首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By comparison with the general features of metamorphic soles (e.g. vertical and lateral extension, metamorphic grade and diagnostic mineral parageneses, deformation and dominant rock types), it is inferred that the amphibolites, metagabbros and hornblendites of the Wadi Um Ghalaga–Wadi Haimur area in the southern part of the Eastern Desert of Egypt represent the metamorphic sole of the Wadi Haimur ophiolite belt. The overlying ultramafic rocks represent overthrusted mantle peridotite. Mineral compositions and thermobarometric studies indicate that the rocks of the metamorphic sole record metamorphic conditions typical of such an environment. The highest P – T conditions ( c . 700 °C and 6.5–8.5 kbar) are preserved in clinopyroxene amphibolites and garnet amphibolites from the top of the metamorphic sole, which is exposed in the southern part of the study area. The massive amphibolites and metagabbros further north (Wadi Haimur) represent the basal parts of the sole and show the lowest P – T  conditions (450–620 °C and 4.7–7.8 kbar). The sole is the product of dynamothermal metamorphism associated with the tectonic displacement of ultramafic rocks. Heat was derived mainly from the hot overlying mantle peridotites, and an inverted P – T  gradient was caused by dynamic shearing during ophiolite emplacement. Sm/Nd dating of whole-rock–metamorphic mineral pairs yields similar ages of c . 630 Ma for clinopyroxene and hornblende, which is interpreted as a lower age limit for ophiolite formation and an upper age limit for metamorphism. A younger Sm/Nd age for a garnet-bearing rock ( c . 590 Ma) is interpreted as reflecting a meaningful cooling age close to the metamorphic peak. Hornblende K/Ar ages in the range 570–550 Ma may reflect thermal events during late orogenic granite magmatism.  相似文献   

2.
陈晨  苏本勋  景揭俊  肖燕  林伟  褚杨  刘霞  白洋 《岩石学报》2018,34(11):3302-3314
在现行板块构造理论的框架下,板块的初始俯冲是岩浆活动和构造运动发生转变的重要过程,亦是理解板块运动的关键节点。在俯冲起始过程中,主要存在四个方面的地质记录,分别为一系列地球化学成分多样的岩浆活动、SSZ型蛇绿岩、变质底板和玻安岩及其对应的铬铁矿床。特提斯造山带作为公认的研究板块构造理论尤其是初始俯冲的关键场所,一直备受地学界的重视。而土耳其南部构造带作为特提斯造山带的重要组成部分,亦是确定亚欧板块和阿拉伯板块之间缝合线存在的重要标志。该南部构造带是研究新特提斯洋俯冲起始的理想场所,上述关于俯冲初始的四个地质记录均保存良好,且有如下方面的重要特点:1)不同地区的镁铁质岩石甚至同一地区的镁铁质岩石具有不同的地球化学特征,从似洋中脊玄武岩,到过渡型岩石类型和玻安质岩石均有发育; 2)大部分蛇绿岩具有完整的序列,各单元及变质底板岩石中普遍发育侵入的基性岩脉,产状多变,是多期岩浆事件的产物; 3)蛇绿岩下部通常发育一套角闪岩相变质底板,且其年龄与蛇绿岩的形成年龄基本一致; 4)蛇绿岩中普遍发育铬铁矿床,以高Cr型为主,部分蛇绿岩中还赋存高Al-高Cr的过渡型铬铁矿,均被认为是幔源岩浆与地幔橄榄岩反应的产物。因而,这些地质体完整记录了新特提斯洋形成-俯冲-消减的演化过程。  相似文献   

3.
Abstract The Catalina Schist of southern California is a subduction zone metamorphic terrane. It consists of three tectonic units of amphibolite-, high- P greenschist- and blueschist-facies rocks that are structurally juxtaposed across faults, forming an apparent inverted metamorphic gradient. Migmatitic and non-migmatitic metabasite blocks surrounded by a meta-ultramafic matrix comprise the upper part of the Catalina amphibolite unit. Fluid-rock interaction at high- P , high- T conditions caused partial melting of migmatitic blocks, metasomatic exchange between metabasite blocks and ultramafic rocks, infiltration of silica into ultramafic rocks, and loss of an albitic component from nonmigmatitic, clinopyroxene-bearing metabasite blocks.
Partial melting took place at an estimated P =˜8–11 kbar and T =˜640–750°C at high H2O activity. The melting reaction probably involved plagioclase + quartz. Trondhjemitic melts were produced and are preserved as leucocratic regions in migmatitic blocks and as pegmatitic dikes that cut ultramafic rocks.
The metasomatic and melting processes reflected in these rocks could be analogous to those proposed for fluid and melt transfer of components from a subducting slab to the mantle wedge. Aqueous fluids rather than melts seem to have accomplished the bulk of mass transfer within the mafic and ultramafic complex.  相似文献   

4.
The Kiziltepe ophiolitic thrust sheet in the Bolkar Mountains of Turkey occurs between two subparallel ophiolite belts bounding the Tauride carbonate platform and represents a remnant of the Cretaceous Neo-Tethyan oceanic lithosphere. It is underlain by foliated amphibolite that represents a metamorphic sole developed at the inception of an intra-oceanic subduction zone in the Neo-Tethys 92-90 Ma. Blueschist-facies overprinting of the amphibolite indicates that the metamorphic sole was dragged deeper into the subduction zone where it experienced increasing P/T with cooling. Regional tectonic constraints suggest a Maastrichtian age for the timing of this blueschist-facies metamorphism. Sodic amphibole-rich veins and crossite/Mg-riebeckite rims on hornblende suggest that growth of blueschist-facies minerals was facilitated by infiltration of fluid along fractures and grain boundaries. We infer a counterclockwise P-T-t trajectory during which metamorphism was accompanied/succeeded by rapid uplift along the northern edge of the Tauride belt in Late Cretaceous-early Tertiary time.  相似文献   

5.
To constrain deep (40–100 km) subduction dynamics, extensive P–T data are provided on the eclogitic Monviso ophiolite derived from the subducted Liguro‐Piemontese oceanic lithosphere (which was exhumed, together with associated continental units, before the Alpine collision). The Monviso ophiolite has so far been interpreted either as a fossilized subduction channel, with tectonic blocks detached from the slab at different depths and gathered in a weak serpentinized matrix, or as a more or less continuous portion of oceanic lithosphere. To evaluate potential heterogeneities within and between the various subunits, extensive sampling was undertaken on metasedimentary rocks and Fe–Ti metagabbros. The results indicate that the Monviso ophiolite comprises two main coherent tectonic subunits (the Monviso and Lago Superiore Units) detached during subduction at different depths and later juxtaposed at epidote–blueschist facies during exhumation along the subduction interface. Raman spectroscopy of carbonaceous material suggests (i) a difference in peak temperature of 50 °C between these two subunits and (ii) a good temperature homogeneity within each subunit. Pseudosections and average P–T estimates using thermocalc in the Lago Superiore Unit suggest for the first time homogeneous HP to UHP conditions (550 °C, 26–27 kbar). Parageneses, peak conditions and tectonic setting are very similar to those of the Zermatt‐Saas ophiolite, 200 km northwards, thus suggesting a common detachment mechanism for the whole Western Alpine belt.  相似文献   

6.
The Zedong ophiolite is the largest ophiolite massif east of Dazhuqu in the Yarlung Zangbo Suture Zone in the southern Tibetan Plateau. However, its age, geodynamic setting and relationship to the Xigaze ophiolite remain controversial. New zircon U–Pb ages, whole-rock geochemical and Nd–Pb isotopic data from ophiolitic units provide constraints on the geodynamic and tectonic evolution of the Zedong ophiolite. U–Pb zircon geochronology of dolerite lavas and late gabbro–diabase dikes yield weighted mean ages of 153.9 ± 2.5 Ma and 149.2 ± 5.1 Ma, respectively. Strong positive εNd(t) and positive Δ7/4Pb and Δ8/4Pb values indicate derivation from a highly depleted mantle source with an isotopic composition similar to that of the Indian MORB-type mantle. The geochemistry of ophiolitic lavas and early dikes are analogous to typical island arc tholeiites whereas late dikes are similar to boninites. The geochemistry of these rock types suggests multi-stage partial melting of the mantle and gradually enhanced subduction influences to the mantle source through time. Combined with the MORB-like 162.9 ± 2.8 Ma Luobusha ophiolitic lavas, we suggest that the Luobusha lavas, Zedong lavas and early dikes originated in an infant proto-arc setting whereas late dikes in the Zedong ophiolite originated in a forearc setting. Together, they represent a Neo-Tethyan subduction initiation sequence. The Late Jurassic intra-oceanic proto-arc to forearc setting of the Zedong ophiolite contrasts with the continental margin forearc setting for the Xigaze ophiolite, which suggests a laterally complex geodynamic setting for ophiolites along the Yarlung Zangbo Suture Zone.  相似文献   

7.
Within the Variscan Orogen, Early Devonian and Late Devonian high‐P belts separated by mid‐Devonian ophiolites can be interpreted as having formed in a single subduction zone. Early Devonian convergence nucleated a Laurussia‐dipping subduction zone from an inherited lithospheric neck (peri‐Gondwanan Cambrian back‐arc). Slab‐retreat induced upper plate extension, mantle incursion and lower plate thermal softening, favouring slab‐detachment within the lower plate and diapiric exhumation of deep‐seated rocks through the overlying mantle up to relaminate the upper plate. Upper plate extension produced mid‐Devonian suprasubduction ocean floor spreading (Devonian ophiolites), while further convergence resulted in plate coupling and intraoceanic ophiolite imbrication. Accretion of the remaining Cambrian ocean heralded Late Devonian subduction of inner sections of Gondwana across the same subduction zone and the underthrusting of mainland Gondwana (culmination of NW Iberian allochthonous pile). Oblique convergence favoured lateral plate sliding, and explained the different lateral positions along Gondwana of terranes separated by Palaeozoic ophiolites.  相似文献   

8.
苏鲁高压超高压变质地体自南而北由高压(HP)、很高压(VHP)和超高压(UHP)变质叠覆岩片组成,前者依次叠覆在后者之上,岩片之间的界限为韧性剪切带。根据超高压变质岩片中角闪岩相岩石与高压变质岩片中绿片岩相岩石的黑云母和白云母Ar_Ar和Rb_Sr测年新结果,结合前人在该区所做的锆石SHRI MP U_Pb、全岩Sm_Nd、Rb_Sr等测年数据综合分析表明,超高压变质岩石的峰期变质年龄为240~220Ma,折返年龄为220~200Ma;而高压变质岩石的峰期变质年龄大于258Ma,起始折返年龄为258~240Ma,折返年龄比超高压变质岩石早30~40Ma。这说明扬子板片并不是整体俯冲和折返的。由于具组分和密度差异,俯冲板块的不同部位沿岩性或构造界面先后分片俯冲和折返,在北苏鲁超高压变质板片开始俯冲时,南苏鲁高压变质板片已开始折返。  相似文献   

9.
《地学前缘(英文版)》2019,10(3):1187-1210
Several types of felsic granitoid rocks have been recognized, intrusive in both the mantle and the crustal sequence of the Semail ophiolite. Several models have been proposed for the source of this suite of tonalites, granodiorites, trondhjemites intrusions, however their genesis is still not clearly understood. The sampled Dadnah tonalites that intruded in the mantle section of the Semail ophiolite display arc-type geochemical characteristics, are high siliceous, low-potassic, metaluminous to weakly peraluminous, enriched in LILE, show positive peaks for Ba, Pb, Eu, negative troughs for U, Ti and occur with low δ18OH2O, moderate εSr and negative εNd values. They have crystallized at temperatures that range from ∼550 °C to ∼720 °C and pressure ranging from 4.4 kbar to 6.5 kbar. The isotopic ages from our tonalite samples range between 98.6 Ma and 94.9 Ma, slightly older and overlapping with the age of the metamorphic sole. Our field observations, mineralogical, petrological, geochemical, isotopic and melt inclusion data suggest that the Dadnah tonalites formed by partial melting (∼10%–15% continuous or ∼12% batch partial melting), accumulation of plagioclase, fractional crystallization (∼55%–57%), and interaction with their host harzburgites. These tonalites were the end result of partial melting and subsequent contamination and mixing of ∼4% oceanic sediments with ∼96% oceanic lithosphere from the subducted slab. This MORB-type slab melt composed from ∼97% recycled oceanic crust and ∼3% of the overlying mantle.We suggest that a possible protolith for these tonalites was the basaltic lavas from the subducted oceanic slab that melted during the initial stages of the supra-subduction zone (SSZ), which was forming synchronously to the spreading ridge axis. The tonalite melts mildly modified due to low degree of mixing and interaction with the overlying lithospheric mantle. Subsequently, the Dadnah tonalites emplaced at the upper part of the mantle sequence of the Semail ophiolite and are geochemically distinct from the other mantle intrusive felsic granitoids to the south.  相似文献   

10.
The Haji‐Abad ophiolite in SW Iran (Outer Zagros Ophiolite Belt) is a remnant of the Late Cretaceous supra‐subduction zone ophiolites along the Bitlis–Zagros suture zone of southern Tethys. These ophiolites are coeval in age with the Late Cretaceous peri‐Arabian ophiolite belt including the Troodos (Cyprus), Kizildag (Turkey), Baer‐Bassit (Syria) and Semail (Oman) in the eastern Mediterranean region, as well as other Late Cretaceous Zagros ophiolites. Mantle tectonites constitute the main lithology of the Haji‐Abad ophiolite and are mostly lherzolites, depleted harzburgite with widespread residual and foliated/discordant dunite lenses. Podiform chromitites are common and are typically enveloped by thin dunitic haloes. Harzburgitic spinels are geochemically characterized by low and/or high Cr number, showing tendency to plot both in depleted abyssal and fore‐arc peridotites fields. Lherzolites are less refractory with slightly higher bulk REE contents and characterized by 7–12% partial melting of a spinel lherzolitic source whereas depleted harzburgites have very low abundances of REE and represented by more than 17% partial melting. The Haji‐Abad ophiolite crustal sequences are characterized by ultramafic cumulates and volcanic rocks. The volcanic rocks comprise pillow lavas and massive lava flows with basaltic to more‐evolved dacitic composition. The geochemistry and petrology of the Haji‐Abad volcanic rocks show a magmatic progression from early‐erupted E‐MORB‐type pillow lavas to late‐stages boninitic lavas. The E‐MORB‐type lavas have LREE‐enriched patterns without (or with slight) depletion in Nb–Ta. Boninitic lavas are highly depleted in bulk REEs and are represented by strong LREE‐depleted patterns and Nb–Ta negative anomalies. Tonalitic and plagiogranitic intrusions of small size, with calc‐alkaline signature, are common in the ophiolite complex. The Late Cretaceous Tethyan ophiolites like those at the Troodos, eastern Mediterranean, Oman and Zagros show similar ages and geochemical signatures, suggesting widespread supra‐subduction zone magmatism in all Neotethyan ophiolites during the Late Cretaceous. The geochemical patterns of the Haji‐Abad ophiolites as well as those of other Late Cretaceous Tethyan ophiolites, reflect a fore‐arc tectonic setting for the generation of the magmatic rocks in the southern branch of Neotethys during the Late Cretaceous. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The SW Antalya Complex is an assemblage of Mesozoic carbonate platform, margin and ophiolitic rocks which record the formation and tectonic emplacement of a small Mesozoic ocean basin. The late Cretaceous ophiolitic rocks are located at two localities, namely the relatively intact Tekirova ophiolite to the east of Kemer zone and the dismembered Gödene ophiolite to the west of Kemer zone. The Tekirova (Antalya) ophiolite comprises harzburgitic tectonites, ultramafic to mafic cumulates, isotropic gabbros and sheeted dikes. Numerous isolated dikes, ranging in thickness from 5 cm to 10 m, intruded the crustal rocks at different structural levels. The isotropic gabbros are represented by gabbro, diorite and quartz diorite rocks with granular to ophitic–subophitic textures. The isolated dikes are characterized by dolerite, diabase and microdiorite with ophitic, intersertal and microgranular textures. These rocks exhibit tholeiitic to alkaline compositions. New geochemical data presented in this paper from the isolated dikes and isotropic gabbros suggest that there are three main types of parental basic magmas that form the oceanic crustal rocks of the Tekirova (Antalya) ophiolite. These are (1) IAT series which can be referred to the Group I isolated dikes and isotropic gabbros; (2) low-Ti boninitic series characterized by the Group II isolated dike and isotropic gabbros; and (3) OIB-type including the Group III isotropic gabbros. The geochemical evidence suggests that the crustal rocks of the Tekirova (Antalya) ophiolite were generated from a progressive source depletion from island arc tholeiites (IAT) to boninites. Therefore, a fore-arc tectonic setting seems likely for the generation of the crustal rocks from the Tekirova (Antalya) ophiolite in the southern branch of Neotethys during the Late Cretaceous. The OIB-type alkaline isotropic gabbros are thought to have resulted from either (1) a late-stage magmatic activity fed by melts that originated within an asthenospheric window due to slab break-off or (2) subduction of a ridge system which generated OIB source across the asthenospheric window that has been no influence of fluids from the subducted slab into the overlying mantle wedge, shortly before the emplacement of the Tekirova (Antalya) ophiolite onto the Tauride platform.  相似文献   

12.
mer Elitok  Kirsten Drüppel 《Lithos》2008,100(1-4):322-353
The Beyşehir–Hoyran ophiolite is situated in the western part of the Tauride belt (SW Turkey) and crops out at two localities north of the lake Beyşehir. It mainly comprises harzburgitic peridotites that were tectonically emplaced to their present position during the Late Eocene. The ophiolites themselves are tectonically overlain by either slope basin deposits with lava blocks (Eğirler formation) or massive Triassic limestone blocks (Deliktaş formation). High-grade sub-ophiolitic metamorphic rocks, i.e. epidote amphibolite, amphibolite, and pyroxene amphibolite, together with minor quartzite and calcschist, are observed at the base of the ophiolite sequence, where they occur as thin tectonic slices with an inverted metamorphic gradient. Average P–T conditions of 630–770 °C and c. 6 ± 1.5 kbar are calculated for the metamorphism of the amphibolites by conventional geothermobarometry, corresponding to a burial depth of 18–20 km. Both the sub-ophiolitic metamorphic rocks and the overlying mantle tectonites were intruded by isolated tholeiitic (Nb/Y = 0.041–0.108) diabase dikes, which do not transect the tectonic contact between the two units. Geochemical investigations of the amphibolites of the sub-ophiolitic rock suite show two different geochemical affinities, with the first group being alkaline in character (Nb/Y = 1–3.86) and the second one being tholeiitic (Nb/Y = 0.064–0.13). REE patterns, trace element plots and tectonomagmatic discrimination diagrams indicate that the most probable protoliths for alkaline amphibolites are within-plate type alkali basalts, whereas those of the tholeiitic group resemble tholeiitic island arc basalts. Similarities between the geochemical characteristics of the amphibolites and those of the volcanic rocks of the Eğirler formation strongly suggest that the latter are the protoliths of the amphibolites.  相似文献   

13.
在班公湖怒江蛇绿岩带的西端日土出露两种不同的地幔橄榄岩:①角砾状方辉橄榄岩,由80%橄榄石(Fo=90.76~91.84,平均91.09)、15%斜方辉石(Mg#=90.97~91.41,平均91.16)、2%单斜辉石(Mg#=93.24~94.60,平均93.96)、3%棕色尖晶石(Cr#=0.20~0.25,平均0.23<0.60)和磁铁矿组成,以低MgO(41.41%~42.02%)、高Al2O3(1.63%~1.94%)、CaO(1.34%~1.60%)和Ti(133.04~134.52μg/g)为特征,亏损REE,ΣREE为球粒陨石的17%~22%,估算其为原始地幔岩经过10%~15%部分熔融的残留物;②块状方辉橄榄岩,由85%橄榄石、13%斜方辉石、2%红褐色尖晶石(Cr#=0.69~0.74,平均0.71>0.60)和磁铁矿组成,不含单斜辉石,相对于角砾状方辉橄榄岩,高MgO(42.96%~44.69%),低Al2O3(0.23%~0.61%)、CaO(0.08%~0.11%)和Ti(68.55~68.82μg/g),强烈亏损REE,ΣREE仅为球粒陨石的3%~5%,估算其为原始地幔橄榄岩经过30%~40%部分熔融的残留物。初步研究认为角砾状方辉橄榄岩是古大洋岩石圈在板块汇聚过程中构造侵位于缝合带中的残留物,是MOR型蛇绿岩的地幔橄榄岩;块状方辉橄榄岩是古大洋岩石圈在俯冲消减过程中再度发生熔融的残留物,是SSZ型蛇绿岩的地幔橄榄岩,这与本区发育MOR型蛇绿岩熔岩洋中脊拉斑玄武岩(P-MORB)和SSZ型蛇绿岩熔岩玻安岩(Boninite)是一致的。  相似文献   

14.
西藏泽当蛇绿岩玄武岩SHRIMP锆石U-Pb年龄 及其地质意义   总被引:1,自引:0,他引:1  
雅鲁藏布江缝合带中各蛇绿岩体的准确定年对待提斯洋演化和青藏高原隆升的研究具有重要意义.泽当蛇绿岩是雅鲁藏布江缝合带东段最大的蛇绿岩块体,关于其形成年龄目前仍存在不同的认识.通过SHRIMP锆石U-Pb测年得到蛇绿岩中玄武岩的形成年龄为154.9Ma±2.0Ma(95%置信度,MSWD=0.98).蛇绿岩中的玄武岩是洋脊扩张的产物,其形成年龄代表了扩张事件的时间,也代表了蛇绿岩的形成时代.结合已有的雅鲁藏布江缝合带蛇绿岩的形成年龄,该年龄进一步反映出雅鲁藏布江缝合带蛇绿岩形成时间具有东早西晚的特点.泽当蛇绿岩与含有埃达克质英云闪长岩的泽当岛弧火成岩基本为同期形成的.地球化学特征显示定年的玄武岩形成于俯冲带之上,且具有指示洋内俯冲环境的地球化学特征.因此,泽当SSZ型蛇绿岩可能形成于洋内俯冲机制.  相似文献   

15.
Tectonic slices and lenses of eclogite within mafic and ultramafic rocks of the Early Cretaceous–Eocene Naga Hills ophiolite were studied to constrain the physical conditions of eastward subduction of the Indian plate under the Burma microplate and convergence rate prior to the India–Eurasia collision. Some of the lenses are composed of eclogite, garnet-blueschist, glaucophanite and greenschist from core to margin, representing a retrograde hydrothermal alteration sequence. Barroisite, garnet, omphacite and epidote with minor chlorite, phengite, rutile and quartz constitute the peak metamorphic assemblage. In eclogite and garnet-blueschist, garnet shows an increase in Mg and Fe and decrease in Mn from core to rim. In chlorite in eclogite, Mg increases from core to rim. Inclusions of epidote, glaucophane, omphacite and quartz in garnet represent the pre-peak assemblage. Glaucophane also occurs profusely at the rims of barroisite. The matrix glaucophane and epidote represent the post-peak assemblage. The Fe3+ content of garnet-hosted omphacite is higher than that of matrix omphacite, and Fe3+ increases from core to rim in matrix glaucophane. Albite occurs in late stage veins. P – T pseudosection analysis indicates that the Naga Hills eclogites followed a clockwise P – T path with prograde metamorphism beginning at ∼1.3 GPa/525 °C and peaking at 1.7–2.0 GPa/580–610 °C, and subsequent retrogression to ∼1.1 GPa/540 °C. A comparison of these P – T conditions with numerical thermal models of plate subduction indicates that the Naga Hills eclogites probably formed near the top of the subducting crust with convergence rates of ∼ 55–100 km Myr−1, consistent with high pre-collision convergence rates between India and Eurasia.  相似文献   

16.
The Nellore schist belt (NSB) is one of the prominent schist belts of southern India. It is thrust over an unmetamorphosed Proterozoic sedimentary sequence (Cuddapah Basin) in the west and in turn is overthrust by the Eastern Ghats Granulite Terrain (EGGT) in the east. Metamorphic grade has been considered to be either greenschist to amphibolite facies or else to show high- and low-grade groups of rocks. Detailed mineralogical and P, T studies on representative rock types across the high- to low-grade groups (metapelite and metadacite from the high- and low-grade groups respectively) near Vinjamuru reveal that there are high (M1) and medium (M2) grade metamorphic events. While metapelite documents both M1 and M2 events, metadacite shows only the M2 event, thus indicating the presence of high- and medium-grade groups of rocks in the NSB. The stable mineral assemblage during the early prograde part of M1 was Qtz+St1+Ms1+Pl1+Bt±Grt, which subsequently suffered high-grade metamorphic conditions (T∽715–765°C and P∽8·6–9·2 kbar) leading to the demise of St1 and melting of Ms1. In contrast, medium-grade metamorphism (M2) is characterized by the stable association of St2+Qz. Quantitative geothermobarometry suggests T=520–570°C and P=6·1-6·8 kbar, and these results show good consistency with the average P, T estimates obtained from the THERMOCALC program. This metamorphic episode is probably coeval with the 900 Ma granulite facies metamorphic event in the EGGT. The superimposition of M2 over M1 probably has led to widespread retrogression of the high-grade rocks to medium grade, thereby giving the general impression of a greenschist to amphibolite facies gradation. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
The Meatiq basement, which is exposed beneath late Proterozoic nappes of supracrustal rocks in the Central Eastern Desert of Egypt, was affected by three metamorphic events. The ophiolite cover nappes show only the last metamorphic overprint. The M1 metamorphic event (T ≥750 °C) is restricted to migmatized amphibolite xenoliths within the Um Ba′anib orthogneiss in the structurally lowest parts of the basement. Typical upper amphibolite facies M2 mineral assemblages include Grt–Zn-rich Spl–Qtz±Bt, Grt–Zn-rich Spl–Ms–Kfs–Bt–Sil–Qtz and locally kyanite in metasedimentary rocks. The mineral assemblages Ms–Qtz–Kfs–Sil in the matrix and Sil–Grt in garnet cores indicate that peak M2 P–T conditions exceeded muscovite and staurolite stabilities. Diffusional equilibration at M2 peak temperature conditions caused homogeneous chemical profiles across M2 garnets. Abundant staurolite in garnet rims and the matrix indicates a thorough equilibration during M2 at decreasing temperature conditions. M2 P–T conditions ranged from 610 to 690 °C at 6–8 kbar for the metamorphic peak and 530–600 °C at about 5.8 kbar for the retrograde stage. However, relic kyanite indicates pressures above 8 kbar, preceeding the temperature peak. A clockwise P–T path is indicated by abundant M2 sillimanite after relic kyanite and by andalusite after sillimanite. M2 fluid inclusions, trapped in quartz within garnet and in the quartz matrix show an array of isochores. Steepest isochores (water-rich H2O-CO2±CH4/N2 inclusions) pass through peak M2 P–T conditions and flatter isochores (CO2-rich H2O-CO2±CH4/N2 inclusions) are interpreted to represent retrograde fluids which is consistent with a clockwise P–T path for M2. The M3 assemblage Grt–Chl in the uppermost metasedimentary sequence of the basement limits temperature to 460 to 550 °C. M3 temperature conditions within the ophiolite cover nappes are limited by the assemblage Atg–Trem–Tlc to<540 °C and the absence of crysotile to >350 °C. The polymetamorphic evolution in the basement contrasts with the monometamorphic ophiolite nappes. The M1 metamorphic event in the basement occurred prior to the intrusion of the Um Ba′anib granitoid at about 780 Ma. The prograde phase of the M2 metamorphic event took place during the collision of an island arc with a continent. The break-off of the subducting slab increased the temperature and resulted in the peak M2 mineral assemblages. During the rise of the basement domain retrograde M2 mineral assemblages were formed. The final M3 metamorphic event is associated with the updoming of the basement domain at about 580 Ma along low-angle normal faults.  相似文献   

18.
On the basis of fluid inclusion evidence, pervasive influx of deep-seated CO2-rich fluids has been invoked to account for mid- to upper amphibolite facies (M2B) metamorphism on the island of Naxos (Cyclades, Greece). In this paper, mineral devolatilization and melt equilibria are used to constrain the composition of both syn- and post-peak-M2B fluids in the deepest exposed levels of the metamorphic complex. The results indicate that peak-M2B fluids were spatially and compositionally heterogeneous throughout the high-grade core of the complex, whereas post-peak-M2B fluids were generally water-rich. The observed heterogeneities in syn-M2B fluid composition are inconsistent with pervasive CO2-flushing models invoked by previous workers on the basis of fluid inclusion evidence. It is likely that few CO2-rich fluid inclusions on Naxos preserve fluids trapped under peak metamorphic conditions. It is suggested that many of these inclusions have behaved as chemically open systems during the intense deformation that accompanied the uplift of the metamorphic complex. A similar process may explain the occurrence of some CO2-rich fluid inclusions in granulite facies rocks.  相似文献   

19.
Mineral composition and quantitative thermobarometric studies indicate that the Teslin-Taylor Mountain and Nisutlin terranes within the Teslin suture zone (TSZ), Yukon, record widespread high-P/T metamorphic conditions consistent with subduction zone dynamothermal metamorphism. The highest P–T conditions (575–750° C and 9–17 kbar) are preserved in tectonites formed during normal dip-slip ductile shear. Dextral strike-slip tectonites record lower P–T conditions (400–550° C and 5–8 kbar), and tectonites which show reverse shear have peak temperatures of c. 420° C and a minimum peak pressure of 3 kbar. Dynamothermal metamorphism took place in a west-dipping B-type subduction zone outboard of western North America in Permo-Triassic time. TSZ tectonites were underplated against the hangingwall plate of the subduction zone. Following subduction of the ocean basin which separated North America from the hangingwall plate, TSZ tectonites were overthrust eastward as a coherent structural package as a result of A-type subduction of Cassiar strata in early Jurassic time. (Par)autochthonous Cassiar tectonites, which comprised the leading edge of the western North American margin, record prograde moderate-P, high-T metamorphism (550–750° C and 7–13 kbar) synchronous with top-to-the-east ductile shear. Metamorphism occurred as a result of subduction of the North American margin into the TSZ subduction zone in early Jurassic time. Following metamorphism Cassiar tectonites cooled slowly from 500 to 300° C during the period middle Jurassic to middle Cretaceous. TSZ and Cassiar tectonites were deformed during changing P–T conditions. Data from each of these tectonite packages indicate that grain-scale strain partitioning may have allowed local recrystallization of individual minerals by the addition of mechanical energy. The composition of the new grains reflects the P–T conditions under which that particular grain was deformed.  相似文献   

20.
南天山库勒湖蛇绿岩具有两组不同地球化学类型的基性熔岩。第1组熔岩的∑REE=24×10-6~28·36×10-6,(La/Yb)N=0·35~0·37,Zr/Nb=39·91~95·12,Ta/Nb=0·07~0·09,εNd(t)=8·85~12·25,暗示其源区类似于MORB(但比后者更加亏损);同时,该组熔岩的LILE明显富集,HFSE(尤其Nb、Ta)强烈亏损,显示出与岛弧拉斑玄武岩(IAT)的亲源性。第2组熔岩的∑REE(56·38×10-6~101·29×10-6),(La/Yb)N值(0·96~1·36),不相容元素含量等介于E_MORB和OIB之间(更接近于E_MORB),并且Nb、Ta显示正异常;εNd(t)=8·39,Zr/Nb=9·74~10·94,Ta/Nb=0·06,与E_MORB相当,暗示其源区比第1组熔岩相对富集。综合分析两组基性熔岩的地球化学特征,认为它们的形成环境为弧后盆地,第1组熔岩为弧后盆地初始张开阶段受消减带流体沉积物影响的强烈亏损的残余地幔源区发生部分熔融作用的产物,第2组熔岩是由于弧后进一步的次级地幔对流驱动周围或深部相对富集的地幔向处于引张部位的弧后注入或上涌、发生部分熔融作用的产物。库勒湖弧后盆地型蛇绿岩的形成时代与古南天山洋的俯冲消减时代相当,它的形成很有可能与该洋盆晚末志留世—早泥盆世期间的俯冲消减作用(诱发弧后拉张)有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号