首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The exposed residual crust in the Eastern Ghats Province records ultrahigh temperature (UHT) metamorphic conditions involving extensive crustal anatexis and melt loss. However, there is disagreement about the tectonic evolution of this late Mesoproterozoic–early Neoproterozoic orogen due to conflicting petrological, structural and geochronological interpretations. One of the petrological disputes in residual high Mg–Al granulites concerns the origin of fine‐grained mineral intergrowths comprising cordierite + K‐feldspar ± quartz ± biotite ± sillimanite ± plagioclase. These intergrowths wrap around porphyroblast phases and are interpreted to have formed by the breakdown of primary osumilite in the presence of melt trapped in the equilibration volume by the melt percolation threshold. The pressure (P)–temperature (T) evolution of four samples from three localities across the central Eastern Ghats Province is constrained using phase equilibria modelling in the chemical system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO). Results of the modelling are integrated with published geochronological results for these samples to show that the central Eastern Ghats Province followed a common P–T–t history. This history is characterized by peak UHT metamorphic conditions of 945–955 °C and 7.8–8.2 kbar followed by a slight increase in pressure and close‐to‐isobaric cooling to the conditions of the elevated solidus at 940–900 °C and 8.5–8.3 kbar. In common with other localities from the Eastern Ghats Province, the early development of cordierite before osumilite and the peak to immediate post‐peak retrograde reaction between osumilite and melt to produce the intergrowth features requires that the prograde evolution was one of contemporaneous increasing pressure with increasing temperature. This counter‐clockwise (CCW) evolution is evaluated for one sample using inverse phase equilibria modelling along a schematic P–T path of 150 °C kbar?1 starting from the low P–T end of the prograde P–T path as constrained by the phase equilibria modelling. The inverse modelling is executed by step‐wise down temperature reintegration of sufficient melt into the residual bulk chemical composition at the P–T point of the 1 mol.% melt isopleth at each step, representing the melt remaining on grain boundaries after each prograde drainage event, to reach the melt connectivity transition (MCT) of 7 mol.%. The procedure is repeated until a plausible protolith composition is recovered. The result demonstrates that clastic sedimentary rocks that followed a CCW P–T evolution could have produced the observed mineral assemblages and microstructures preserved in the central Eastern Ghats Province. This study also highlights the role of melt during UHT metamorphism, particularly its importance to both chemical and physical processes along the prograde and retrograde segments of the P–T path. These processes include: (i) an increase in diffusive length scales during the late prograde to peak evolution, creating equilibration volumes larger than a standard thin section; (ii) the development of retrograde mineral assemblages, which is facilitated if some melt is retained post‐peak; (iii) the presence of melt as a weakening mechanism and the advection of heat by melt, allowing the crust to thicken; and (iv) the effect of melt loss, which makes the deep crust both denser and stronger, and reduces heat production at depth, limiting crustal thickening and facilitating the transition to close‐to‐isobaric cooling.  相似文献   

2.
Open‐system behaviour through fluid influx and melt loss can produce a variety of migmatite morphologies and mineral assemblages from the same protolith composition. This is shown by different types of granulite facies migmatite from the contact aureole of the Ceret gabbro–diorite stock in the Roc de Frausa Massif (eastern Pyrenees). Patch, stromatic and schollen migmatites are identified in the inner contact aureole, whereas schollen migmatites and residual melanosomes are found as xenoliths inside the gabbro–diorite. Patch and schollen migmatites record D1 and D2 structures in folded melanosome and mostly preserve the high‐T D2 in granular or weakly foliated leucosome. Stromatic migmatites and residual melanosomes only preserve D2. The assemblage quartz–garnet–biotite–sillimanite–cordierite±K‐feldspar–plagioclase is present in patch and schollen migmatites, whereas stromatic migmatites and residual melanosomes contain a sub‐assemblage with no sillimanite and/or K‐feldspar. A decrease in X Fe (molar Fe/(Fe + Mg)) in garnet, biotite and cordierite is observed from patch migmatites through schollen and stromatic migmatites to residual melanosomes. Whole‐rock compositions of patch, schollen and stromatic migmatites are similar to those of non‐migmatitic rocks from the surrounding area. These metasedimentary rocks are interpreted as the protoliths of the migmatites. A decrease in the silica content of migmatites from 63 to 40 wt% SiO2 is accompanied by an increase in Al2O3 and MgO+FeO and by a depletion in alkalis. Thermodynamic modelling in the NCKFMASHTO system for the different types of migmatite provides peak metamorphic conditions ~7–8 kbar and 840 °C. A nearly isothermal decompression history down to 5.5 kbar was followed by isobaric cooling from 840 °C through 690 °C to lower temperatures. The preservation of granulite facies assemblages and the variation in mineral assemblages and chemical composition can be modelled by ongoing H2O‐fluxed melting accompanied by melt loss. The fluids were probably released by the crystallizing gabbro–diorite, infiltrating the metasedimentary rocks and fluxing melting. Release of fluids and melt loss were probably favoured by coeval deformation (D2). The amount of melt remaining in the system varied considerably among the different types of migmatite. The whole‐rock compositions of the samples, the modelled compositions of melts at the solidus at 5.5 kbar and the residues show a good correlation.  相似文献   

3.
A recent fascinating development in the study of high-grade metamorphic basements is represented by the finding of tiny inclusions of crystallized melt(nanogranitoid inclusions) hosted in peritectic phases of migmatites and granulites. These inclusions have the potential to provide the primary composition of crustal melts at the source. A novel use of the recently-published nanogranitoid compositional database is presented here. Using granulites from the world-renowned Ivrea Zone(NW Italy) on which the original melt-reintegration approach has been previously applied, it is shown that reintegrating melt inclusion compositions from the published database into residual rock compositions can be a further useful method to reconstruct a plausible prograde history of melt-depleted rocks. This reconstruction is fundamental to investigate the tectonothermal history of geological terranes.  相似文献   

4.
This virtual special issue represents a collection of papers concerning Crustal Melting selected by the Editor from those published on various aspects of this theme in the JMG since 1982. The papers are grouped into sequences that address topics that have been prominent in the JMG during the last 30 years concerning the origin, evolution and tectonic role of migmatites and migmatitic granulites in crustal evolution. These topics are: Open‐ and closed‐system processes in the formation of migmatites and migmatitic granulites; thermobarometry, P–T paths, phase equilibria modelling and retrograde processes in formerly melt‐bearing rocks; geochronology in partially melted rocks; and, microstructures, deformation and tectonics of melt bearing rocks. About one‐third of the papers published in the JMG since its inception concern the origin, evolution and tectonic significance of migmatites and migmatitic granulites in crustal evolution, including the first special issue published by the JMG concerning ‘Studies in the genesis and deformation of migmatites’ edited by Tracy & Day ( 1988; Volume 6, Issue 4, Pages 385‐543 ). Three subsequent Special Issues of the JMG include papers relevant to the theme of this virtual special issue; they are ‘Metamorphic processes: a celebration of the career contribution of Ron Vernon’, ‘Processes in granulite metamorphism’ and ‘Granulites, partial melting and the rheology of the lower crust’, edited by Brown & Clarke ( 2002; Volume 20, Issue 1, Pages 1‐213 ), Brown & White ( 2008; Volume 26, Issue 2, Pages 121‐299 ) and Brown et al. ( 2011; Volume 29, Issue 1, Pages 1‐166 ), respectively. The selection of papers in this virtual special issue is by no means comprehensive, but it is intended as a representative selection of what has been published in the JMG over 30 years to give the reader a broad overview of crustal melting. Furthermore, although many papers address more than one topic, each is included only once and has been placed within the most appropriate section.  相似文献   

5.
Mineral textures in metapelitic granulites from the northern Prince Charles Mountains, coupled with thermodynamic modelling in the K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) model system, point to pressure increasing with increasing temperature on the prograde metamorphic path, followed by retrograde cooling (i.e. an anticlockwise P–T path). Textural evidence for the increasing temperature part of the path is given by the breakdown of garnet and biotite to form orthopyroxene and cordierite in sillimanite‐absent rocks, and through the break‐down of biotite and sillimanite to form spinel, cordierite and garnet in more aluminous assemblages. This is equated to the advective addition of heat from the regional emplacement of granitic and charnockitic magmas dated at c. 980 Ma. A subsequent increase in pressure, inferred from the break‐down of spinel and quartz to sillimanite, cordierite and garnet in aluminous rocks, is attributed to crustal thickening related to upright folding dated at 940–910 Ma. The terrane attained peak metamorphic temperatures of c. 880 °C at pressures of c. 6.0–6.5 kbar during this event. Subsequent cooling is inferred from the localised breakdown of cordierite and garnet to form biotite and sillimanite that developed in the latter stages of the same event. The textural observations described are interpreted via the application of P–T and P–T–X pseudosections. The latter show that most rock compositions preserve only fragments of the overall P–T path; a result of different rock compositions undergoing mineral assemblage changes, or changes in mineral modal abundance, on different sections of the P–T path. The results also suggest that partial melting during granulite facies metamorphism, coupled with melt loss and dehydration, initiated a switch from pervasive ductile, to discrete ductile/brittle deformation, during retrograde cooling.  相似文献   

6.
The high grade rocks (metapelites and metabasites) of Clavering Ø represent the easternmost exposures of granulites in the Palaeozoic Caledonian Orogen of East Greenland. Mafic granulites which occur as sheet‐like bodies and lenses within metapelitic migmatites and orthogneiss complexes have experienced migmatisation and mineral equilibria which define a clockwise P–T path incorporating a near‐isothermal decompression segment. Textures demonstrate the existence of early garnet‐clinopyroxene‐melt assemblages which equilibrated at >8–11 kbar and 850915 °C. Subsequently, decompression melting led to formation of orthopyroxene‐plagioclase‐melt assemblages at conditions below >8–11 kbar. Continued syn‐deformational decompression is indicated by a combination of both static and syn‐deformational recrystallization textures which generated finer grained orthopyroxene‐plagioclase assemblages. P–T constraints indicate these assemblages equilibrated at c. 5.0–6.5 kbar at 850–915 °C. These data are consistent with the rocks undergoing a stage of rapid tectonic‐induced exhumation involving some 3.0–4.5 kbar (c.1012 km) uplift as part of a clockwise P–T path in a collisional setting.  相似文献   

7.
Three metapelitic xenolith suites in the Neogene Volcanic Province (NVP) of SE Spain (from SW to NE: El Hoyazo, Mazarrón and Mar Menor) originated by partial melting at different crustal depths, decreasing from 20–25 km in the SW to 9–12 km in the NE. Peak temperatures reached c. 900 °C. The xenolith source level is equated with the base of a felsic upper crust of high melting potential (‘fertility’). At El Hoyazo, this matches a thin, intracrustal low‐velocity zone recently inferred from seismic studies. Isostatic calculations indicate that this zone increases in thickness from SW to NE. A model of increasing upper crustal thinning from SW to NE in the NVP, accompanied by mafic underplating, is consistent with the 9 Ma petrological data, with current heat flow, seismic data and gravimetry. It is concluded that significant crustal extension occurred in the NVP in the late Miocene, i.e. after the main phase of widespread extension, exhumation of high‐pressure rocks and formation of the Alborán Sea.  相似文献   

8.
Spinel + cordierite + K‐feldspar + plagioclase + glass form coronas around garnet in metapelitic xenoliths at El Hoyazo and Mazarrón, two localities of the Neogene Volcanic Province (NVP) of SE Spain. The presence of fresh glass (quenched melt) in all phases shows that corona development occurred under partial melting conditions. Algebraic analysis of mass balance in the NCKFMASH system suggests the reaction Grt + Sil + Bt + Pl = Spl + Crd + Kfs + melt as the most plausible model for the development of coronas in the El Hoyazo sample, and indicates that biotite was required as reactant for the formation of cordierite. The P–T conditions for the formation of coronas are estimated at ~820 ± 50 °C, 4.5 ± 0.6 kbar at El Hoyazo, and ~820 ± 50 °C, 4.0 ± 0.4 kbar at Mazarrón. The El Hoyazo xenoliths record a complex P–T history, characterized by early melt production during heating and additional melting during decompression. A local cooling event characterized by minor retrograde reaction and melt crystallization preceded ascent and eruption. This study shows that detailed xenolith analysis may be used to track magma evolution in a chamber.  相似文献   

9.
Orogeny, migmatites and leucogranites: A review   总被引:13,自引:0,他引:13  
The type ofP-T-t path and availability of fluid (H2O-rich metamorphic volatile phase or melt) are important variables in metamorphism. Collisional orogens are characterized by clockwiseP-T evolution, which means that in the core, where temperatures exceed the wet solidus for common crustal rocks, melt may be present throughout a significant portion of the evolution. Field observations of eroded orogens show that lower crust is migmatitic, and geophysical observations have been interpreted to suggest the presence of melt in active orogens. A consequence of these results is that orogenic collapse in mature orogens may be controlled by a partially-molten layer that decouples weak crust from subducting lithosphere, and such a weak layer may enable exhumation of deeply buried crust. Migmatites provide a record of melt segregation in partially molten crustal materials and syn-anatectic deformation under natural conditions. Grain boundary flow and intra-and inter-grain fracture flow are the principal grain scale melt flow mechanisms. Field observations of migmatites in ancient orogens show that leucosomes occur oriented in the metamorphic fabrics or are located in dilational sites. These observations are interpreted to suggest that melt segregation and extraction are syntectonic processes, and that melt migration pathways commonly relate to rock fabrics and structures. Thus, leucosomes in depleted migmatites record the remnant permeability network, but evolution of permeability networks and amplification of anomalies are poorly understood. Deformation of partially molten rocks is accommodated by melt-enhanced granular flow, and volumetric strain is accommodated by melt loss. Melt segregation and extraction may be cyclic or continuous, depending on the level of applied differential stress and rate of melt pressure buildup. During clockwiseP-T evolution, H2O is transferred from protolith to melt as rocks cross dehydration melting reactions, and H2O may be evolved above the solidus at lowP by crossing supra-solidus decompression-dehydration reactions if micas are still present in the depleted protolith. H2O dissolved in melt is transported through the crust to be exsolved on crystallization. This recycled H2O may promote wet melting at supra-solidus conditions and retrogression at subsolidus conditions. The common growth of ‘late’ muscovite over sillimanite in migmatite may be the result of this process, and influx of exogenous H2O may not be necessary. However, in general, metasomatism in the evolution of the crust remains a contentious issue. Processes in the lower-most crust may be inferred from studies of xenolith suites brought to the surface in lavas. Based on geochemical data, we can use statistical methods and modeling to evaluate whether migmatites are sources or feeder zones for granites, or simply segregated melt that was stagnant in residue, and to compare xenoliths of inferred lower crust with exposed deep crust. Upper-crustal granites are a necessary complement to melt-depleted granulites common in the lower crust, but the role of mafic magma in crustal melting remains uncertain. Plutons occur at various depths above and below the brittle-to-viscous transition in the crust and have a variety of 3-D shapes that may vary systematically with depth. The switch from ascent to emplacement may be caused by amplification of instabilities within (permeability, magma flow rate) or surrounding (strength or state of stress) the ascent column, or by the ascending magma intersecting some discontinuity in the crust that enables horizontal magma emplacement followed by thickening during pluton inflation. Feedback relations between rates of pluton filling, magma ascent and melt extraction maintain compatibility among these processes.  相似文献   

10.
This study uses field, petrographic and geochemical methods to estimate how much granitic melt was formed and extracted from a granulite facies terrane, and to determine what the grain‐ and outcrop‐scale melt‐flow paths were during the melt segregation process. The Ashuanipi subprovince, located in the north‐eastern Superior Province of Quebec, is a large (90 000 km2) metasedimentary terrane, in which > 85% of the metasediments are of metagreywacke composition, that was metamorphosed at mid‐crustal conditions (820–900 °C and 6–7 kbar) in a late Archean dextral, transpressive orogen. Decrease in modal biotite and quartz as orthopyroxene and plagioclase contents increase, together with preserved former melt textures indicate that anatexis was by the biotite dehydration reaction: biotite + quartz + plagioclase = melt + orthopyroxene + oxides. Using melt/orthopyroxene ratios for this reaction derived from experimental studies, the modal orthopyroxene contents indicate that the metagreywacke rocks underwent an average of 31 vol% partial melting. The metagreywackes are enriched in MgO, CaO and FeOt and depleted in SiO2, K2O, Rb, Cs, and U, have lower Rb/Sr, higher Rb/Cs and Th/U ratios and positive Eu anomalies compared to their likely protolith. These compositions are modelled by the extraction of between 20 and 40 wt %, granitic melt from typical Archean low‐grade metagreywackes. A simple mass balance indicates that about 640 000 km3 of granitic melt was extracted from the depleted granulites. The distribution of relict melt at thin section‐ and outcrop‐scales indicates that in layers without leucosomes melt extraction occurred by a pervasive grain boundary (porous) flow from the site of melting, across the layers and into bedding planes between adjacent layers. In other rocks pervasive grain boundary flow of melt occurred along the layers for a few, to tens of centimetres followed by channelled flow of melt in a network of short interconnected and structurally controlled conduits, visible as the net‐like array of leucosomes in some outcrops. The leucosomes contain very little residual material (< 5% biotite + orthopyroxene) indicating that the melt fraction was well separated from the residuum left in situ as melt‐depleted granulite. Only 1–3 vol percentage melt remained in the melt‐depleted granulites, hence, the extraction of melt generated by biotite dehydration melting in these granulites, was virtually complete under conditions of natural melting and strain rates in a contractional orogen.  相似文献   

11.
The time‐scales and P–T conditions recorded by granulite facies metamorphic rocks permit inferences about the geodynamic regime in which they formed. Two compositionally heterogeneous cordierite–spinel‐bearing granulites from Vizianagaram, Eastern Ghats Province (EGP), India, were investigated to provide P–T–time constraints using petrography, phase equilibrium modelling, U–Pb geochronology, the rare earth element composition of zircon and monazite, and Ti‐in‐zircon thermometry. These ultrahigh temperature (UHT) granulites preserve discrete compositional layering in which different inferred peak assemblages are developed, including layers bearing garnet–sillimanite–spinel, and others bearing orthopyroxene–sillimanite–spinel. These mineral associations cannot be reproduced by phase equilibrium modelling of whole‐rock compositions, indicating that the samples became domainal on a scale less than that of a thin section, even at UHT conditions. Calculation of the P–T stability fields for six compositional domains within which the main rock‐forming minerals are considered to have attained equilibrium suggests peak metamorphic conditions of ~6.8–8.3 kbar at ~1,000°C. In most of these domains, the subsequent evolution resulted in the growth of cordierite and final crystallization of melt at an elevated (residual) H2O‐undersaturated solidus, consistent with <1 kbar of decompression. Concordant U–Pb ages obtained by SHRIMP from zircon (spread 1,050–800 Ma) and monazite (spread 950–800 Ma) demonstrate that crystallization of these minerals occurred during an interval of c. 250 Ma. By combining LA‐ICP‐MS U–Pb zircon ages with Ti‐in‐zircon temperatures from the same analysis sites, we show that the crust may have remained above 900°C for a minimum of c. 120 Ma between c. 1,000 and c. 880 Ma. Overall, the results suggest that, in the interval 1,050 to 800 Ma, the evolution of the Vizianagaram granulites culminated with UHT conditions from c. 1,000 Ma to c. 880 Ma, associated with minor decompression, before further zircon crystallization at c. 880–800 Ma during cooling to the solidus. However, these rocks are adjacent to the Paderu–Anantagiri–Salur crustal block to the NW that experienced counterclockwise P–T–t paths, and records similar UHT peak metamorphic conditions (7–8 kbar, ~950°C) followed by near‐isobaric cooling, and has a similar chronology during the Neoproterozoic. The limited decompression inferred at Vizianagaram may be explained by partial exhumation due to thrusting of this crustal block over the adjacent Paderu–Anantagiri–Salur crustal block. The residual granulites in both blocks have high concentrations of heat‐producing elements and likely remained hot at mid‐crustal depths throughout a period of relative tectonic quiescence in the interval 800–550 Ma. During the Cambrian Period, the EGP was located in the hinterland of the Denman–Pinjarra–Prydz orogen. A later concordant population of zircon dated at 511 ± 6 Ma records crystallization at temperatures of ~810°C. This age may record a low‐degree of melting due to limited influx of fluid into hot, weak crust in response to convergence of the Crohn craton with a composite orogenic hinterland comprising the Rayner terrane, EGP, and cratonic India.  相似文献   

12.
The development of thermodynamic models for tonalitic melt and the updated clinopyroxene and amphibole models now allow the use of phase equilibrium modelling to estimate P–T conditions and melt production for anatectic mafic and intermediate rock types at high‐T conditions. The Permian mid‐lower crustal section of the Ivrea Zone preserves a metamorphic field gradient from mid amphibolite facies to granulite facies, and thus records the onset of partial melting in metabasic rocks. Interlayered metabasic and metapelitic rocks allows the direct comparison of P–T estimates and partial melting between both rock types with the same metamorphic evolution. Pseudosections for metabasic compositions calculated in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system are presented and compared with those of metapelitic rocks calculated with consistent end‐member data and a–x models. The results presented in this study show that P–T conditions obtained by phase equilibria modelling of both metabasic and metapelitic rocks give consistent results within uncertainties, allowing integration of results obtained for both rock types. In combination, the calculations for both metabasic and metapelitic rocks allows an updated and more precisely constrained metamorphic field gradient for Val Strona di Omegna to be defined. The new field gradient has a slightly lower dP/dT which is in better agreement with the onset of crustal thinning of the Adriatic margin during the Permian inferred in recent studies.  相似文献   

13.
High‐pressure granulites are generally characterized by the absence of orthopyroxene. However, orthopyroxene is reported in a few high‐pressure, felsic–metapelitic granulites, such as the Huangtuling felsic high‐pressure granulite in the North Dabie metamorphic core complex in east‐central China, which rarely preserves the high‐pressure granulite facies assemblage of garnet + orthopyroxene + biotite + plagioclase + K‐feldspar + quartz. To investigate the effects of bulk‐rock composition on the stability of orthopyroxene‐bearing, high‐pressure granulite facies assemblages in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system, a series of PTX pseudosections based on the melt‐reintegrated composition of the Huangtuling felsic high‐pressure granulite were constructed. Calculations demonstrate that the orthopyroxene‐bearing, high‐pressure granulite facies assemblages are restricted to low XAl [Al2O3/(Na2O + CaO + K2O + FeO + MgO + Al2O3) < 0.35, mole proportion] or high XMg [MgO/(MgO + FeO) > 0.85] felsic–metapelitic rock types. This study also reveals that the XAl values in the residual felsic–metapelitic, high‐pressure granulites could be significantly reduced by a high proportion of melt loss. We suggest that orthopyroxene‐bearing, high‐pressure granulites occur in residual overthickened crustal basement under continental subduction–collision zones and arc–continent collision belts.  相似文献   

14.
In this study, we investigate the metamorphic history of the Assynt and Gruinard blocks of the Archean Lewisian Complex, northwest Scotland, which are considered by some to represent discrete crustal terranes. For samples of mafic and intermediate rocks, phase diagrams were constructed in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCKFMASHTO) system using whole‐rock compositions. Our results indicate that all samples equilibrated at similar peak metamorphic conditions of ~8–10 kbar and ~900–1,000°C, consistent with field evidence for in situ partial melting and the classic interpretation of the central region of the Lewisian Complex as representing a single crustal block. Melt‐reintegration modelling was employed in order to estimate probable protolith compositions. Phase equilibria calculated for these modelled undepleted precursors match well with those determined for a subsolidus amphibolite from Gairloch in the southern region of the Lewisian Complex. Both subsolidus lithologies exhibit similar phase relations and potential melt fertility, with both expected to produce orthopyroxene‐bearing hornblende granulites, with or without garnet, at the conditions inferred for the Badcallian metamorphic peak. For fully hydrated protoliths, prograde melting is predicted to first occur at ~620°C and ~9.5 kbar, with up to 45% partial melt predicted to form at peak conditions in a closed‐system environment. Partial melts calculated for both compositions between 610 and 1,050°C are mostly trondhjemitic. Although the melt‐reintegrated granulite is predicted to produce more potassic (granitic) melts at ~700–900°C, the modelled melts are consistent with the measured compositions of felsic sheets from the central region Lewisian Complex.  相似文献   

15.
The Jining Group occurs as the eastern segment of the Khondalite Belt, North China Craton and is dominated by a series of granulite facies rocks involving ‘normal’ pelitic granulites recording peak temperatures of ~850 °C and ultrahigh‐temperature (UHT) pelitic granulites recording peak temperatures of 950–1100 °C. The PT paths and ages of these two types of granulites are controversial. Three pelitic granulite samples in the Jining Group comprising two sillimanite–garnet gneiss samples (J1208 and J1210) and one spinel–garnet gneiss sample (J1303) were collected from Zhaojiayao, where ‘normal’ pelitic granulites occur, for determination of their metamorphic evolution and ages. Samples J1208 and J1210 are interpreted to record cooling paths from the Tmax stages with PT conditions respectively of ~870–890 °C/7–8 kbar and >840 °C/>7.5 kbar constrained from the stability fields of the observed mineral assemblages and the isopleths of plagioclase, garnet and biotite compositions in pseudosections. Sample J1303 is interpreted to record pre‐Tmax decompression from the kyanite‐stability fields to the Tmax stage of 950–1020 °C/8–9 kbar and a post‐Tmax cooling path revealed mainly from the stability field of the observed mineral assemblage, the plagioclase zoning and the biotite composition isopleth in pseudosections. The post‐Tmax cooling stage can be divided into suprasolidus and subsolidus stages. The suprasolidus cooling may not result in an equilibrium state at the solidus in a rock. Therefore, different minerals may record different PT conditions along the cooling path; the inferred maximum temperature is commonly higher than the solidus as well as different solidi being recorded for different samples from the same outcrop but experiencing different degrees of melt loss. Plagioclase compositions, especially its zoning in plagioclase‐rich granulites, are predicted to be useful for recording the higher temperature conditions of a granulite's thermal history. The three samples studied seem to record the temperature range covering those of the ‘normal’ and UHT pelitic granulites in the Jining Group, suggesting that UHT conditions may be reached in ‘normal’ granulites without diagnostic UHT indicators. LA‐ICP‐MS zircon U–Pb data provide a continuous trend of concordant 207Pb/206Pb ages from 1.89 to 1.79 Ga for sample J1210, and from 1.94 to 1.80 Ga for sample J1303. These continuous and long age spectrums are interpreted to represent a slow cooling and exhumation process corresponding to the post‐Tmax cooling PT paths recorded by the pelitic granulites, which may have followed the exhumation of deeply buried rocks in a thickened crust region resulted from a collision event at c. 1.95 Ga as suggested by the pre‐Tmax decompression PT path.  相似文献   

16.
The island of Seram, part of the northern limb of the Banda Arc in eastern Indonesia, exposes an extensive Mio‐Pliocene granulite facies migmatite complex (the Kobipoto Complex) comprising voluminous leucosome‐rich diatexites and scarcer Al–Fe‐rich residual granulites. The migmatites are intimately associated with ultramafic rocks of predominantly lherzolitic composition that were exhumed by substantial lithospheric extension beneath low‐angle detachment faults; heat supplied by the lherzolites was evidently a major driver for the granulite facies metamorphism and accompanying anatexis. Residual garnet–sillimanite granulites sampled from the Kobipoto Mountains, central Seram, contain scarce garnet‐hosted inclusions of hercynite spinel (~1.5 wt% ZnO) + quartz (± ilmenite) in direct grain‐boundary contact – an assemblage potentially indicative of metamorphism under ultrahigh‐temperature (UHT) conditions. thermocalc ‘Average PT’ reactions and melanosome‐specific thermocalc , TMO, and PT pseudosections in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO) chemical system, supported by Ti‐in‐garnet thermobarometry, are permissive of the rock having experienced a clockwise PT path peaking at 925 °C and 9 kbar – thus narrowly reaching UHT conditions – before undergoing near‐isothermal decompression to ~750 °C and ~4 kbar. Spinel + quartz assemblages are interpreted to have formed at or just after the metamorphic peak from localized reactions between sillimanite, ilmenite and surrounding garnet. Further decompression of the rock resulted in the formation of complex reaction microstructures comprising cordierite ± plagioclase coronae around garnet, and symplectic intergrowths of cordierite + spinel + ilmenite around sillimanite. Small grains of sapphirine + corundum developed subsequently within spinel by localized quartz‐absent reactions. The post‐peak evolution of the granulites may be related to previously published U–Pb zircon and 40Ar/39Ar ages of c. 16 Ma, further substantiating the claim for the Kobipoto Complex granulites having recorded Earth's youngest‐identified episode of UHT metamorphism, albeit at slightly lower temperature and higher pressure than previously inferred. The Kobipoto Complex granulites demonstrate how UHT conditions may be achieved in the ‘modern’ Earth by extreme lithospheric extension, which, in this instance, was driven by slab rollback of the Banda Arc.  相似文献   

17.
Earth's continental crust is stabilized by crustal differentiation that is driven by partial melting and melt loss: Magmas segregate from their residuum and migrate into the upper crust, leaving the deep crust refractory. Thus, compositional change is an integral part of the metamorphic evolution of anatectic granulites. Current thermodynamic modelling techniques have limited abilities to handle changing bulk composition. New software is developed (Rcrust) that via a path‐dependent iteration approach enables pressure, temperature and bulk composition to act as simultaneous variables. Path‐dependence allows phase additions or extractions that will alter the effective bulk composition of the system. This new methodology leads to a host of additional investigative tools. Singular paths within pressure–temperature–bulk composition (P–T–X) space give details of changing phase proportions and compositions during the anatectic process, while compilations of paths create path‐dependent P–T mode diagrams. A case study is used to investigate the effects of melt loss in an open system for a pelite starting bulk composition. The study is expanded upon by considering multiple P–T paths and considering the effects of a lower melt threshold. It is found that, for the pelite starting composition under investigation, open systems produce less melt than closed systems, and that melt loss prior to decompression drastically reduces the ability of the system to form melt upon decompression.  相似文献   

18.
Orthopyroxene‐rich quartz‐saturated granulites of the Strangways Range, Arunta Block, central Australia, record evidence of two high‐grade metamorphic events. Initial granulite facies metamorphism (M1, at c. 1.7 Ga) involved partial melting and migmatization culminating in conditions of 8.5 kbar and 850 °C. Preservation of the peak M1 mineral assemblages from these conditions indicates that most of the generated melt was lost from these rocks at or near peak metamorphic conditions. Subsequent reworking (M2, at c. 1.65 Ga) is characterized by intense deformation, the absence of partial melting and the development of orthopyroxene–sillimanite ± gedrite‐bearing mineral assemblages. Gedrite is only present in cordierite‐rich lithologies where it preferentially replaces M1 cordierite porphyroblasts. Pseudosection calculations indicate that M2 occurred at subsolidus fluid‐absent conditions (aH2o ~ 0.2) at 6–7.5 kbar and 670–720 °C. The mineral assemblages in the reworked rocks are consistent with closed system behaviour with respect to H2O subsequent to M1 melt loss. M2 reworking was primarily driven by increased temperature from the stable geotherm reached after cooling from M1 and deformation‐induced recrystallization and re‐equilibration, rather than rehydration from an externally derived fluid. The development of the M2 assemblages is strongly dependent on the intensity of deformation, not only for promoting equilibration, but also for equalizing the volume changes that result from metamorphic reactions. Calculations suggest that the protoliths of the orthopyroxene‐rich granulites were cordierite–orthoamphibole gneisses, rather than pelites, and that the unusual bulk compositions of these rocks were inherited from the protoliths. Melt loss is insufficient to account for the genesis of these rocks from more typical pelitic compositions. In quartz‐rich gneisses, however, melt loss along the M1 prograde path was able to modify the bulk rock composition sufficiently to stabilize peak metamorphic assemblages different from those that would have otherwise developed.  相似文献   

19.
This paper reports a study of the metamorphic evolution of pelitic, semi-pelitic migmatites and mafic granulites of the Chafalote Metamorphic Suite (CMS), Uruguay, which represents the southernmost exposures of high-grade metamorphic rocks in the Dom Feliciano Belt, Uruguain—Sul-Rio-Grandense shield, South America. This belt is one of the Brasiliano orogens that crop out along the Brazilian and Uruguayan Atlantic margin, and the CMS is one of several disconnected segments of supracrustal rock in a dominantly granitic terrain. Petrological evidence from CMS mafic granulites and semi-pelitic migmatites indicates four distinct metamorphic assemblages. The early prograde assemblage (M1) is preserved only as inclusions in porphyroblasts of the peak-metamorphic (M2) assemblage. Peak-metamorphism was followed by near-isothermal decompression (M3), which resulted in symplectites and coronitic textures in the mafic granulites and compositional zoning of Ca in garnet (decreasing rimwards) and plagioclase (increasing rimwards) in the semi-pelitic migmatites. The retrograde metamorphic assemblage (M4) is represented by hydration reaction textures replacing minerals of the M2 and M3 assemblages. Average PT calculations using the program THERMOCALC and conventional thermobarometric methods yield peak-metamorphic (M2) PT conditions of 7–10 kbar and 830–950 °C, near-decompressional (M3) PT conditions of 4.8–5.5 kbar and 788–830 °C and M4 retrograde PT conditions of 3–6 kbar and 600–750 °C. The calculated PT path for the CMS rocks is ‘clockwise’ and incorporates a near-isothermal decompression segment followed by minor cooling, consistent with a history of crustal thickening followed by extensional collapse at ca. 650–600 Ma. The metamorphism recorded by rocks of this crustal segment may be correlated with 650 Ma metamorphism in the Coastal Terrane of the Kaoko Belt in Namibia, being the first unequivocal match between South America and Africa provided by crystalline rocks south of the Congo Craton.  相似文献   

20.
Melt loss and the preservation of granulite facies mineral assemblages   总被引:29,自引:3,他引:29  
The loss of a metamorphic fluid via the partitioning of H2O into silicate melt at higher metamorphic grade implies that, in the absence of open system behaviour of melt, the amount of H2O contained within rocks remains constant at temperatures above the solidus. Thus, granulite facies rocks, composed of predominantly anhydrous minerals and a hydrous silicate melt should undergo considerable retrogression to hydrous upper amphibolite facies assemblages on cooling as the melt crystallizes and releases its H2O. The common occurrence of weakly retrogressed granulite facies assemblages is consistent with substantial melt loss from the majority of granulite facies rocks. Phase diagram modelling of the effects of melt loss in hypothetical aluminous and subaluminous metapelitic compositions shows that the amount of melt that has to be removed from a rock to preserve a granulite facies assemblage varies markedly with rock composition, the number of partial melt loss events and the P–T conditions at which melt loss occurs. In an aluminous metapelite, the removal of nearly all of the melt at temperatures above the breakdown of biotite is required for the preservation of the peak mineral assemblage. In contrast, the proportion of melt loss required to preserve peak assemblages in a subaluminous metapelite is close to half that required for the aluminous metapelite. Thus, if a given proportion of melt is removed from a sequence of metapelitic granulites of varying composition, the degree of preservation of the peak metamorphic assemblage may vary widely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号