首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Near-infrared spectroscopic observations of a sample of very cool, low-mass objects are presented with higher spectral resolution than in any previous studies. Six of the objects are L dwarfs, ranging in spectral class from L2 to L8/9, and the seventh is a methane or T dwarf. These new observations were obtained during commissioning of the near-infrared spectrometer (NIRSPEC), the first high-resolution near-infrared cryogenic spectrograph for the Keck II 10 m telescope on Mauna Kea, Hawaii. Spectra with a resolving power of R approximately 2500 from 1.135 to 1.360 μm (approximately J band) are presented for each source. At this resolution, a rich spectral structure is revealed, much of which is due to blending of unresolved molecular transitions. Strong lines due to neutral potassium (K i) and bands due to iron hydride (FeH) and steam (H2O) change significantly throughout the L sequence. Iron hydride disappears between L5 and L8, the steam bands deepen, and the K i lines gradually become weaker but wider because of pressure broadening. An unidentified feature occurs at 1.22 μm that has a temperature dependence like FeH but has no counterpart in the available FeH opacity data. Because these objects are 3-6 mag brighter in the near-infrared compared with the I band, spectral classification is efficient. One of the objects studied (2MASSW J1523+3014) is the coolest L dwarf discovered so far by the 2 Micron All-Sky Survey (2MASS), but its spectrum is still significantly different from the methane-dominated objects such as Gl 229B or SDSS 1624+0029.  相似文献   

2.
We report the discovery of three cool brown dwarfs that fall in the effective temperature gap between the latest L dwarfs currently known, with no methane absorption bands in the 1-2.5 μm range, and the previously known methane (T) dwarfs, whose spectra are dominated by methane and water. The newly discovered objects were detected as very red objects in the Sloan Digital Sky Survey imaging data and have JHK colors between the red L dwarfs and the blue Gl 229B-like T dwarfs. They show both CO and CH(4) absorption in their near-infrared spectra in addition to H(2)O, with weaker CH(4) absorption features in the H and K bands than those in all other methane dwarfs reported to date. Due to the presence of CH(4) in these bands, we propose that these objects are early T dwarfs. The three form part of the brown dwarf spectral sequence and fill in the large gap in the overall spectral sequence from the hottest main-sequence stars to the coolest methane dwarfs currently known.  相似文献   

3.
We compare observations of the eclipsing binary system CM Draconis (hereafter CM Dra) with synthetic spectra computed using the stellar atmosphere code phoenix . High-resolution infrared spectroscopic observations of six 0.05-μm-wide regions between 1.51 and 2.45 μm, combined with previous work, particularly CM Dra's accurately known surface gravity, enable us to estimate its metallicity using detailed spectral synthesis. We find significant discrepancies between the observed and synthetic spectra throughout most of the region emphasizing the need for higher quality atomic data in the infrared. Nevertheless, the     CO bands beyond 2.3 μm seem to be well modelled and metal-sensitive, and thus high-resolution spectra should be a most powerful diagnostic tool for spectroscopic analyses for M dwarfs and brown dwarfs. The CO bands indicate a metallicity of around −1 dex for CM Dra. This result is supported by observations of two M dwarfs of similar spectral type, GJ 699 (Barnard's star) and GJ 725B. This result supports inferences from previous infrared work, although it does not agree with standard evolutionary models or optical analyses, which both suggest an abundance for CM Dra close to that of the Sun.  相似文献   

4.
The chemical species containing carbon, nitrogen, and oxygen in atmospheres of giant planets, brown dwarfs (T and L dwarfs), and low-mass stars (M dwarfs) are identified as part of a comprehensive set of thermochemical equilibrium and kinetic calculations for all elements. The calculations cover a wide temperature and pressure range in the upper portions of giant planetary and T-, L-, and M-dwarf atmospheres. Emphasis is placed on the major gases CH4, CO, NH3, N2, and H2O but other less abundant gases are included. The results presented are independent of particular model atmospheres, and can be used to constrain model atmosphere temperatures and pressures from observations of different gases. The influence of metallicity on the speciation of these key elements under pressure-temperature (P-T) conditions relevant to low-mass object atmospheres is discussed. The results of the thermochemical equilibrium computations indicate that several compounds may be useful to establish temperature or pressure scales for giant planet, brown dwarf, or dwarf star atmospheres. We find that ethane and methanol abundance are useful temperature probes in giant planets and methane dwarfs such as Gl 229B, and that CO2 can serve as a temperature probe in more massive objects. Imidogen (NH) abundances are a unique pressure-independent temperature probe for all objects. Total pressure probes for warmer brown dwarfs and M dwarfs are HCN, HCNO, and CH2O. No temperature-independent probes for the total pressure in giant planets or T-dwarf atmospheres are identified among the more abundant C, N, and O bearing gases investigated here.  相似文献   

5.
We present  0.9–2.5 μm  spectroscopy with   R ∼800  and  1.12–1.22 μm  spectroscopy with   R ∼5800  for the M dwarfs Gl 229A and LHS 102A, and for the L dwarf LHS 102B. We also report IZJHKL ' photometry for both components of the LHS 102 system, and L ' photometry for Gl 229A. The data are combined with previously published spectroscopy and photometry to produce flux distributions for each component of the kinematically old disc M/L dwarf binary system LHS 102 and the kinematically young disc M/T dwarf binary system Gliese 229. The data are analysed using synthetic spectra generated by the latest 'AMES-dusty' and 'AMES-cond' models by Allard & Hauschildt. Although the models are not able to reproduce the overall slope of the infrared flux distribution of the L dwarf, most likely because of the treatment of dust in the photosphere, the data for the M dwarfs and the T dwarf are well matched. We find that the Gl 229 system is metal-poor despite having kinematics of the young disc, and that the LHS 102 system has solar metallicity. The observed luminosities and derived temperatures and gravities are consistent with evolutionary model predictions if the Gl 229 system is very young  (age∼30 Myr)  with masses (A,B) of (0.38,≳0.007) M, and the LHS 102 system is older, aged  1–10 Gyr  with masses (A,B) of (0.19,0.07) M.  相似文献   

6.
7.
A membership catalogue for the Pleiades is divided into four mass bins, and a tidally truncated King profile is fitted to each bin with good agreement with the data. The tidal radius of the cluster is found to be 13.1 pc, and the total mass of the cluster down to the stellar limit is calculated to be 735 M. The spread of stars in each bin, as well as the relaxation and crossing times, shows the Pleiades to be an approximately relaxed cluster with equilibrium between the density and velocity distributions. The cluster kinetic energy and binding energy are consistent with the virial theorem, indicating no large unseen population of brown dwarfs. However, the 1 σ errors in the cluster parameters provide an upper limit to the mass of any brown dwarf population of 131 M, which would show up in deep CCD surveys as ≤ 5.5 brown dwarfs per 10 × 10 arcminute field in the cluster centre.  相似文献   

8.
Empirical formulas for the temperature and surface gravitation of white dwarfs are derived using data on temperature and the acceleration of gravity from the catalog of spectroscopically confirmed white dwarfs WD in the Sloan Digital Sky Survey Release 4 (SDSS DR4). These formulas are used to determine the temperature and acceleration of gravity for five spectroscopically confirmed white dwarfs from the FBS survey that were not included in the WD SDSS DR4 catalog, and also for 82 WD that had not been spectroscopically confirmed. As a result, the temperature and acceleration of gravity have been determined for 87 FBS white dwarfs that were not included in the SDSS WD catalog.  相似文献   

9.
We present spectra of 59 nearby star candidates, M dwarfs and white dwarfs, previously identified using high proper motion catalogues and the DENIS database. We review the existing spectral classification schemes and spectroscopic parallax calibrations in the near-infrared J band and derive spectral types and distances of the nearby candidates. Forty-two stars have spectroscopic distances smaller than 25 pc, three of them being white dwarfs. Two targets lie within 10 pc, one M8 star at 10.0 pc (APMPM J0103−3738), and one M4 star at 8.3 pc (L 225−57). One star, LHS 73, is found to be among the few subdwarfs lying within 20 pc. Furthermore, together with LHS 72, it probably belongs to the closest pair of subdwarfs we know.  相似文献   

10.
Based on SDSS data and spectroscopic observations with the 6-m BTA telescope at SAO RAS, we have studied the galaxy SDSS J170745+302056. By the set of its characteristics— an exponential brightness distribution, a central stellar disk surface brightness μ0(B) = 23m. 25/—, blue colors, a low metallicity, and a moderate star formation rate—this galaxy belongs to typical low-surfacebrightness spiral galaxies. The exponential scale length of the galaxy’s disk is ≈3 kpc, while its optical diameter exceeds 20 kpc. SDSS J170745+302056 is a member of a group of five galaxies and possibly interacts with the galaxy UGC 10716. The existence of a large low-surface-brightness galaxy in such a dense environment is very unusual.  相似文献   

11.
Results are reported from studies of a subsample of white dwarfs in the second part of the FBS survey. Of the 217 WD identified in the FBS, most are DA dwarfs, but the subclasses DO, DOB, DB, DAB, DAZ, DZ, and DC are also encountered. Multiwavelength studies are conducted on the sample from the FBS survey: of the 217 white dwarfs, 178 coincide with 2MASS sources, GALEX (ultraviolet) data exist for 155, 23 are ROSAT x-ray sources, and SDSS data with stellar magnitudes in five photometric bands, u, g, r, i, and z, are available for 120. The WD sample from the FBS survey is compared with similar surveys (PG and SDSS). Average B and R magnitudes, as well as an average value of the length of the low dispersion spectra of white dwarfs from the DFBS are also given.  相似文献   

12.
As already known, the Third Catalogue of Nearby Stars by Gliese and Jahreiss is incomplete and the missing stars are all faint, red dwarfs. We underline that there are more stars missing in the South than in the North, for both the CNS3 and the NLTT.  相似文献   

13.
In this paper we report the first results from a survey for low-mass stars and brown dwarfs, based on a photographic stack of around 100 Schmidt plates. This survey extends photographic searches by about 2 mag, and covers an area of 25 deg2. Some 30 faint objects with large R − I colours were selected for further study, and were found to have very strong molecular absorption in their spectra, but only moderately red infrared colours. Five of these stars were selected for a parallax programme; three of these were found to be at a distance of around 45 pc, implying a very low luminosity. On the basis of their luminosity alone it is clear that these stars are field brown dwarfs, and we discuss their likely evolutionary status in the context of current models of low-mass stellar evolution.  相似文献   

14.
The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low-mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures much lower  (<500 K)  than the coolest brown dwarfs currently observed. These ultra-low-mass substellar objects would have spectral types >T8.5, and so could belong to the proposed Y dwarf spectral sequence. The detection of a planet around a white dwarf would prove that such objects can survive the final stages of stellar evolution and place constraints on the frequency of planetary systems around their progenitors (with masses between 1.5 and 8   M  , i.e. early B to mid-F). This paper presents the results of a multi epoch J band common proper motion survey of 23 nearby equatorial and Northern hemisphere white dwarfs. We rule out the presence of any common proper motion companions, with limiting masses determined from the completeness limit of each observation, to 18 white dwarfs. For the remaining five targets, the motion of the white dwarf is not sufficiently separated from the non-moving background objects in each field. These targets require additional observations to conclusively rule out the presence of any common proper motion companions. From our completeness limits, we tentatively suggest that  ≲5 per cent  of white dwarfs have substellar companions with   T eff≳ 500 K  between projected physical separations of 60–200 au.  相似文献   

15.
We present infrared spectroscopy of the Antennae galaxies (NGC 4038/9) with the near-infrared spectrometer (NIRSPEC) at the W. M. Keck Observatory. We imaged the star clusters in the vicinity of the southern nucleus (NGC 4039) with 0&farcs;39 seeing in the K band using NIRSPEC's slit-viewing camera. The brightest star cluster revealed in the near-IR [MK&parl0;0&parr0; approximately -17.9] is insignificant optically but is coincident with the highest surface brightness peak in the mid-IR (12-18 μm) Infrared Space Observatory image presented by Mirabel et al. We obtained high signal-to-noise ratio 2.03-2.45 μm spectra of the nucleus and the obscured star cluster at R approximately 1900. The cluster is very young ( approximately 4 Myr), massive (M approximately 16x106 M middle dot in circle), and compact (with a density of approximately 115 M middle dot in circle pc-3 within a 32 pc half-light radius), assuming a Salpeter initial mass function (0.1-100 M middle dot in circle). Its hot stars have a radiation field characterized by Teff approximately 39,000 K, and they ionize a compact H ii region with ne approximately 104 cm-3. The stars are deeply embedded in gas and dust (AV approximately 9-10 mag), and their strong far-ultraviolet field powers a clumpy photodissociation region with densities nH greater, similar105 cm-3 on scales of approximately 200 pc, radiating LH21-0S&parl0;1&parr0;=9600 L middle dot in circle.  相似文献   

16.
We have monitored S Ori 45, a young, low-mass (20 M j up) brown dwarf of the σ Orionis cluster (~3 Myr, 352 pc), using optical and near-infrared filters. S Ori 45 (spectral type M8.5) is found to be multi-periodic with a dominant modulation at 2.5–3.5 h, and a short modulation at about 46 min. We ascribe the longer of these modulations to a rotation period. After comparing these results with observations of more massive cluster brown dwarfs and field brown dwarfs, we conclude that substellar objects present rotational and angular momentum evolution. We have also obtained intermediate-resolution near-infrared spectroscopy of S Ori 70, which is a T-class, free-floating planetary candidate member in the σ Orionis cluster. Its observed spectrum has been compared to data of field brown dwarfs of similar types and to theoretical spectra computed for different surface temperatures and gravities. We conclude that S Ori 70 has a significantly cool, low-gravity atmosphere. This supports the young age of this object and its membership in the cluster. From state-of-the-art evolutionary models, the mass of S Ori 70 is estimated at 3 times the Jovian mass (+5 ?2 M j up), challenging current stellar/substellar formation models. S Ori 70 remains the lowest mass object so far identified in any open cluster.  相似文献   

17.
Rotating white dwarfs undergoing quasi-radial oscillations can emit gravitational radiation in a frequency range from 0.1-0.3 Hz. Assuming that the energy source for the gravitational radiation comes from the oblateness of the white dwarf induced by the rotation, the strain amplitude is found to be 10-25 for a white dwarf at 50 pc. We had calculated thermal energy losses through a magneto-hydrodynamic mechanism and found it smaller than estimated before. The galactic population of these sources is estimated to be 107 and may produce a confusion-limited foreground for proposed advanced detectors in the frequency band between space-based and ground-based interferometers. Nearby oscillating white dwarfs may provide a clear enough signal to investigate white dwarf interiors through gravitational wave astroseismology.  相似文献   

18.
The spectral type is a key parameter in calibrating the temperature which is required to estimate the mass of young stars and brown dwarfs. We describe an approach developed to classify low-mass stars and brown dwarfs in the Trapezium Cluster using red optical spectra, which can be applied to other star-forming regions. The classification uses two methods for greater accuracy: the use of narrow-band spectral indices which rely on the variation of the strength of molecular lines with spectral type and a comparison with other previously classified young, low-mass objects in the Chamaeleon I star-forming region. We have investigated and compared many different molecular indices and have identified a small number of indices which work well for classifying M-type objects in nebular regions. The indices are calibrated for young, pre-main-sequence objects whose spectra are affected by their lower surface gravities compared with those on the main sequence. Spectral types obtained are essentially independent of both reddening and nebular emission lines.
Confirmation of candidate young stars and brown dwarfs as bona fide cluster members may be accomplished with moderate resolution spectra in the optical region by an analysis of the strength of the gravity-sensitive Na doublet. It has been established that this feature is much weaker in these very young objects than in field dwarfs. A sodium spectral index is used to estimate the surface gravity and to demonstrate quantitatively the difference between young (1–2 Myr) objects, and dwarf and giant field stars.  相似文献   

19.
Space densities for stars given in the „Catalogue of nearby stars”︁ and in „Nearby star data published 1969—1978”︁ were calculated for the stellar groups listed in Table 1 as a function of the distance from the galactic plane. The stars are symmetrically distributed with respect to the galactic plane. Space densities for giant stars nearer than 22 pc were also computed. The comparison between the luminosity functions of stars nearer than 5 pc and 22 pc shows that the number of M dwarfs up to 22 pc is given uncompletely.  相似文献   

20.
The spectral energy distributions for pure-hydrogen (DA) hot white dwarfs can be accurately predicted by model atmospheres. This makes it possible to define spectrophotometric calibrators by scaling the theoretical spectral shapes with broad-band photometric observations – a strategy successfully exploited for the spectrographs onboard the Hubble Space Telescope ( HST ) using three primary DA standards. Absolute fluxes for non-DA secondary standards, introduced to increase the density of calibrators in the sky, need to be referred to the primary standards, but a far better solution would be to employ a network of DA stars scattered throughout the sky. We search for blue objects in the sixth data release of the Sloan Digital Sky Survey (SDSS) and fit DA model fluxes to identify suitable candidates. Reddening needs to be considered in the analysis of many of these stars. We propose a list of nine pure-hydrogen white dwarfs with absolute fluxes with estimated uncertainties below 3 per cent, including four objects with estimated errors <2 per cent, as candidates for spectrophotometric standards in the range  14 < g < 18  , and provide model-based fluxes scaled to match the SDSS broad-band fluxes for each. We apply the same method to the three HST DA standards, linking the zero point of their absolute fluxes to ugr magnitudes transformed from photometry obtained with the US Naval Observatory 1-m telescope. For these stars, we estimate uncertainties of <1 per cent in the optical, finding good consistency with the fluxes adopted for HST calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号