首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A wind tunnel study examined the effect of distributions of saltating particles on sediment surfaces which were characterized by distributions of their tensile strength. The sediments consisted of varying proportions of large sand‐sized particles with a fine particle cement. The energies of the impacting particles and the surface strengths were compared with the mass of material lost from the surface. It is important to consider distributions of parameters rather than mean values only, since abrasion and erosion may occur from surfaces not predicted from average strength and saltation velocities. At the impact velocities used in this study (mean velocity 4·4 m s?1, with standard deviation of 0·51), surfaces containing less than 12 per cent fine material were easily eroded, but insignificant erosion occurred when the fine particle content exceeded 60 per cent. Small amounts of cementing material were easily ruptured, allowing the large sand grains to be moved (largely in creep) by the bombarding particles. A significant amount of energy was lost to the bed. As the percentage of fine material increased, the surface became more difficult to break up and less energy was lost to the bed. The probability that erosion will occur for known energy distributions of impacting particles and surface strength can be calculated and the mass loss increases exponentially with a decrease in the percentage of fine cementing particles. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
A conceptual model is described for the prediction of wind erosion rates dependent on the distribution of impact energy delivered to the surface by saltating grains, P[Ei], and the distribution of local surface strength, P[Es]. Methods are presented for the measurement of both distributions and consequent loss of material from the bed. It is concluded that saltating sand grains can rupture weak crusts under even moderate wind conditions, and that the rate of erosion will depend on the shape of the distribution tails. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Temporal aspects of the abrasion of microphytic crusts under grain impact   总被引:1,自引:0,他引:1  
Wind‐tunnel simulations of the response of two moss crusts to grain impact indicate that, given sufficient time, these surfaces will deteriorate under very low wind velocities only slightly above u*t for the loose, saltating grains. In parallel with these experiments, the frequency distributions of ultimate strength and penetration energy were determined for each of the two crust types via penetrometry. Pohlia was found to be stronger than Tortula; but, even so, both of these crusts had ultimate strengths 20–350 times higher than the force delivered by a single grain impacting each surface at a velocity of 1 ms?1. In comparison, the modulus of deformation and penetration energy data were very similar for the two surface types, especially for the weakest areas of crust development. This observation is in accord with the wind‐tunnel simulations that also found no consistent difference in the response of these two crust types to impact. In comparison with crusts formed by clay and salt, fibrous microphytic crusts are morphologically complex and typically weak. The notable elasticity of these surfaces does reduce the force of grain impact, and thereby provides some protection against rupture. One of the central conclusions of this study suggests that not only is the particle kinetic energy at impact important in crust breakdown, but also tiny fractures at points of localized stress concentration contribute to a progressive reduction in the integrity of the filament net. In some of the experiments conducted as part of this study, up to 50 or more minutes of constant bombardment was required to produce small abrasion marks on selected areas of the microphytic crust. This study prepares a foundation for future experiments needed to examine the breakdown of complex crusts formed in nature. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
A portable field wind tunnel was used to assess the sediment flux rates of loam and sand textured soils in the Mallee region of southeastern Australia. Three levels of crust disturbance (nil, moderate and severe) simulating stock trampling were investigated. The results demonstrated the importance of cryptogamic crusts in binding the soil surface and providing roughness after the soil was moderately disturbed. On the loamy soil, the crust helped maintain sediment flux rates below the erosion control target to 5 g m−1 s−1 for a 65 km h−1 wind measured at 10 m height. Once the crust was severely disturbed, sediment fluxes increased to 1·6 times the erosion target. On the sandy soil, even with no crust disturbance the sediment flux was 1·6 times the erosion control target. Disturbing the crust increased sediment fluxes to a maximum of 6·7 times the erosion control target. Removal of the crust also decreased the threshold wind velocity that resulted in an increase to the risk of erosion from <5 per cent to 20 per cent. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Crusts play a crucial role in the reduction or control of wind erosion. In this regard, the resilience and durability of crusts are of prime importance. Crusts have high resilience and durability against wind flow shear stresses; however, they are prone to abrasion induced by saltating particles. Therefore, estimating crust durability in abrasion rupture has practical importance. In this study, a cyanocrust and a biocemented sand crust were subjected to a controlled flux of saltating particles for different sandblasting periods to provide a framework for predicting crust rupture. The velocity and pre- and post-collision energy of the saltating particles were measured using high-speed photography. The changes in the strength of the crusts after different periods of sandblasting were determined using a scratch test. The results suggested that the average strength of the cyanocrust and biocemented sand crust became 0.25 and 0.7 of their corresponding initial values after 30 min of sandblasting. Also, the average stiffness of the cyanocrust and biocemented sand crust decreased to 0.5 and 0.9 of their initial values, respectively. Furthermore, the amount of impact energy absorbed by the crusts increased by the deterioration of the crusts. Compiling the results of the wind tunnel experiment and scratch tests yielded an exponential equation which can be used to estimate crust durability in a given condition of saltation. Based on this equation, the cyanocrust and biocemented sand crust will break down entirely after 23 and 449 min, respectively, at a wind velocity of 6.8 m/s and a saltation flux of 1 g/s/m.  相似文献   

7.
The surface susceptibility to erosion (erodibility) is an important component of soil erosion models. Many studies of wind erosion have shown that even relatively small changes in surface conditions can have a considerable effect on the temporal and spatial variability of dust emissions. One of the main difficulties in measuring erodibility is that it is controlled by a number of highly variable soil factors. Collection of these data is often limited in scale because in situ measurements are labour‐intensive and very time‐consuming. To improve wind erosion model predictions over several spatial and temporal scales simultaneously, there is a requirement for a non‐invasive approach that can be used to rapidly assess changes in the compositional and structural nature of a soil surface in time and space. Spectral reflectance of the soil surface appears to meet these desirable requirements and it is controlled by properties that affect the soil erodibility. Three soil surfaces were modified using rainfall simulation and wind tunnel abrasion experiments. Observations of those changes were made and recorded using digital images and on‐nadir spectral reflectance. The results showed clear evidence of the information content in the spectral domain that was otherwise difficult to interpret given the complicated interrelationships between soil composition and structure. Changes detected at the soil surface included the presence of a crust produced by rainsplash, the production of loose erodible material covering a rain crust and the selective erosion of the soil surface. The effect of rainsplash and aeolian abrasion was different for each soil tested and crust abrasion was shown to decrease as rainfall intensity increased. The relative contributions of the eroded material from each soil surface to trapped mixtures of material assisted the erodibility assessment. Ordination analyses within each of two important soil types explained significant amounts of the variation in the reflectance of all wavebands by treatments of the soil and hence changes in the soil surface. The results show that soil surface conditions within a soil type are an underestimated source of variation in the characterization of soil surface erodibility and in the remote sensing of soil. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The flow of glass dust particles in air was investigated experimentally over a flat bed in a wind tunnel. Particle concentrations were measured by light scattering diffusion (LSD) and digital image processing. It was verified that saltation is the main mechanism for ejection of dust particles. Vertical mean dust concentrations for ‘pure dust’ and two mixtures of dust and saltating glass particles were determined and analysed. The experiments confirmed that for the ‘pure dust’ configuration the mean concentration decreases as a power function with height. For the mixture configurations and for free stream velocities close to the threshold velocity, the mean concentration also decreases in a power function. For higher velocities, mean concentration decreases respectively as a power function or exponential function for large and small ratios of the dust:saltating particles respectively. The exponent of the power law reflects the dust:particle ratio and the free stream flow velocity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Field studies conducted at Owens Lake, California, provide direct measurements of sand flux on sand sheets with zero to 20 per cent cover of salt grass. Results from 12 different sand transport events show that aerodynamic roughness length and threshold wind shear velocity increase with vegetation cover as measured by vertically projected cover and roughness density (λ). This results in a negative exponential decrease in sediment flux with increasing vegetation cover such that sand transport is effectively eliminated when the vertically projected cover of salt grass is greater than 15 per cent. A general empirical model for the relation between sand flux and vegetation cover has been derived and can be used to predict the amount of vegetation required to stabilize sand dune areas. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Soil redistribution on arable land significantly affects lateral and vertical soil carbon (C) fluxes (caused by C formation and mineralization) and soil organic carbon (SOC) stocks. Whether this serves as a (C) sink or source to the atmosphere is a controversial issue. In this study, the SPEROS‐C model was modified to analyse erosion induced lateral and vertical soil C fluxes and their effects upon SOC stocks in a small agricultural catchment (4·2 ha). The model was applied for the period between 1950 and 2007 covering 30 years of conventional tillage (1950–1979) followed by 28 years of conservation tillage (1980–2007). In general, modelled and measured SOC stocks are in good agreement for three observed soil layers. The overall balance (1950–2007) of erosion induced lateral and vertical C fluxes results in a C loss of ?4·4 g C m–2 a–1 at our test site. Land management has a significant impact on the erosion induced C fluxes, leading to a predominance of lateral C export under conventional and of vertical C exchange between soil and atmosphere under conservation agriculture. Overall, the application of the soil conservation practices, with enhanced C inputs by cover crops and decreased erosion, significantly reduced the modelled erosion induced C loss of the test site. Increasing C inputs alone, without a reduction of erosion rates, did not result in a reduction of erosion induced C losses. Moreover, our results show that the potential erosion induced C loss is very sensitive to the representation of erosion rates (long‐term steady state versus event driven). A first estimate suggests that C losses are very sensitive to magnitude and frequency of erosion events. If long‐term averages are dominated by large magnitude events modelled erosion induced C losses in the catchment were significantly reduced. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Calanchi(plural of calanco) are typical Italian badlands created by a combination of morphogenetic processes(rill and interrill erosion, gullying, piping, and mass movements) mainly originated by the effect of water. Calanchi are characterized by the sparse and patchy distribution of vegetation, and, in interplant areas, the soil surface is colonized by an association of organisms known as biological soil crust(BSC). A morphometric analysis of 45 basins in the studied calanchi area, based on a h...  相似文献   

12.
The effect of peat on crust strength was investigated using ten soils with organic matter levels ranging from 1-50 to 18-23 per cent. As peat content increased, the crust strength reduced. This occurred in spite of the inability of peat to increase the stability of soil aggregates. Peat reduced crust strength by acting as a mulch on the soil surface, thereby reducing breakdown of soil aggregates. Peat also formed a source of weakness on the soil, reducing crust formation. Using a factorial experiment involving a further seven soils with different levels of peat treatment, exposed to four rainfall durations and with two aggregate sizes, crust strength was described in terms of the direct effects and the interactions of these factors. Most of the crust strength values reduced with increasing peat content. For each soil, crust strength increased significantly with increasing rainfall duration. Crust strength was greater for the smaller aggregate size. The most significant interactions affecting crust strength were between soil and aggregate size, rainfall duration and aggregate size, and soil and rainfall duration in that order. These interactions were used to describe the effect of organic matter in form of peat on crust strength. For each soil and aggregate size, polynomial relationships were established to relate crust strength to total kinetic energy of rainfall.  相似文献   

13.
Several studies illustrate the wind and water erosion‐reducing potential of semi‐permanent microbiotic soil crusts in arid and semi‐arid desert environments. In contrast, little is hitherto known on these biological crusts on cropland soils in temperate environments where they are annually destroyed by tillage and quickly regenerate thereafter. This study attempts to fill the research gap through (a) a field survey assessing the occurrence of biological soil crusts on loess‐derived soils in central Belgium in space and time and (b) laboratory flume (2 m long) experiments simulating concentrated runoff on undisturbed topsoil samples (0.4 × 0.1 m2) quantifying the microbiotic crust effect on soil erosion rates. Three stages of microbiotic crust development on cropland soils are distinguished: (1) development of a non‐biological surface seal by raindrop impact, (2) colonization of the soil by algae and gradual development of a continuous algal mat and (3) establishment of a well‐developed microbiotic crust with moss plants as the dominant life‐form. As the silt loam soils in the study area seal quickly after tillage, microbiotic soil crusts are more or less present during a large part of the year under maize, sugar beet and wheat, representing the main cropland area. On average, the early‐successional algae‐dominated crusts of stage 2 reduce soil detachment rates by 37%, whereas the well‐developed moss mat of stage 3 causes an average reduction of 79%. Relative soil detachment rates of soil surfaces with microbiotic crusts compared with bare sealed soil surfaces are shown to decrease exponentially with increasing microbiotic cover (b = 0·024 for moss‐dominated and b = 0·006 for algae‐dominated crusts). In addition to ground surface cover by vegetation and crop residues, microbiotic crust occurrence can therefore not be neglected when modelling small‐scale spatial and temporal variations in soil loss by concentrated flow erosion on cropland soils in temperate environments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
East Asian dust storms have become increasingly intense over the last two decades, and the arid inland regions of northern China have been recognized as the main dust source areas. Numerous lakes in this region have recently become desiccated, leaving large areas of bare ground prone to becoming potential dust sources. Vegetation cover characteristics and vegetation succession following lake desiccation remain unclear. Here we chose eight inland dry lakes, one outflow lake and one river on the southeast edge of the Inner Mongolian Plateau to investigate vegetation patterns along transects from lake bed to lake shore, and determine the relationships between vegetation patterns and environmental factors. The results show that dry lake bed soils do indeed have high contents of fine particles. Also, soil salt content is the most critical control on vegetation succession on desiccated lake beds, and vegetation is unlikely to colonize areas with soil salt content ≥5%. Soil texture additionally influenced vegetation patterns by affecting soil salt content. The likely vegetation succession on dry like beds is Nitraria tangutorum community > Suaeda corniculata and Suaeda glauca communities > Achnatherum splendens and Elymus sibiricus communities, and finally Carex duriuscula community as the probable climax. When vegetation is at the later stages of succession, for example with Achnatherum splendens communities, Elymus sibiricus communities and Carex duriuscula communities, soil may be protected from wind erosion because of their high vegetation cover and high proportion of perennials. We suggest grazing should be avoided around lake shores, especially in Achnatherum splendens communities, because high vegetation cover and biomass not only protect soil from erosion, but also promote the deposition of fine particles blown from upwind regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Dust storms are a major contributor to soil erosion in inland Australia, and the Simpson Desert–Channel Country region is one of the most active wind erosion regions. While information is available on wind erosion rates at the land‐type level, little is known about the influence that spatial variations in the erodibility within a land type have on the resulting dust concentration profile. A Gaussian plume model, DSIS, is presented along with tower‐based dust data, to describe the influence of different spatial combinations of dust source areas, during three dust events on the Diamantina River floodplain in Western Queensland, Australia. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Severe dust storms in the Southern Aral Sea Basin have become common with the desiccation of the sea. The high incidence of dust in the area has had severe ecological consequences. Within the framework of efforts to reduce this phenomenon, deflatability as well as deflatability‐related characteristics of some prominent soils/sediment surfaces in the Southern Aral Sea Basin were examined. The materials included a salt crust from a developed Solonchak, a Takyr crust and a Takyr‐like soil, and salt crusts from undeveloped Solonchaks formed on the exposed bottom of the Aral Sea. Characteristics determined were particle size distribution, dry aggregate size distribution and salt, carbonate and organic carbon contents. Deflatability was examined using a suction type wind tunnel with a SENSIT‐type sensor to detect airborne unconsolidated material, on materials treated to different moisture levels and with a chemical stabilizer, and on restored crusts created from the unconsolidated materials. Fine sand dominates in the materials, and in the Takyr crust and Takyr‐like soils is accompanied by significant amounts of silt and clay. All materials contain moderate amounts of carbonate and are low in organic matter. All soils/sediments contain salts, but in the salt crusts of the Solonchaks the salt fraction dominates. They all have more than 50 per cent PM850 (particles with diameter <850 µm), indicating a relatively high deflatability potential. The materials from the Takyr crusts and Takyr‐like soil with a high proportion of fine aggregates had the lowest threshold friction velocities, while the salt crusts of the Solonchaks with a high proportion of coarse aggregates had the highest. This suggests that Takyrs and Takyr‐like soils are the most deflatable and Solonchak soils the least deflatable. These differences are attributed to the presence of salts that create stable, large aggregates in the Solonchak crusts. Wetting of the materials to three moisture levels considerably increased threshold friction velocity. The increase was most prominent in the salt‐rich materials, and was attributed to the rapid formation of surface films by drying in the course of the wind tunnel determinations. Applications of chemical stabilizers at two levels also considerably increased threshold friction velocity. On the restored crusts, threshold friction velocity dramatically increased, occasionally to non‐recordable values. This increase was monitored with both the salt crusts characteristic for the Solonchak soils and the fine‐grained crusts characteristic for the Takyr soils. The stability was attributed to the tightly packed salt particles in the salt crusts, and to the cohesive properties of the fine‐grained materials in the Takyr crusts. Once the crusts were ruptured, however, strong deflation commenced. These results suggest that by maintaining moisture in the soils/sediments (for example, by maintaining a high water table in the Amu‐Darya river flood plain) deflation can be reduced. By the same means, deflation can be reduced by creating new crusts or by preserving existing crusts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Evaporation of soil moisture is one of the most important processes affecting water availability in semiarid ecosystems. Biological soil crusts, which are widely distributed ground cover in these ecosystems, play a recognized role on water processes. Where they roughen surfaces, water residence time and thus infiltration can be greatly enhanced, whereas their ability to clog soil pores or cap the soil surface when wetted can greatly decrease infiltration rate, thus affecting evaporative losses. In this work, we compared evaporation in soils covered by physical crusts, biological crusts in different developmental stages and in the soils underlying the different biological crust types. Our results show that during the time of the highest evaporation (Day 1), there was no difference among any of the crust types or the soils underlying them. On Day 2, when soil moisture was moderately low (11%), evaporation was slightly higher in well‐developed biological soil crusts than in physical or poorly developed biological soil crusts. However, crust removal did not cause significant changes in evaporation compared with the respective soil crust type. These results suggest that the small differences we observed in evaporation among crust types could be caused by differences in the properties of the soil underneath the biological crusts. At low soil moisture (<6%), there was no difference in evaporation among crust types or the underlying soils. Water loss for the complete evaporative cycle (from saturation to dry soil) was similar in both crusted and scraped soils. Therefore, we conclude that for the specific crust and soil types tested, the presence or the type of biological soil crust did not greatly modify evaporation with respect to physical crusts or scraped soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The arid Qaidam Basin is the largest (~3.88 × 104 km2) basin on the north‐eastern Tibetan Plateau. Wind erosion in the area has been regarded as an important trigger for intra‐basin tectonic balance upheaval, geomorphologic development and as a major supplier of dust to the Chinese Loess Plateau downwind. An initial estimate of the rate of wind erosion (Kapp et al., 2011) based on geological cross‐sections has suggested up to 3.2 × 104 km3 of sediments has been deflated over the past 2.8 Ma, lowering the landscape by an average of 0.29 mm/yr. In this paper we re‐evaluate this estimate by dating surface crusts present on three playas within the basin. Understanding the development of these playas is crucial to assessing the overall role of the wind in shaping the regional landscape because they are typically capped with a thick salt crust which effectively protects them from wind erosion. Optically stimulated luminescence (OSL) and U‐series dating from a pit section and from the top of a deep drill core, together with results from magnetostratigraphy and a climate proxy record correlated to the marine oxygen isotope record, are used here to determine the age of the playa plains and suggest that the salt crusts have an age of c. 0.1 Ma. This young age and the wide distribution of resistant thick salt crusts of the playa plains indicate a much lower degree of wind erosion than previously suggested. The crusts protect the surface from significant surface erosion (including sediment exhumation and unloading) and whilst some wind erosion does occur, it is unlikely to be sufficient to trigger tectonic uplift of the basin or to be a major dust source for the Loess Plateau as previously suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This study simulates how spatial variations in particle‐size emissions from a playa affect bulk and size‐resolved dust concentration profiles during two contrasting wind erosion events (a small local and a large regional event) in the Channel Country, Lake Eyre Basin, Australia. The regional event had higher dust concentration as a result of stronger frontal winds and higher erodibility across the playa. For each event, two emission scenarios are simulated to determine if measured size‐resolved dust concentration profiles can be explained by spatial variability in source area emissions. The first scenario assumes that particle‐size emissions from source areas occur at a uniform rate, while the second scenario assumes that particle‐size emissions vary between and within source areas. The uniform emission scenario, reproduced measured bulk dust concentration profiles (R2 = 0·93 regional and R2 = 0·81 local), however simulated size‐resolved dust concentration profiles had poor statistical fits to measured size‐resolved profiles for each size class (the highest were R2 = 0·5 regional and R2 = 0·3 local). For the differential particle‐size emission scenario, the fit to the measured bulk dust concentration profiles is improved (R2 = 0·97 regional and R2 = 0·83 local). However, the fit to the size‐resolved profiles improved dramatically, with the lowest being R2 = 0·89 (regional) and R2 = 0·80 (local). Particle‐size emission models should therefore be tested against both bulk and size‐resolved dust concentration profiles, since if only bulk dust concentration profiles are used model performance may be over‐stated. As the source areas in the first 90 m upwind of the tower were similar for both events, the percentage contributions of each particle‐size class to total emissions can be compared. The contribution of each particle‐size class was similar even though the wind speed, turbulence and dust concentrations were significantly different; suggesting that the contribution of each particle‐size to the total emitted dusts is not related to wind speed and turbulence. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号