首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Available velocity dispersion estimates for the old stellar population of galactic disks at galactocentric distances r?2L (where L is the photometric radial scale length of the disk) are used to determine the threshold local surface density of disks that are stable against gravitational perturbations. The mass of the disk Md calculated under the assumption of its marginal stability is compared with the total mass Mt and luminosity L B of the galaxy within r=4L. We corroborate the conclusion that a substantial fraction of the mass in galaxies is probably located in their dark halos. The ratio of the radial velocity dispersion to the circular velocity increases along the sequence of galactic color indices and decreases from the early to late morphological types. For most of the galaxies with large color indices (B–V)0>0.75, which mainly belong to the S0 type, the velocity dispersion exceeds significantly the threshold value required for the disk to be stable. The reverse situation is true for spiral galaxies: the ratios Md/LB for these agree well with those expected for evolving stellar systems with the observed color indices. This suggests that the disks of spiral galaxies underwent no significant dynamical heating after they reached a quasi-equilibrium stable state.  相似文献   

2.
The disk positions for galaxies of various morphological and nuclear-activity types (normal galaxies, QSO, Sy, E/S0, low-surface-brightness galaxies, etc.) on the μ0-h (central surface brightness-exponential disk scale) plane are considered. The stellar disks are shown to form a single sequence on this plane $(SB_0 = 10^{ - 0.4\mu _0 } \propto h^{ - 1} )$ over a wide range of surface brightnesses (μ0(I)≈12–25) and sizes (h≈10–100 kpc). The existence of this observed sequence can probably be explained by a combination of three factors: a disk-stability requirement, a limited total disk luminosity, and observational selection. The model by Mo et al. (1998) for disk formation in the CDM hierarchical-clustering scenario is shown to satisfactorily reproduce the salient features of the galaxy disk distribution on the μ0-h plane.  相似文献   

3.
We consider the relationship between the total HI mass in late-type galaxies and the kinematic properties of their disks. The mass MHI for galaxies with a wide variety of properties, from dwarf dIrr galaxies with active star formation to giant low-brightness galaxies, is shown to correlate with the product VcR0 (Vc is the rotational velocity, and R0 is the radial photometric disks cale length), which characterizes the specific angular momentum of the disk. This correlation, along with the decrease in the relative mass of the gas in a galaxy with increasing Vc, can be explained in terms of the previous assumption that the gas density in the disks of most galaxies is maintained at a level close to the threshold (marginal) stability of a gaseous layer to local gravitational perturbations. In this case, the regulation mechanism of the star formation rate associated with the growth of local gravitational instability in the gaseous layer must play a crucial role in the evolution of the gas content in the galactic disk.  相似文献   

4.
We examine the dependence of the total hydrogen mass M HI in late-type star-forming galaxies on rotation velocity V rot and optical size D 25 or radial scale length R 0 of the disk for two samples of galaxies: (i) isolated galaxies (AMIGA) and (ii) galaxies with edge-on disks (flat galaxies according to Karachentsev et al.). M HI given in the HYPERLEDA database for flat galaxies have turned out to be, on average, overestimated by ~0.2 dex compared to isolated galaxies with similar V rot or D 25, which is apparently due to an overestimation of the self-absorption in the HI line. The hydrogen mass in the galaxies of both samples closely correlates with the total specific angular momentum of the galactic disk J, which is proportional to V rot D 25 or V rot R 0, with the low-surface-brightness galaxies lying along the common V rot R 0 sequence. We discuss the possibility of explaining the relationship between M HI and V rot D 25 by assuming that the gas mass in the disk is regulated by the marginal gravitational stability condition for the gas layer. Comparison of the observed and theoretically expected dependences leads us to conclude that either the gravitational stability corresponds to higher values of the Toomre parameter than is usually assumed, or the threshold stability condition formost galaxies was fulfilled only in the past, when the gasmass in the disks was a factor of 2–4 higher than that at present (except for the galaxies with an anomalously high observed HI content). The latter condition requires that for most galaxies the conversion of gas into stars be not compensated by the external accretion of gas onto the disk.  相似文献   

5.
We present the results of our optical identifications of a set of X-ray sources from the INTEGRAL and SWIFT all-sky surveys. The optical data have been obtained with the 1.5-m Russian-Turkish Telescope (RTT-150). Nine X-ray sources have been identified with active galactic nuclei (AGNs). Two of them are located in the nearby spiral galaxies MCG-01-05-047 and NGC 973 seen almost edge-on. One source, IGR J16562-3301, is probably a BL Lac object (blazar). The remaining AGNs are observed as the starlike nuclei of spiral galaxies whose spectra exhibit broad emission lines. The relation between the hard X-ray (17–60 keV) luminosity and the [O III] 5007 line luminosity, log L x/L [O III] ≈ 2.1, holds good for most of the AGNs detected in hard X rays. However, the luminosities of some AGNs deviate from this relation. The fraction of such objects can reach ~20%. In particular, the [O III] line flux is lower for two nearby edge-on spiral galaxies. This can be explained by the effect of absorption in the galactic disks.  相似文献   

6.

We have produced a sample of 58 edge-on spiral galaxies at redshifts z ~ 1 selected in the Hubble Ultra Deep Field. For all galaxies we have analyzed the 2D brightness distributions in the V606 and i775 filters and measured the radial (hr) and vertical (hz) exponential scale lengths of the brightness distribution. We have obtained evidence that the relative thickness of the disks of distant galaxies, i.e., the ratio of the vertical and radial scale lengths, on average, exceeds the relative thickness of the disks of nearby spiral galaxies. The vertical scale length hz of the stellar disks of galaxies shows no big changes at z = 1. The possibility of the evolution of the radial scale length hz for the brightness distribution with redshift is discussed.

  相似文献   

7.
We analyze the relationship between the mass of a spherical component and the minimum possible thickness of stable stellar disks. This relationship for real galaxies allows the lower limit on the dark halo mass to be estimated (the thinner the stable stellar disk is, the more massive the dark halo must be). In our analysis, we use both theoretical relations and numerical N-body simulations of the dynamical evolution of thin disks in the presence of spherical components with different density profiles and different masses. We conclude that the theoretical relationship between the thickness of disk galaxies and the mass of their spherical components is a lower envelope for the model data points. We recommend using this theoretical relationship to estimate the lower limit for the dark halo mass in galaxies. The estimate obtained turns out to be weak. Even for the thinnest galaxies, the dark halo mass within four exponential disk scale lengths must be more than one stellar disk mass.  相似文献   

8.
We compare results from numerical simulations with observations of edge-on galaxies interacting/merging with a small companion (Schwarzkopf and Dettmar,2000), hereafter S&D00). Observations show a clear influence of the merging and interacting process on disk scale parameters h (radial scalelength), z 0 (vertical scalelength) and their ratio (h/z 0), leading to a heating and thickening of the stellar disk. Our numerical simulations show the same behaviour but differ significantly in the magnitude of the change of the disk scale parameters. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

9.
We examine the star formation properties of galaxies with very thin disks selected from the Revised FlatGalaxy Catalog (RFGC). The sample contains 333 ultra-flat galaxies (UFG) at high Galactic latitudes, |b| > 10?, with a blue major angular diameter of a ≥ 1.'2, blue and red apparent axial ratios of (a/b)b > 10, (a/b)r > 8.5 and radial velocities within 10 000 kms?1. As a control sample for them we use a population of 722 more thick RFGC galaxies with (a/b)b > 7, situated in the same volume. The UFG distribution over the sky indicates them as a population of quite isolated galaxies.We found that the specific star formation rate, sSFR FUV, determined via the FUV GALEX flux, increases steadily from the early type to late type disks for both the UFG and RFGC–UFG samples, showing no significant mutual difference within each morphological type T. The population of UFG disks has the average HI-mass-to-stellarmass ratio by (0.25 ± 0.03) dex higher than that of RFGC–UFG galaxies. Being compared with arbitrary orientated disks of the same type, the ultra-flat edge-on galaxies reveal that their total HI mass is hidden by self-absorption on the average by approximately 0.20 dex.We demonstrate that using the robust stellar mass estimate via 〈B?K〉-color and galaxy type T for the thin disks, together with a nowaday accounting for internal extinction, yields their sSFR quantities definitely lying below the limit of ?9.4 dex (yr?1). The collected observational data on UFG disks imply that their average star formation rate in the past has been approximately three times the current SFR. The UFG galaxies have also sufficient amount of gas to support their observed SFR over the following nearly 9 Gyrs.  相似文献   

10.
We consider the effects of projection, internal absorption, and gas-or stellar-velocity dispersion on the measured rotation curves of galaxies with edge-on disks. Axisymmetric disk models clearly show that the rotational velocity in the inner galaxy is highly underestimated. As a result, an extended portion that imitates nearly rigid rotation appears. At galactocentric distances where the absorption is low (i.e., it does not exceed 0.3–0.5m kpc?1), the line profiles can have two peaks, and a rotation curve with minimum distortions can be obtained by estimating the position of the peak that corresponds to a higher rotational velocity. However, the high-velocity peak disappears in high-absorption regions and the actual shape of the rotation curve cannot be reproduced from line-of-sight velocity estimates. In general, the optical rotation curves for edge-on galaxies are of little use in reconstructing the mass distribution in the inner regions, particularly for galaxies with a steep velocity gradient in the central region. In this case, estimating the rotation velocities for outer (transparent) disk regions yields correct results.  相似文献   

11.
We present the results of spectroscopic observations of three S0-Sa galaxies: NGC 338, NGC 3245, and NGC 5440 at the SAO RAS 6-m BTA telescope. The radial distributions of the line-ofsight velocities and radial velocity dispersions of stars and ionized gas were obtained, and rotation curves of galaxies were computed. We construct the numerical dynamic N-body galaxy models with N ?? 106 points. The models include three components: a ??live?? bulge, a collisionless disk, dynamically evolving to the marginally stable state, and a pseudo-isothermal dark halo. The estimates of radial velocities and velocity dispersions of stars obtained from observations are compared with model estimates, projected onto the line of sight. We show that the disks of NGC 5440 and the outer regions of NGC 338 are dynamically overheated. Taking into account the previously obtained observations, we conclude that the dynamic heating of the disk is present in a large number of early-type disk galaxies, and it seems to ensue from the external effects. The estimates of the disk mass and relative mass of the dark halo are given, as well as the disk mass-to-luminosity ratio for seven galaxies, observed at the BTA.  相似文献   

12.
Surface BVRI photometry is presented for two spiral galaxies with a complex photometric structure: NGC 834 and NGC 1134. We propose to introduce the combined color indices Q BVI and Q VRI to investigate the photometric structure of the galaxies. These color indices depend only slightly on selective absorption, which allows them to be used to study the photometric structure of “dusty” galaxies. Evolutionary stellar-population models show that Q BVI is most sensitive to the presence of blue stars, while Q VRI depends on local Hα equivalent width. A ring with active star formation manifests itself on the Q BVI map for NGC 834 at a distance of ~15 from its center, and a spiral structure shows up on the Q VRI map for NGC 1134 in its inner region. The Q BVI Q VRI diagram can provide information about the current stage of a star's formation in various galactic regions. A comparison of the color indices for the galaxies with their model values allows us to estimate the color excesses and extinction in various galactic regions.  相似文献   

13.
Stellar velocity dispersion data at galactocentric distance of two disk radial scale lengths (R = 2h), available in the literature allowed us to determine the upper limits of disk local surface densities at a given R and (by extrapolation) total masses of disks proceeding from the marginal gravitational stability condition. A comparison of the obtained disk masses with the photometric estimates based on the stellar population models indicates the absence of strong dynamical overheating inmost spiral galaxies and hence the absence of significant major merging events, which were able to heat dynamically the inner parts of disks. The same conclusion is valid for some of S0 galaxies. However, a significant part of the latter possesses stellar velocity dispersion, which exceeds the threshold value needed for gravitational stability. Dynamically overheated disks occur both among paired and isolated galaxies. Disk to total mass ratios within R = 4h found for marginally stable disks in most cases lie in the range 0.5–0.8 with the absence of the clearly defined correlation of this ratio with color index or morphological type.  相似文献   

14.
If one attributes to each component i of a gravitational system a dimensionless parameter ψ i equal to the ratio of its relative mass (with respect to the mass of the system) to its relative position (with respect to a generally defined radius) and sums up the ψ i values of all components outside the central core, one obtains a mass distribution index Σψ of the order of unity irrespective of the size or the type of the system. In the case of spiral galaxies (and probable other galactic systems) this property applies not only to the whole galaxy, but also to the matter inside any radius larger than the core radius. The mass distribution index in these systems has a maximum Σψ* at a certain radius r *, which strongly correlates with the surface brightness at r * in galaxies with similar mass to light ratio. The gravitational acceleration of all galaxies at r * divided by (Σψ*)2 is constant and approximately equal to MOND acceleration parameter. Also, at this radius all galaxies have a surface temperature of the order of the temperature of the cosmic microwave background radiation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Gravitational stability of gaseous protostellar disks is relevant to theories of planetary formation. Stable gas disks favor formation of planetesimals by the accumulation of solid material; unstable disks allow the possibility of direct condensation of gaseous protoplanets. We present the results of numerical experiments designed to test the stability of thin disks against large-scale, self-gravitational disruption. The disks are represented by a distribution of about 6 × 104 point masses on a two-dimensional (r, φ) grid. The motions of the particles in the self-consistent gravity field are calculated, and the evolving density distributions are examined for instabilities. Two parameters that have major influences on stability are varied: the initial temperature of the disk (represented by an imposed velocity dispersion), and the mass of the protostar relative to that of the disk. It is found that a disk as massive as 1M, surrounding a 1M protostar, can be stable against long-wavelength gravitational disruption if its temperature is about 300°K or greater. Stability of a cooler disk requires that it be less massive, but even at 100°K a stable disk can have an appreciable fraction (13) of a solar mass.  相似文献   

16.
河外旋涡星系外区普遍存在翘曲结构,其特征可用干翘曲参数来描述,包括翘曲角、翘曲半径、不对称度等。一些翘曲星系表已相继发表,并用于相关的统计分析。关于翘曲盘的形成已提出多种理论机制,如星系间的潮汐相互作用、星系际介质的吸积、盘与暗晕的角动量错向以及星系际磁场的作用等。  相似文献   

17.
Data from the H I Parkes All-Sky Survey (HIPASS) of the southern sky in the neutral hydrogen line are used to determine the radial velocities and widths of the H I line for flat spiral galaxies of the Revised Flat-Galaxy Catalog (RFGC) seen edge-on. The sample of 103 flat galaxies detected in HIPASS is characterized by a median radial velocity of +2037 km/sec and a median width of the H I line at the level of 50% of maximum of 242 km/sec. For RFGC galaxies the 50% detection level in HIPASS corresponds to an apparent magnitude B t = 14 m .5 or an angular diameter a = 2.9. The relative number of detected galaxies increases from 2% for the morphological types Sbc and Sc to 41% for the type Sm. The median value of the ratio of hydrogen mass to total mass for RFGC galaxies is 0.079. With allowance for the average internal extinction for edge-on galaxies, <B t< = 0 m .75, the median ratio of hydrogen mass to luminosity, M H I/L B = 0.74 M /L , is typical for late-type spirals. Because of its small depth, HIPASS reveals only a few RFGC galaxies with previously unknown velocities and line widths.  相似文献   

18.
The saturation conditions for bending modes in inhomogeneous thin stellar disks that follow from an analysis of the dispersion relation are compared with those derived from N-body simulations. In the central regions of inhomogeneous disks, the reserve of disk strength against the growth of bending instability is smaller than that for a homogeneous layer. The spheroidal component (a dark halo, a bulge) is shown to have a stabilizing effect. The latter turns out to depend not only on the total mass of the spherical component, but also on the degree of mass concentration toward the center. We conclude that the presence of a compact (not necessarily massive) bulge in spiral galaxies may prove to be enough to suppress the bending perturbations that increase the disk thickness. This conclusion is corroborated by our N-body simulations in which we simulated the evolution of near-equilibrium, but unstable finite-thickness disks in the presence of spheroidal components. The final disk thickness at the same total mass of the spherical component (dark halo + bulge) was found to be much smaller than that in the simulations where a concentrated bulge is present.  相似文献   

19.
We analyze the spectroscopic and photometric observations of the active galactic nucleus (AGN) 1E 0754.6+3928 performed at Crimean Astrophysical Observatory in 1998–2004. Based on formal spectroscopic criteria for the optical wavelength range, we can classify this object as a narrow-line Seyfert 1 (NLS1) galaxy. Over the period of its observations, the AGN 1E 0754.6+3928 showed a very low rms flux variability amplitude in both continuum and Hβ (~3%). The Hβ time lag relative to the continuum has been found from the cross-correlation function centroid to be τ cent = 112 ?67 +215 days. This result and the Hβ line dispersion estimate have allowed us to determine the central black hole mass by the reverberation method: 1.05 × 108 M . The position of 1E 0754.6+3928 in the black hole mass-luminosity diagram agrees with the positions of other NLS1 galaxies and can be explained by an enhanced mass accretion rate in the central source.  相似文献   

20.
We report on first results of a comprehensive study of interacting andmerging processes between spiral galaxies and small satellites to investigatethe effects of such events on the disk component of spirals. Analysis ofour newly obtained photometric data of about 125 edge-on galaxiesin optical and in NIR shows that there are considerable differencesbetween interacting and non-interacting galaxies concerning their absolutedisk scale parameters as well as their ratios (h/z 0).In comparison with normal spirals, the average heating factor perpendicular tothe disk plane of mergers is about 1.5. The most striking feature of thedistributions of (h/z 0) for both normal galaxies and mergers, is thetotal lack of typical flat disk axis ratios (i.e. that of late type ones)of (h/z 0) > 6 for mergers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号