首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
石希  夏军强  周美蓉  邓珊珊 《湖泊科学》2023,35(6):2036-2047
受三峡工程运用的影响,长江中游水沙情势剧变,江心洲生境结构发生变化,洲上植被密度、活力和分布情况也随之改变。因此亟需开展针对江心洲植被的长期观测以厘清其对三峡调控的响应机制,从而制定有效的洲滩植被保护和修复策略。卫星遥感技术是开展长时间、长河段地貌观测的常用手段。目前应用卫星遥感技术监测江心洲植被动态的研究,主要聚焦于三峡工程运用对江心洲植被面积和覆盖度的影响,而较少深入探讨植物长势和分布模式的变化趋势。因此,本文以长江中游4个典型江心洲为研究对象,提出了一系列可用于反演江心洲淹没范围和滩面上植被动态的方法,并量化分析三峡工程运用对植被动态的影响。结果表明:(1)三峡工程运用后,江心洲整体淹没频率降低,部分原有边滩逐步满足耐水植物的生长条件,促使江心洲植被面积呈现增长的趋势;原分布在高滩上的不耐水植物逐步蔓延至低滩,导致江心洲植被茂密程度整体上升;(2)三峡工程运行前,2002年含沙量较大的漫滩洪水有促进植物第二年生长的趋势;而三峡工程运行后,2016年具有同样规模但含沙量减少近80%的漫滩洪水则有抑制植物生长的作用;(3)部分形态稳定的江心洲,其高、低滩植被分布模式之间的异质性受三峡...  相似文献   

2.
1980s中期以来,黄河下游游荡段经常出现畸形河湾,分析其演变过程及特点对游荡段治理具有重要意义.本研究采用黄河下游游荡段的遥感影像和实测断面地形资料,描述了不同畸形河湾的演变过程并分析其河湾形态参数和断面形态的变化.研究表明,黄河下游游荡段的畸形河湾具有演变周期短、扭曲程度较大和易发生自然裁弯等特点.游荡段不同位置畸形河湾的演变特点不同:游荡段上段的畸形河湾演变缓慢,裁弯历时长;中段的畸形河湾演变速率较高,河湾扭曲程度大;下段的畸形河湾演变速率高,容易发生自然裁弯.河湾形态参数可反映畸形河湾的演变过程,其变化特点与畸形河湾的形成和裁弯过程相对应.在畸形河湾形成过程中,曲率半径和河湾间距减小,弯曲度、水流夹角和河湾振幅增大.游荡段3个畸形河湾弯曲度的最大值分别为1.20、2.10和1.61,反映了不同畸形河湾的扭曲程度.“Ω”形畸形河湾裁弯后的曲率半径、水流夹角、河湾振幅和河湾间距约为其演变过程中最值的605%、59%、27%和133%.“M”形畸形河湾裁弯后水流夹角、河湾振幅和河湾间距约为其最值的37%、83%和152%.在畸形河湾形成时期,伊洛河口断面位于畸形河湾凹岸侧的滩地以94 m/a的速率崩塌.裁弯后,河槽冲刷,两岸滩地崩退,河槽展宽速率为148 m/a.河床底部的冲刷从深泓点逐渐向两边发展.  相似文献   

3.
三峡及上游梯级水库群运用后,大坝下游江心洲以冲刷为主,直接影响分汊河段河势条件及航道边界的稳定性。本文采用卫星遥感影像、实测水沙及固定断面床沙级配等资料,分析上荆江枝江、沙市河段中不同河床组成江心洲的演变过程及其机理。结果表明:(1)三峡水库蓄水后(2003—2019年),沙市段沙质江心洲较枝江段卵石夹沙质江心洲萎缩更为显著,出露面积的减幅分别达31%和24%。(2)以关洲和金城洲分别代表卵石夹沙质和沙质江心洲,三峡工程运用后关洲洲头形态较为稳定,受无序采砂的影响其沙质组成的洲尾面积显著减小,而金城洲面积萎缩程度更大。(3)床沙组成对江心洲冲刷程度差异具有重要影响,关洲洲头较金城洲抗冲性更强,与其床沙在年内达到起动条件的数量更少、时长更短有关;建立了江心洲面积与水流冲刷强度及相对水深的定量关系,该关系能综合考虑水沙变化与床沙组成调整的影响,能更好地反演近期江心洲的面积变化特点。  相似文献   

4.
This work addresses the temporal dynamics of riparian vegetation in large braided rivers, exploring the relationship between vegetation erosion and flood magnitude. In particular, it investigates the existence of a threshold discharge, or a range of discharges, above which erosion of vegetated patches within the channel occurs. The research was conducted on a 14 km long reach of the Tagliamento River, a braided river in north‐eastern Italy. Ten sets of aerial photographs were used to investigate vegetation dynamics in the period 1954–2011. By using different geographic information system (GIS) procedures, three aspects of geomorphic‐vegetation dynamics and interactions were addressed: (i) long‐term (1954–2011) channel evolution and vegetation dynamics; (ii) the relationship between vegetation erosion/establishment and flow regime; (iii) vegetation turnover, in the period 1986–2011. Results show that vegetation turnover is remarkably rapid in the study reach with 50% of in‐channel vegetation persisting for less than 5–6 years and only 10% of vegetation persisting for more than 18–19 years. The analysis shows that significant vegetation erosion is determined by relatively frequent floods, i.e. floods with a recurrence interval of c. 1–2.5 years, although some differences exist between sub‐reaches with different densities of vegetation cover. These findings suggest that the erosion of riparian vegetation in braided rivers may not be controlled solely by very large floods, as is the case for lower energy gravel‐bed rivers. Besides flow regime, other factors seem to play a significant role for in‐channel vegetation cover over long time spans. In particular, erosion of marginal vegetation, which supplies large wood elements to the channel, increased notably over the study period and was an important factor for in‐channel vegetation trends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Dam construction greatly alters the channel boundary of rivers, making the dammed river system a human‐controlled system. Based on hydrometric data in the upper Changjiang River basin, the change in behaviour of sediment transport of some dammed rivers was studied. As a result, some phenomena of threshold and complex response were found. When the coefficient (Cr,a) of actual runoff regulation by reservoirs, defined as the ratio of total capacity of reservoirs to annual runoff input, is smaller than 10%, suspended sediment load at Yichang station, the control station of the Changjiang River, shows a mild decreasing trend. When this coefficient becomes larger than 10%, suspended sediment load decreases sharply. The coefficient of 10% can be regarded as a threshold. The Cr,a of 10% is also a threshold, when the variation of suspended sediment concentration (SSC) with Cr,a at Yichang station is considered. The impacts of reservoir construction can be divided into several stages, including road construction, dam building and closure, water storage and sediment trapping. During these stages, some complex response was identified. At the station below the dam, SSC increases and reaches a maximum, and then declines sharply. This phenomenon was found on the main‐stem and several major tributaries of the upper Changjiang River. In the Minjiang River, where a series of dams were built successively, the response of SSC is more complicated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

A study on the suspended sediment transportation downstream from the Danjiangkou Reservoir in China has shown that the dynamics of suspended sediment grain size are complicated. During the period when the reservoir was used for flood retention, the suspended sediment median size decreased gradually; after entering the period when the reservoir was used for water storage, the median size started to increase, reaching a maximum, and then decreased again. These variations correspond to different stages of channel adjustment. At the stage with dominant downcutting, most of the downstream reservoir sediment comes from bed downcutting, and thus the suspended sediment median size becomes coarser and coarser; at the succeeding stage with dominant channel widening, a majority of the suspended sediment comes from bank erosion, and so its median size becomes finer. This phenomenon can be regarded as a reflection of the complex response of channel adjustment in the characteristics of suspended sediment transportation downstream from a reservoir.  相似文献   

7.
Increased bank stability by riparian vegetation can have profound impacts on channel morphology and dynamics in low‐energy systems, but the effects are less clear in high‐energy environments. Here we investigate the role of vegetation in active, aggrading braided systems at Mount Pinatubo, Philippines, and compare results with numerical modeling results. Gradual reductions in post‐eruption sediment loads have reduced bed reworking rates, allowing vegetation to finally persist year‐round on the Pasig‐Potrero and Sacobia Rivers. From 2009–2011 we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into the RipRoot model and BSTEM (Bank Stability and Toe Erosion Model) shows cohesion due to roots increases from zero in unvegetated conditions to > 10·2 kPa in densely‐growing grasses. Field‐based parameters were incorporated into a cellular model comparing vegetation strength and sediment mobility effects on braided channel dynamics. The model shows both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. The competing influence of vegetation strength versus channel dynamics is a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. An estimated T* between 1·5 and 2·3 for the Pasig‐Potrero River suggests channels are still very mobile and likely to remain braided until aggradation rates decline further. Vegetation does have an important effect on channel dynamics, however, by focusing flow and thus aggradation into the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. The future trajectory of channel–vegetation interactions as sedimentation rates decline is complicated by strong seasonal variability in precipitation and sediment loads, driving incision and armoring in the dry season. By 2011, incision during the dry season was substantial enough to lower the water‐table, weaken existing vegetation, and allow for vegetation removal in future avulsions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Planimetric change was measured on daily hydrographs over two meltwater seasons using time-lapse images of the proglacial, gravel, braided, Sunwapta River, Canada. Significant planimetric change occurred on 10–15 days per year. Area of planimetric change correlated with peak and total daily meltwater hydrograph discharge. A clear threshold discharge can be identified below which no planform activity occurs, an intermediate range over which change occurs conditionally, and a peak flow range at which significant change always occurs. Field conditions were reproduced in a physical model in a laboratory flume. Photogrammetric DEMs of bed morphology and measurements of bedload output were made for each hydrograph experimental run. The physical model results for planimetric change had a threshold discharge for change, and trend with discharge, similar to the field data. The model data also show that planimetric change correlates strongly with volumes of erosion/deposition measured from successive DEMs, and with bedload transport rate. The relation between planimetric change and topographic change is also apparent from previous cross-section surveys at the field site. The results highlight the planimetric dynamics of braiding rivers in relation to discharge forcing, and the relationship between planimetric change, morphological change, and bedload transport in braided rivers. This also points to the potential use of measurements of planimetric change from time-lapse imagery as a low-cost method for high-frequency monitoring for braiding dynamics and also a surrogate for bedload transport measurement. © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Morphological features of braided rivers (bars, channels and pools) experience major changes in area, shape and spatial distribution as a response to (i) the pulsation of discharge during a flood and (ii) the bed evolution induced by floods. In this work, at‐a‐station relationships between water level and planform configuration were investigated on the Tagliamento River, a large gravel‐bed braided river in northeast Italy, over a 2‐year study period comprising three bankfull events and several small‐to‐medium floods. The analysis was performed on two 1‐km‐long reaches, characterized by different riparian vegetation cover. Ground‐based images with an hourly temporal resolution were acquired using software‐controlled, digital cameras. Bars, channels, pools and vegetated patches were manually digitized on more than 100 rectified images. Sequences of constant‐level images spanning the study period were used to quantify the impact of floods on the stability of at‐a‐station relationships and on the turnover rate of water bodies. The analysis shows that wetted area increased almost linearly with water level in both reaches. The average number of branches per cross‐section peaked at intermediate flow levels, increasing from 2 at low flow up to 6–7. The number of branches displayed the largest fluctuations over time, with significant changes produced also by moderate floods. Turnover rates were high in both reaches, with more than 30% of wetted areas at low flow converting into bare gravel in less than 2 months. Vegetation colonization was found to limit the mobility of the low flow channels over time by concentrating the flow in fewer, deeper anabranches. The number of channels per cross‐section was 30–40% less in the vegetated reach and the proportion of low flow water bodies in the same position after 12 months increased from 3% to 14%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Vegetation can have an important role in controlling channel planform, through its effects on channel roughness, and root‐reinforcement of bank and bar materials. Along the Platte River in central Nebraska, USA, The Platte River Recovery Implementation Program (PRRIP) has been tasked with managing the planform of the river to benefit endangered species. To investigate the potential use of planned short duration high flow (SDHF) events to manage bar vegetation, this study combined several approaches to determine whether flows of up to 227 m3s?1 through the central Platte River, could remove cottonwood, Phragmites and reed canarygrass stands of various ages and densities from in‐channel bars. First, fieldwork was carried out to measure the uprooting resistance, and resistance to bending for each species. Second, a set of flume experiments was carried out to measure the forces exerted on the three species of interest under different flow conditions. Finally, a numerical study comparing drag forces (driving) measured in the flume study, with uprooting forces (resisting) measured in the field, was carried out for each species to determine the likelihood of plant removal by SDHF events. Results showed that plants with more than a year of root growth, likely cannot be removed through drag and local scour alone, even at the 100‐year recurrence interval discharge. At most, a few cottonwood seedlings could be removed from bars through drag, scour and undercutting, where rooting depths are still small. The results presented here help us further understand the positive feedbacks that lead to the creation of permanent, vegetated bars rather than mobile braided channels. As such, the findings could help inform management decisions for other braided rivers, and the combined field, flume and modeling techniques used in this study could be applied to other fluvial systems where vegetation and planform dynamics are of interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The development of alternate bars in channelized rivers can be explained theoretically as an instability of the riverbed when the active channel width to depth ratio exceeds a threshold. However, the development of a vegetation cover on the alternate bars of some channelized rivers and its interactions with bar morphology have not been investigated in detail. Our study focused on the co‐evolution of alternate bars and vegetation along a 33 km reach of the Isère River, France. We analysed historical information to investigate the development of alternate bars and their colonization by vegetation within a straightened, embanked river subject to flow regulation, sediment mining, and vegetation management. Over an 80 year period, bar density decreased, bar length increased, and bar mobility slowed. Vegetation encroachment across bar surfaces accompanied these temporal changes and, once established, vegetation cover persisted, shifting the overall system from an unvegetated to a vegetated dynamic equilibrium state. The unvegetated morphodynamics of the impressively regular sequence of alternate bars that developed in the Isère following channelization is consistent with previous theoretical morphodynamic work. However, the apparent triggering dynamics of vegetation colonization needs to be investigated, based on complex biophysical instability processes. If instability related to vegetation colonization is confirmed, further work needs to focus on the relevance of initial conditions for this instability, and on related feedback effects such as how the morphodynamics of bare‐sediment alternate bars may have affected vegetation development and, in turn, how vegetation has created a new dynamic equilibrium state. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
With the increasing demand for water resources, the utilization of marginal water resources of poor-quality has become a focus of attention. The brackish water developed in the Loess Plateau is not only salty but also famous for its ‘bitterness’. In the present work, multi-isotope analysis (Sr, B) was combined with geochemical analysis to gain insight into the hydrogeochemical evolution and formation mechanisms of brackish water. These results demonstrate that groundwater in the headwater is influenced by carbonate weathering. After the confluence of several tributaries in the headwater, the total dissolved solids (TDS) of water is significantly increased. The dissolution of evaporates is shown to be the main source of salinity in brackish water, which also greatly affects the strontium isotopic composition of water. This includes the dissolution of Mg-rich minerals, which is the main cause of the bitterness. Furthermore, the release of calcium from the dissolution of gypsum may induce calcite precipitation and incongruent dissolution of dolomite, which also contributes to the enrichment of magnesium. The highly fractionated boron isotopic values observed in the upstream groundwater were explained by the absorption with clay minerals. The inflow of brackish groundwater is the source of river water. Then evaporation further aggravates the salinization of river water, with water quality evolving to saline conditions in the lower reach. When the river reaches the valley plain, the 87Sr/86Sr ratios decreases significantly, which is primarily related to erosion of the riverbanks during runoff. These results indicate that water resource sustainability could be enhanced by directing focus to mitigating salinization in the source area of the catchment.  相似文献   

14.
This study presents an analysis of sediments in an Andean river impacted by both natural conditions and anthropogenic activities. Fifty samples were collected from selected sites throughout the Moquegua River drainage basin, and Tambo River headwaters at Pasto Grande, in Peru, and analysed with X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. Si, Ca, Al, Fe, and O, common constituents of...  相似文献   

15.
We exploit a natural experiment caused by an extreme flood (~500 year recurrence interval) and sediment pulse derived from more than 2500 concurrent landslides to explore the influence of valley‐scale geomorphic controls on sediment slug evolution and the impact of sediment pulse passage and slug deposition and dispersion on channel stability and channel form. Sediment slug movement is a crucial process that shapes gravel‐bed rivers and alluvial valleys and is an important mechanism of downstream bed material transport. Further, increased bed material transport rates during slug deposition can trigger channel responses including increases in lateral mobility, channel width, and alluvial bar dominance. Pre‐ and post‐flood LiDAR and aerial photographs bracketing the 2007 flood on the Chehalis River in south‐western Washington State, USA, document the channel response with high spatial and temporal definition. The sediment slug behaved as a Gilbert Wave, with both channel aggradation and sequestration of large volumes of material in floodplains of headwaters' reaches and reaches where confined valleys enter into broad alluvial valleys. Differences between the valley form of two separate sub‐basins impacted by the pulse highlight the important role channel and channel‐floodplain connectivity play in governing downstream movement of sediment slug material. Finally, channel response to the extreme flood and sediment pulse illustrate the connection between bed material transport and channel form. Specifically, the channel widened, lateral channel mobility increased, and the proportion of the active channel covered by bars increased in all reaches in the study area. The response scaled tightly with the relative amount of bed material sediment transport through individual reaches, indicating that the amount of morphological change caused by the flood was conditioned by the simultaneous introduction of a sediment pulse to the channel network. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Processes induced by the channelization of the Raba River in the present century are examined to illustrate the response of a gravel-bed stream following narrowing and straightening of its channel. Up to 3 m of incision has occurred. The change from a slow and relatively steady degradation in the lower reaches to separate degradation events in the higher reaches is attributed to the differential rate of headcut retreat and to the control exerted by mid-channel bars upon the rate of river-energy dissipation. Progressive outwashing of finer grains from bed material has followed the diminishing sediment yield of the basin and the increase in stream power. The ensuing growth in mean grain size and changes in sediment fabric have increased boundary resistance to flow and reduced particle susceptibility to entrainment. Downstream magnification of peak discharges has become increasingly pronounced with the advancing incision. The decrease in flood-plain storage and self-acceleration of flows passing the relatively deep and straight channel has caused flood waves to become progressively more flashy in nature. An increase in channel depth and reduction in gradient caused by downward and backward erosion, as well as bed material coarsening has promoted the re-establishment of an equilibrium. Conversely, flow velocity increases due to flow concentration in the deepened channel. Reduction in grain mobility allows the river to attain a new equilibrium at flow-velocity and stream-power levels higher than before the channelization. Numerous disadvantages of the applied regulation scheme and its failure to reduce flood hazard raise the question of its maintenance. To be successful, any regulation design must take into account changes in sediment supply and flood hydrographs resulting from the simultaneous alterations in basin management.  相似文献   

17.
The Xiaolangdi Dam, completed in 2000, is second in scale in China to the Three Gorges Project. It has generated remarkable economic and social benefits but with profound impacts to the riverine and regional environments. This paper reports field monitoring of riparian groundwater in the Kouma section of the Yellow River to illustrate the interactions between dam‐regulated river flow and riparian groundwater. The results show that the hydrological condition in riparian zones downstream from the dam has changed from a typical wet–dry cycle to a condition of semi‐permanent dryness, resulting in degradation of the typical attributes and functions of the wetland ecosystem. Hydrological processes in the riparian zone have changed from a complex multiple flooding regime to a simple regime of dominant groundwater drainage towards the river, which only reverses temporarily during the water and sediment regulation period of the dam. Data on groundwater level and groundwater quality show that there are two key points, at ca 200 and 400 m from the river bank, which distinguish zones with different sensitivity to changes of river flow and indicate different interactions between river water and groundwater. The shallow groundwater quality also is negatively affected by the intensive agricultural development that has occurred since the dam was completed. Ecological restoration needs to be carried out to construct a protective natural riparian zone within ca 200 m from the river, this being an ecotone, which is key to the protection of both riparian groundwater and the river. The riparian zone from 200 to 400 m also should be treated as a transitional zone. In addition, ecologically sensitive agriculture and ecotourism organized by local communities would be beneficial in the area beyond 400 m. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The measurement of river discharge is necessary for understanding many water‐related issues. Traditionally, river discharge is estimated by measuring water stage and converting the measurement to discharge by using a stage–discharge rating curve. Our proposed method for the first time couples the measurement of water‐surface width with river width–stage and stage–discharge rating curves by using very high‐resolution satellite data. We used it to estimate the discharge in the Yangtze (Changjiang) River as a case study. The discharges estimated at four stations from five QuickBird‐2 images matched the ground observation data very well, demonstrating that the proposed approach can be regarded as ancillary to traditional field measurement methods or other remote methods to estimate river discharge. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Among braided rivers developed on the Qinghai-Tibet Plateau of China at very high elevations(>3,500 m),the middle and lower reaches of the Lhasa River have been affected by comprehensive human activities mainly involving dam construction,urbanization,farming,afforestation,and mining.In the current study,the impacts of these human activities on hydrology and morphology of the four braided reaches downstream of a cascaded of two dams are investigated.The study period was divided into 1985-2006(...  相似文献   

20.
To clarify the geological causes of rockslides induced by rainstorms in accretionary complexes, the geology and geomorphology of two large rockslides (volumes > 106 m3) induced by the heavy rainfall of Typhoon Talas in the Shimanto Belt, Kii Mountains, Japan in 2011 are investigated. Our analysis reveals that thrusts with brittle crush zones controlled the occurrence of the rockslides. The properties and distribution of thrusts were poorly constrained before this study. Flooding during the rainstorm removed surface materials along rivers, allowing thorough geological mapping to be performed. Gravitationally deformed slopes were studied using GIS analysis of 1 m digital elevation models (DEMs) and fieldwork, and X‐ray diffraction (XRD) analysis, permeability, and direct shear tests were used to characterize the mineralogy and geotechnical properties of fault gouge. The Kawarabi thrust has a brittle crush zone up to 6 m thick and acts as the sliding surface for both landslides. The thrust dips 34° downslope and is cut by high‐angle faults and joints along one or both sides of each landslide body. Prior to failure, the upper part of the slope contained small scarps, suggesting that the slopes were already gravitationally deformed. The slope instability can be attributed to long‐term river erosion, which has undercut the slope and exposed the thrust at the base of the slope. The groundwater level, monitored in boreholes, suggests that the Kawarabi thrust is a barrier to groundwater flow. The weak and impermeable nature of the thrust played an essential role in the generation of gravitational slope deformation and catastrophic failure during periods of increased rainfall. Thrusts are a common feature of accretionary complexes, including in the Shimanto Belt, and the mechanism of slope failure stated above can be typical of rockslides in accretionary complexes and provide new insights into landslide disaster mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号