首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
    
It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems. Supported by: National Science Council, Chinese Taipei, Under Grant No. NSC-92-2211-E-027-015  相似文献   

2.
It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.  相似文献   

3.
It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.  相似文献   

4.
A new family of explicit pseudodynamic algorithms is proposed for general pseudodynamic testing. One particular subfamily seems very promising for use in general pseudodynamic testing since the stability problem for a structure does not need to be considered. This is because this subfamily is unconditionally stable for any instantaneous stiffness softening system, linear elastic system and instantaneous stiffness hardening system that might occur in the pseudodynamic testing of a real structure. In addition, it also offers good accuracy when compared to a general second-order accurate method for both linear elastic and nonlinear systems.  相似文献   

5.
    
Seismic tests have been conducted on two 3‐storey structures protected with pressurized fluid‐viscous spring damper devices. One of the structures was a reinforced concrete frame with clay elements in the slabs, while the other one was a steel frame with steel/concrete composite slabs. The spring dampers were installed through K bracing in between the floors. The tests were performed by means of the pseudodynamic method, which allowed the use of large and full‐size specimens, and by implementing a specific compensation strategy for the strain‐rate effect at the devices. The test results allowed the verification of the adequacy of the attachment system as well as the comparison of the behaviour of the unprotected buildings with several protected configurations, showing the benefits of the application of the devices and the characteristics of their performance. The response of the protected structures was always safer than that of the unprotected ones mainly due to a significant increase of equivalent damping. The increase in the damping ratio depends on the level of deformation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
    
This paper describes a modal weighting technique that improves the stability characteristics of explicit time-integration schemes used in structural dynamics. The central difference method was chosen as the trial algorithm because of its simplicity, both in terms of formulation and ease of numerical stability and convergence analysis. It is shown how explicit algorithms may be reformulated in order to make them stable for any integration time by attenuating high-frequency oscillation modes that are generated by mesh geometry rather than generic dynamical features. We discuss results from trial calculations obtained from mathematical models that represent hysteretic restoring force elements and an application on a physical, four-degree-of-freedom, base-isolated structure using the pseudodynamic technique. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
大刚度结构力控制拟动力实验方法   总被引:5,自引:2,他引:3  
由于受到拟动力实验加载系统和量测系统精度限制,对大刚度结构采用位移控制的拟动力实验方法已失效,本文提出了适用于大风度结构的力控制拟动力试验方法,阐述了方法的原理与步骤,并用实验实例验证了该方法是可行的和可靠的。  相似文献   

8.
9.
This paper presents the authors' response to the discussion by Dean J. Maxam and Kumar K. Tamma of the paper titled “Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation.”  相似文献   

10.
    
The pseudodynamic (PSD) test method imposes command displacements to a test structure for a given time step. The measured restoring forces and displaced position achieved in the test structure are then used to integrate the equations of motion to determine the command displacements for the next time step. Multi‐directional displacements of the test structure can introduce error in the measured restoring forces and displaced position. The subsequently determined command displacements will not be correct unless the effects of the multi‐directional displacements are considered. This paper presents two approaches for correcting kinematic errors in planar multi‐directional PSD testing, where the test structure is loaded through a rigid loading block. The first approach, referred to as the incremental kinematic transformation method, employs linear displacement transformations within each time step. The second method, referred to as the total kinematic transformation method, is based on accurate nonlinear displacement transformations. Using three displacement sensors and the trigonometric law of cosines, this second method enables the simultaneous nonlinear equations that express the motion of the loading block to be solved without using iteration. The formulation and example applications for each method are given. Results from numerical simulations and laboratory experiments show that the total transformation method maintains accuracy, while the incremental transformation method may accumulate error if the incremental rotation of the loading block is not small over the time step. A procedure for estimating the incremental error in the incremental kinematic transformation method is presented as a means to predict and possibly control the error. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
    
The implicit dissipative generalized‐ α method is analyzed using discrete control theory. Based on this analysis, a one‐parameter family of explicit direct integration algorithms with controllable numerical energy dissipation, referred to as the explicit KR‐α method, is developed for linear and nonlinear structural dynamic numerical analysis applications. Stability, numerical dispersion, and energy dissipation characteristics of the proposed algorithms are studied. It is shown that the algorithms are unconditionally stable for linear elastic and stiffness softening‐type nonlinear systems, where the latter indicates a reduction in post yield stiffness in the force–deformation response. The amount of numerical damping is controlled by a single parameter, which provides a measure of the numerical energy dissipation at higher frequencies. Thus, for a specific value of this parameter, the resulting algorithm is shown to produce no numerical energy dissipation. Furthermore, it is shown that the influence of the numerical damping on the lower mode response is negligible. It is further shown that the numerical dispersion and energy dissipation characteristics of the proposed explicit algorithms are the same as that of the implicit generalized‐ α method. A numerical example is presented to demonstrate the potential of the proposed algorithms in reducing participation of undesired higher modes by using numerical energy dissipation to damp out these modes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
    
Converting the second-order differential equation to a first-order equation by integrating it with respect to time once as the governing equation of motion for a structural system can be very promising in the pseudodynamic testing. This was originally found and developed by Chang. The application of this time-integration technique to the Newmark explicit method is implimented and investigated in this paper. The main advantages of using the integral form of Newmark explicit method instead of the commonly used Newmark explicit method in a pseudodynamic test are: a less-error propagation effect, a better capability in capturing the rapid changes of dynamic loading and in eliminating the adverse linearization errors. All these improvements have been verified by theoretical studies and experimental tests. Consequently, for a same time step this time-integration technique may result in less-error propagation and achieve more accurate test results than applying the original form of Newmark explicit method in a pseudodynamic test due to these significant improvements. Thus, the incorporation of this proposed time-integration technique into the direct integration method for pseudodynamic testings is strongly recommended. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
    
Supported by the recent advancement of experimental test methods, numerical simulation, and high‐speed communication networks, it is possible to distribute geographically the testing of structural systems using hybrid experimental–computational simulation. One of the barriers for this advanced testing is the lack of flexible software for hybrid simulation using heterogeneous experimental equipment. To address this need, an object‐oriented software framework is designed, developed, implemented, and demonstrated for distributed experimental–computational simulation of structural systems. The software computes the imposed displacements for a range of test methods and co‐ordinates the control of local and distributed configurations of experimental equipment. The object‐oriented design of the software promotes the sharing of modules for experimental equipment, test set‐ups, simulation models, and test methods. The communication model for distributed hybrid testing is similar to that used for parallel computing to solve structural simulation problems. As a demonstration, a distributed pseudodynamic test was conducted using a client–server approach, in which the server program controlled the test equipment in Japan and the client program performed the computational simulation in the United States. The distributed hybrid simulation showed that the software framework is flexible and reliable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
    
Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing.Their numerical properties in the solution of a linear elastic system have been well explored and their applications to the pseudodynamic testing of a nonlinear system have been shown to be feasible. However,their numerical properties in the solution of a nonlinear system are not apparent.Therefore,the performance of both algorithms for use in the solution...  相似文献   

15.
地震工程试验联网最新进展   总被引:5,自引:2,他引:5  
地震工程试验联网(NEES)是新世纪地震工程学科最重要的事件。由美国国家自然科学基金会牵头,全美15家主要的地震工程研究单位共同实施一项旨在调动全部优势资源进行复杂结构体系的地震响应协同试验研究计划。该计划从1999年开始,将于2014年全部完成,目前多数成员单位进入设备安装调试阶段,有些单位利用新装备实现了某些利用传统手段无法完成的试验任务。建议工程力学研究所燕郊的结构实验室直接按照加入NEES的标准进行硬件配置和软件开发,使硬件的数量和技术指标满足NEES要求;使软件与硬件配套,实现与NEES联网,可远程快速通讯,实时监控,实时数值模拟计算,实现显式、隐式和显隐混合算法伪动力试验以及具有位移控制、力控制、位移和力混合控制功能。  相似文献   

16.
    
This paper presents an example of the application of error monitoring techniques to the results of a pseudodynamic test performed at variable testing speeds. For the faster testing speeds, the control errors increased and the test reliability was lost in terms of accuracy and stability, as observed by the evolution of the monitoring parameters. The applied monitoring methods were the spatial model identification of frequency and damping distortions and the error energy, which have been proposed in previous publications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Although it has been shown that the implementation of the HHT-α method can result in improved error propagation properties in pseudodynamic testing if the equation of motion is used instead of the difference equation to evaluate the next step acceleration, this paper proves that this method might lead to instability when used to solve a nonlinear system. Its unconditional stability is verified only for linear elastic systems, while for nonlinear systems, instability occurs as the step degree of convergence is less than 1. It is worth noting that the step degree of convergence can frequently be less than 1 in pseudodynamic testing, since a convergent solution is achieved only when the step degree of convergence is close to 1 regardless of whether its value is greater or less than 1. Therefore, the application of this scheme to pseudodynamic testing should be prohibited, since the possibility of instability might incorrectly destroy a specimen. Consequently, the implementation of the HHT-α method by using the difference equation to determine the next step acceleration is recommended for use in pseudodynamic testing.  相似文献   

18.
结构动力反应分析中的一种显式输入反演方法   总被引:1,自引:0,他引:1  
本文简要总结、评述了结构动力反应分析中两类输入反演方法(脉冲函数法和直接时域法)的优缺点,在此基础上通过应用文献[1]中提出的3阶显式方法,获得了一个关于结构输入反演问题的新解法--显式直接时域法。新方法集合了脉冲函数法和直接时域法的优点,既可按显式求解动力微分方程,又适用于非线性系统的动力反演问题。最后,通过算例对该方法进行了数值验证。  相似文献   

19.
In this paper, a method to develop a hierarchy of explicit recursion formulas for numerical simulation in an irregular grid for scalar wave equations is presented and its accuracy is illustrated via 2-D and 1-D models. Approaches to develop the stable formulas which are of 2M-order accuracy in both time and space with M being a positive integer for regular grids are discussed and illustrated by constructing the second order (M = 1) and the fourth order (M = 2) recursion formulas.  相似文献   

20.
Introduction In linear elastic medium,motion equation for lumped-mass finite element simulation of wave motion is expressed as(LIAO,2002)∑=+lililii ttGtM)()()(FUU&&(1)where Mi is lumped-mass at node i,Gil is stiffness coefficient of node i with respect to node l,üi(t)is acceleration vectors at node i,Ul(t)is displacement vectors at node l,Fi(t)is the external nodal force vectors acting at node i.If acceleration vectorsüi(t),displacement vectors Ul(t)and the external nodal force vectors…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号