster at c. 340 Ma close to the HP granulite, whereas adjacent metasedimentary rocks preserve c. 340 Ma amphibole ages, but biotite and muscovite ages range between c. 318 and c. 300 Ma. The P?T conditions associated with S3 imply an overturned section of the orogenic middle crust. The shared structural evolution indicates that all mid‐crustal units are involved in the large‐scale folding cored by HP granulites. The retrograde PT paths associated with S4 are interpreted as a result of a ductile thinning of the orogenic crust at a mid‐crustal level. The 40Ar–39Ar ages overlap with U–Pb zircon ages in and around the HP granulite bodies, suggesting a short duration for the ductile thinning event. The post‐ductile thinning late‐orogenic emplacement of the South Bohemian plutonic complex is responsible for a re‐heating of the stacked units, reopening of argon system in mica and a tilting of the S4 foliation to its present‐day orientation.  相似文献   

15.
We examined the effects of crystallinity and crystal morphology on surface hydroxyl concentration of goethite using four kinds of goethite samples prepared by aging a hydrous ferric oxide (ferrihydrite) at different temperatures ranging from 4 to 70?°C. These samples were analyzed with the following methods: powder X-ray diffraction, Brunauer–Emmett–Teller surface area analyzer, atomic force microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and high-resolution X-ray photoelectron spectroscopy (XPS). The first three analyses showed that the goethite aged at lower temperature has lower crystallinity, smaller particle size and lower aspect ratio. The ATR-FTIR analysis revealed that the OH-stretching band of goethite aged at 4?°C moves to slightly higher wavenumber than those of the samples aged at higher temperatures. Their XPS analyses demonstrated that variation in the concentration of surface hydroxyl group ranges from 6.6 (nm?2) for the sample aged at 4?°C to 7.7 (nm?2) for the sample aged at 70?°C. Considering the analytical depth of the XPS (~5?nm), photoelectrons are emitted from the uppermost layers of the analyte. Hence, XPS results are interpreted to reflect variations in the morphology of fine crystals (<100?nm thick). The morphology of the present goethites can be characterized by their aspect ratio, in other words, the degree of development of (110)–(110) intersection edges at which protons preferentially accumulate. This variation in the concentration of surface hydroxyl group revealed by XPS analysis offers experimental evidence for the effects of crystallinity and morphology on the surface chemical properties of goethite.  相似文献   

16.
To understand tectono‐metamorphic processes within or close to the brittle–ductile transition of quartz‐rich crustal rocks in an accretionary wedge, an integrated field, petrological, geochronological and Raman spectroscopic study was conducted on the Mikabu‐Northern Chichibu belt in SW Japan. Field mapping in central Shikoku reveals that the Northern Chichibu belt is comprised of a pile of four tectono‐stratigraphic units, referred to as A, B, C and D units. The A unit (dominated by pelagic sedimentary rocks) represents the structurally lowest and youngest accretionary complex that forms a composite unit with the Mikabu ophiolitic suite. The B unit (consisting of chert‐clastic rock sequences) overlies the A unit and is overlain by the C and D units (mudstone‐matrix mélange units). Raman spectroscopy of carbonaceous material constrains the peak temperature of each unit to be ~290°C for the A unit, 270–290°C for the B unit, 230–250°C for the C unit and ~220°C for the D unit. Ductile deformation and pervasive metamorphism are limited to rocks in the Mikabu, A and B units. Alkali pyroxene and sodic amphibole occur in metabasite from the Mikabu, A and B units, and the widespread occurrence of prograde veins containing lawsonite+quartz pseudomorphs after laumontite was newly recognized from the C unit. Phase petrological data constrain the peak pressure of each unit to be ~0.65 GPa for the Mikabu‐A unit (aragonite stable), ~0.45–0.6 GPa for the B unit (jadeite+albite stable in the structurally lower part), and ~0.35 GPa for the C unit (prehnite+lawsonite stable). The peak metamorphic pressure increases towards structurally lower and younger accretionary complexes, but the thickness of the preserved strata is insufficient to account for the inferred pressure range. The structural–metamorphic relations imply thickening of the accretionary wedge by underplating was followed by a significant phase of thinning by both ductile and brittle processes.  相似文献   

17.
The Yelapa-Chimo Metamorphic Complex forms part of the Jalisco Block in western Mexico and exposes a wide range of Early Cretaceous metamorphic rocks;such as paragneiss,orthogneiss,amphibolites,and migmatites.However,the pressure-temperature(P-T)conditions of metamorphism and partial melting remain poorly studied in the region.To elucidate metamorphic P-T conditions,phase equilibrium modelling was applied to two sillimanite-garnet paragneisses,one amphibole-orthogneiss,and one amphibolite.Sillimanite-garnet paragneisses exhibit a lepidoblastic texture with a biotite+sillimanite+kyanite+garnet+quartz+plagioclase+K-feldspar mineral assemblage.Amphibole-orthogneiss and amphibolite display a nematoblastic texture with an amphibole+(1)plagioclase+quartz+(1)titanite assemblage and an amphibole+(2)plagioclase+(2)titanite+ilmenite retrograde mineral assemblage.Pseudosections calculated for the two sillimanite-garnet paragneiss samples show P-T peak conditions at~6-7.5 kbar and~725-740℃.The results for amphibole-orthogneiss and the amphibolite yield P-T peak conditions at~8.5-10 kbar and~690-710℃.The mode models imply that metasedimentary and metaigneous units can produce up to~20 vol%and~10 vol%of melt,respectively.Modelling within a closed system during isobaric heating suggests that melt compositions of metasedimentary and metaigneous units are likely to have direct implications for the petrogenesis of the Puerto Vallarta Batholith.Our new data indicate that the Yelapa-Chimo Metamorphic Complex evolved through a metamorphic gradient between~23-33℃km^-1and the metamorphic rocks formed at depths between~22 km and~30 km with a burial rate of~2.0 km Ma^-1.Finally,the P-T data for both metasedimentary and metaigneous rocks provide new constraints on an accretionary framework,which is responsible for generating metamorphism and partial melting in the YelapaChimo Metamorphic Complex during the Early Cretaceous.  相似文献   

18.
We document the first occurrence of Fe‐rich olivine‐bearing migmatitic metapelite in the Khondalite Belt, North China Craton. Petrological analyses revealed two exotic assemblages of orthopyroxene+spinel+olivine and orthopyroxene+spinel+cordierite. Phase relation modelling suggests that these assemblages are diagnostic of ultra‐high temperature (UHT) metamorphism in the Fe‐rich system, with temperatures from 1,000 to 1,050°C at 0.6 GPa. U–Th–Pb SIMS analyses on zircon reveal a similar age of c. 1.92 Ga for the olivine‐bearing migmatite and an adjacent gabbronoritic intrusion that is therefore identified as the heat source for the UHT metamorphism. These results, coupled with additional analysis of the famous Tuguiwula sapphirine‐bearing granulite, lead to a re‐appraisal of the P–T path shape and heat source for the UHT metamorphism. We suggest that UHT metamorphism, dated between 1.92 and 1.88 Ga, across the whole Khondalite belt, proceeded from a clockwise P–T evolution with an initial near‐isobaric heating path at ~0.6–0.8 GPa, and a maximum temperature of 1,050°C followed by a cooling path with minor decompression to ~0.5 GPa. Considering our results and previous works, we propose that the orogenic crust underwent partial melting at temperature reaching 850°C and depth of ~20 to ~30 km during a period of c. 30 Ma, between 1.93 and 1.90 Ga. During this time span, the partially molten crust was continuously intruded by mafic magma pulses responsible for local greater heat supply and UHT metamorphism above 1,000°C. We propose that the UHT metamorphism in the Khondalite belt is not related to an extensional post‐collisional event, but is rather syn‐orogenic and associated with mafic magma supplies.  相似文献   

19.
A section of the orogenic middle crust (Orlica‐?nie?nik Dome, Polish/Czech Central Sudetes) was examined to constrain the duration and significance of deformation (D) and intertectonic (I) phases. In the studied metasedimentary synform, three deformation events produced an initial subhorizontal foliation S1 (D1), a subsequent subvertical foliation S2 (D2) and a late subhorizontal axial planar cleavage S3 (D3). The synform was intruded by pre‐, syn‐ and post‐D2 granitoid sheets. Crystallization–deformation relationships in mica schist samples document I1–2 garnet–staurolite growth, syn‐D2 staurolite breakdown to garnet–biotite–sillimanite/andalusite, I2–3 cordierite blastesis and late‐D3 chlorite growth. Garnet porphyroblasts show a linear Mn–Ca decrease from the core to the inner rim, a zone of alternating Ca–Y‐ and P‐rich annuli in the inner rim, and a Ca‐poor outer rim. The Ca–Y‐rich annuli probably reflect the occurrence of the allanite‐to‐monazite transition at conditions of the staurolite isograd, whereas the Ca‐poor outer rim is ascribed to staurolite demise. The reconstructed PT path, obtained by modelling the stability of parageneses and garnet zoning, documents near‐isobaric heating from ~4 kbar/485 °C to ~4.75 kbar/575 °C during I1–2. This was followed by a progression to 4–5 kbar/580–625 °C and a subsequent pressure decrease to 3–4 kbar during D2. Pressure decrease below 3 kbar is ascribed to I2–3, whereas cooling below ~500 °C occurred during D3. In the dated mica schist sample, garnet rims show strong Lu enrichment, oscillatory Lu zoning and a slight Ca increase. These features are also related to allanite breakdown coeval with staurolite appearance. As Lu‐rich garnet rims dominate the Lu–Hf budget, the 344 ± 3 Ma isochron age is ascribed to garnet crystallization at staurolite grade, near the end of I1–2. For the dated sample of amphibole–biotite granitoid sheet, a Pb–Pb single zircon evaporation age of 353 ± 1 Ma is related to the onset of plutonic activity. The results suggest a possible Devonian age for D1, and a Carboniferous burial‐exhumation cycle in mid‐crustal rocks that is broadly coeval with the exhumation of neighbouring HP rocks during D2. In the light of published ages, a succession of telescoping stages with time spans decreasing from c. 10 to 2–3 Ma is proposed. The initially long period of tectonic quiescence (I1–2 phase, c. 10 Ma) inferred in the middle crust contrasts with contemporaneous deformation at deeper levels and points to decoupled PTD histories within the orogenic wedge. An elevated gradient of ~30 °C km?1 and assumed high heating rates of c. 20 °C Ma?1 are explained by the protracted intrusion of granitoid sheets, with or without deformation, whereas fast vertical movements (2–3 Ma, D2 phase) in the crust require the activity of deformation phases.  相似文献   

20.
The Priest pluton contact aureole in the Manzano Mountains, central New Mexico preserves evidence for upper amphibolite contact metamorphism and localized retrograde hydrothermal alteration associated with intrusion of the 1.42 Ga Priest pluton. Quartz–garnet and quartz–sillimanite oxygen isotope fractionations in pelitic schist document an increase in the temperatures of metamorphism from 540 °C, at a distance of 1 km from the pluton, to 690 °C at the contact with the pluton. Comparison of calculated temperature estimates with one‐dimensional thermal modelling suggests that background temperatures between 300 and 350 °C existed at the time of intrusion of the Priest pluton. Fibrolite is found within 300 m of the Priest pluton in pelitic and aluminous schist metamorphosed at temperatures >580 °C. Coexisting fibrolite and garnet in pelitic schist are in oxygen isotope equilibrium, suggesting these minerals were stable reaction products during peak metamorphism. The fibrolite‐in isograd is coincident with the staurolite‐out isograd in pelitic schist, and K‐feldspar is not observed with the first occurrence of fibrolite. This suggests that the breakdown of staurolite and not the second sillimanite reaction controls fibrolite growth in staurolite‐bearing pelitic schist. Muscovite‐rich aluminous schist locally preserves the Al2SiO5 polymorph triple‐point assemblage – kyanite, andalusite and fibrolite. Andalusite and fibrolite, but not kyanite, are in isotopic equilibrium in the aluminous schist. Co‐nucleation of fibrolite and andalusite at 580 °C in the presence of muscovite and absence of K‐feldspar suggests that univariant growth of andalusite and fibrolite occurred. Kyanite growth occurred during an earlier regional metamorphic event at a temperature nearly 80 °C lower than andalusite and fibrolite growth. Quartz–muscovite fractionations in hydrothermally altered pelitic schist and quartzite are small or negative, suggesting that late isotopic exchange between externally derived fluids and muscovite, but not quartz, occurred after peak contact metamorphism and that hydrothermal alteration in pelitic schist and quartzite occurred below the closure temperature of oxygen self diffusion in quartz (<500 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号