首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study investigates an electric‐type active mass driver (AMD) system for structural vibration control. Composed primarily of an electric servomotor and a ball screw, the electrical AMD system is free from noise problems, oil leakage, and labor‐intensive maintenance that commonly are associated with hydraulic AMD systems. The desired stroke amplification of the mass and the power demand of the servomotor can be adjusted via the ball screw pitch, which in turn affects the effectiveness and efficiency of the system. Meanwhile, an instantaneous optimal direct output feedback control algorithm is adopted. Numerical simulation is performed using a five‐story steel frame as the object structure under the conditions of the 1940 El Centro earthquake. The AMD system proves to be effective and efficient within a certain range of the ball screw pitch. The reductions of the peak responses can reach as high as 70% if properly designed. Requiring only the velocity measurement of the top floor for on‐line feedback control, the proposed control algorithm is recommended for practical implementation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Optimal displacement feedback control law is derived for a vibration control of a single‐degree‐of‐freedom structure with an active tuned mass damper (ATMD). Analytical expressions of the linear quadratic regulator (LQR) feedback gains for the ATMD are derived by solving the Ricatti equation straightforwardly. Based on these solutions, it is found that if the stiffness of the tuned mass damper (TMD) is calibrated to satisfy a certain condition, the control law is simplified to be composed of the feedback gains only for the displacement of the structure and the velocity of the auxiliary mass stroke, which is referred to as ‘optimal displacement feedback control’. The mean‐square responses of the structure as well as the auxiliary mass against Gaussian white noise excitations are evaluated by solving the Lyapunov equation analytically based on the stochastic optimal control theory. Using these analytical solutions, the optimal damping parameter for the auxiliary mass is also derived. Finally, the optimal displacement feedback control law is presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
To resolve difficulties encountered by current technology in structural control against earthquakes, this study proposes a novel high‐performance active mass driver (HP‐AMD) system. Based on an active mass driver system, the device is integrated with a mechanical pulley system for stroke amplification to enhance simultaneously efficiency and save power. Meanwhile, an instantaneous optimal direct output feedback control algorithm is derived alongside the hardware development. Numerical simulation is performed using a five‐storey steel frame as the object structure under the 1940 El Centro earthquake. To gain further insight into the HP‐AMD system, the effects of stroke amplification as well as damper weight on system performance are explored. Analysis results demonstrate that the proposed HP‐AMD system is a promising means to improving current active structural control techniques. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, we present a new method in designing static output‐feedback H controllers suitable for vibrational control of buildings under seismic excitation. The method produces a Linear Matrix Inequality (LMI) formulation that allows obtaining static output‐feedback controllers with different information structure constraints by imposing a convenient zero–nonzero structure on the LMI variables. The application of the proposed methodology is illustrated by designing centralized and decentralized velocity‐feedback H controllers to mitigate the seismic response of a five‐story building. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This study proposes a new design method for an active mass damper (AMD) that is based on auto‐regressive exogenous models of a building structure. The proposed method uses the results of system identification in the field of active structural control. The uncontrolled structure is identified as auto‐regressive exogenous models via measurements under earthquake excitation and forced vibration. These models are linked with an equation of motion for the AMD to introduce a state equation and output equation for the AMD–structure interaction system in the discrete‐time space; the equations apply modern control theories to the AMD design. In the numerical applications of a 10‐degree‐of‐freedom building structure, linear quadratic regulator control is used to understand the fundamental characteristics of the proposed design procedure. The feedback control law requires the AMD's acceleration, velocity and stroke; the structure's acceleration; and the ground acceleration as vibration measurements. The numerical examples confirm the high applicability and control effectiveness of the proposed method. One remarkable advantage of the proposed method is that an equation of motion for the structure becomes unnecessary for designing controllers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In active control, the control force execution time delay cannot be avoided or eliminated even with present technology, which can be critical to the performance of the control system. This paper investigates the influence of time delay on the stability of an SDOF system with an optimal direct output feedback controlled mass damper. An active mass damper system can take the form of a hybrid mass damper (HMD) or a fully active mass damper (AMD) depending upon imposed design constraints resulting from space, strength and power limitations. Explicit formulas and numerical solutions to determine the maximum delay time which causes onset of system instability are obtained. The control effect of the two‐DOF HMD/AMD benchmark system with and without time delay is illustrated quantitatively in a continuous‐time approach. In order to fit the digital implementation of the computer‐controlled system in practice, the control gains will be compensated by using their discrete‐time version to overcome the degradation of control effect due to time delay. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Recently, several hybrid protective systems have been explored for applications to seismic-excited bridge structures. In particular, two types of aseismic hybrid protective systems have been shown to be quite effective: (i) rubber bearings and variable dampers (or actuators), and (ii) sliding bearings and actuators. In this paper, control methods are presented for these hybrid protective systems. The control methods are based on the theory of variable structure system (VSS) or sliding mode control (SMC). Emphasis is placed on the static (direct) output feedback controllers using only the information measured from a few sensors without an observer. Simulation results demonstrate that the control methods presented are robust with respect to system parametric uncertainties and the performance is quite remarkable. Sensitivity studies are conducted to evaluate the effectiveness of hybrid protective systems and passive sliding isolators for reducing the response of seismic-excited bridge structures. The advantages of each protective system are demonstrated by simulation results for a wide range of earthquake intensities.  相似文献   

8.
9.
地震作用下参数不确定系统的变结构控制   总被引:5,自引:2,他引:3  
本文对结构参数具有有确定性的变结构控制系统设计方法进行了研究。首先采用摄动方法给出了结构参数具有确定性的控制系统的运动方程,证明了基于层间剪切模型的参数不确定受控系统与其标称系统具有相同的滑动模态,从而解决了系统切换函数的确定问题,并利用到达条件推导了控制律的表示式。算例分析结果表明,本文的控制方法能有效地减小结构的地震响应,对于结构系统建模存在误差或系统本身存在学确定性的情况,控制效果仍十分显著  相似文献   

10.
This paper investigates the stability of MDOF optimal direct output feedback control systems through analysis of system modal properties after the application of time-delayed control force. Explicit formula and numerical solution are obtained to determine the maximum delay time and critical delay time which cause system instability and control ineffectiveness, respectively. The results indicate that direct velocity feedback has longer maximum and critical delay times than state feedback. The feedback of non-collocated measurements will reduce maximum delay time. The ratios of maximum and critical delay times to structural natural period decrease as the active damping increases. For a given damped structure, a critical control weighting factor exists. When a larger control weighting factor is used, the control system will remain stable even with longer delay time. A formula is also developed to determine the critical control weighting factor so as to make the stability of MDOF control systems dominated by lower modes. Hence, the maximum delay time and critical delay time can be significantly lengthened by selecting an appropriate control weighting factor and/or adding higher modal dampings.  相似文献   

11.
This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust ontput feedback controller.The uncertainties of structural stiffness,damping and mass parameters are assumed to be norm-bounded.The proposed control approach is formulated within the framework of linear matrix inequalities,for which existing convex optimization techniques,such as the LMI toolbox in MATLAB,can be used effectively and conveniently.To illustrate the effectiveness of the proposed robust H∞ strategy,a six-story building was subjected both to the 1940 El Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation.The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness,damping and mass parameters.  相似文献   

12.
Structural vibration control using active or passive control strategy is a viable technology for enhancing structural functionality and safety against natural hazards such as strong earthquakes and high wind gusts. Both the active and passive control systems have their limitations. The passive control system has limited capability to control the structural response whereas the active control system depends on external power. The power requirement for active control of civil engineering structures is usually quite high. Thus, a hybrid control system is a viable solution to alleviate some of the limitations. In this paper a multi‐objective optimal design of a hybrid control system for seismically excited building structures has been proposed. A tuned mass damper (TMD) and an active mass driver (AMD) have been used as the passive and active control components of the hybrid control system, respectively. A fuzzy logic controller (FLC) has been used to drive the AMD as the FLC has inherent robustness and ability to handle the non‐linearities and uncertainties. The genetic algorithm has been used for the optimization of the control system. Peak acceleration and displacement responses non‐dimensionalized with respect to the uncontrolled peak acceleration and displacement responses, respectively, have been used as the two objectives of the multi‐objective optimization problem. The proposed design approach for an optimum hybrid mass damper (HMD) system, driven by FLC has been demonstrated with the help of a numerical example. It is shown that the optimum values of the design parameters of the hybrid control system can be determined without specifying the modes to be controlled. The proposed FLC driven HMD has been found to be very effective for vibration control of seismically excited buildings in comparison with the available results for the same example structure but with a different optimal absorber. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
A comparative analytical study of several control strategies for semi-active(SA) devices installed in baseisolated buildings aiming to reduce earthquake induced vibrations is presented.Three force tracking schemes comprising a linear controller plus a "clipped" algorithm and a nonlinear output feedback controller(NOFC) are considered to tackle this problem.Linear controllers include the integral controller(I),the linear quadratic regulator(LQR) and the model predictive controller(MPC).A single degree-of-freedom system subjected to input accelerograms representative of the Portuguese seismic actions are first used to validate and evaluate the feasibility of these strategies.The obtained results show that structural systems using SA devices can in general outperform those equipped with passive devices for lower fundamental frequency structural systems,namely base-isolated buildings.The effectiveness of the proposed strategies is also evaluated on a 10 storey base-isolated dual frame-wall building.The force tracking scheme with an integral controller outperforms the other three as well as the original structure and the structure equipped with passive devices.  相似文献   

14.
A reliability‐based output feedback control methodology is presented for controlling the dynamic response of systems that are represented by linear state‐space models. The design criterion is based on a robust failure probability for the system. This criterion provides robustness for the controlled system by considering a probability distribution over a set of possible system models with a stochastic model of the excitation so that robust performance is expected. The control command signal can be calculated using incomplete response measurements at previous time steps without requiring state estimation. Examples of robust structural control using an active mass driver on a shear building model and on a benchmark structure are presented to illustrate the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LMI toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 El Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.  相似文献   

16.
Developments in vibrator control   总被引:1,自引:0,他引:1  
Hydraulic limitations, non-rigidity of the baseplate as well as variable characteristics of the ground constantly distort the downgoing energy output by vibrators. Therefore, a real time feedback control must be performed to continuously adjust the emitted force to the reference pilot signal. This ground force is represented by the weighted sum of the reaction mass and the baseplate accelerations. It was first controlled with an amplitude and phase locked loop system, poorly reactive and sensitive to noise. Later on, new vibrator electronics based on a digital model of the vibrator were introduced. This model is based on the physical equations of the vibrator and of the ground. During an 'identification' process, the model is adjusted to each particular vibrator. Completed by a Kalman adaptive filter to remove the noise, it computes ten estimated states via a linear quadratic estimator. These states are used by a linear quadratic control to compute the torque motor input and to compare the ground force estimated from the states with the pilot signal. Test results using downhole geophones demonstrate the benefit of filtered mode operation.  相似文献   

17.
An Active Mass Driver (AMD) system is proposed to suppress actively the response of a building to irregular external excitations such as earthquakes and typhoons. This system has been introduced to an actual ten-storey office building for the first time in the world. The system controls the motions of a structure by means of an external energy supply. It consists of an auxiliary mass installed in a building and an actuator that operates the mass and produces a control force which counters disturbances to the building. The design method of the AMD system, including the location of the installation and the capacity and stability of the system, is proposed. Simplification of the control algorithm is also described.  相似文献   

18.
A method to generate an efficient control law for a neural-network controller is presented to reduce the dynamic response of buildings exposed to earthquake-induced ground excitations. The proposed training scheme for the neural-network controller does not rely on the emulation of the structure to be controlled. The approach used for this work is based on a force-matching procedure, and it directly utilizes the dynamic data characterizing the structure response to generate an efficient training signal. The proposed controller has a feedback structure, utilizing a limited set of response quantities. A shear building actuated at its top by a tuned-mass damper is utilized to demonstrate the effectiveness of the controller. For training purposes, an ensemble of synthetically generated ground-motion time histories, with appropriate site spectrum characteristics, have been used. The performance of the trained controller is then evaluated for two different historic ground-acceleration records that do not belong to the training set of time histories. The numerical simulations show the control effectiveness of the proposed scheme with modest control requirements. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

19.
The paper investigates the influence of design procedures on the seismic response of multi-storey asymmetric buildings. To this end, some structures are designed according to methods based on either static or modal analysis, with or without design eccentricities. The seismic response of these systems is determined by means of inelastic dynamic analyses and the design is thoroughly examined in order to explain the results of the dynamic analyses. Attention is basically focused on the ability of design methods to prevent asymmetric buildings from experiencing ductility demands much larger than those of the corresponding torsionally balanced systems. Numerical analyses underline that while design procedures based on either static or modal analysis are suitable for the design of torsionally rigid structures only those based on modal analysis lead to the satisfactory performance of torsionally flexible buildings. Furthermore, the study highlights the qualities of a design method proposed by the Authors. Its application does not require any explicit calculation of design eccentricities and leads to proper seismic response of both torsionally rigid and flexible asymmetric buildings.  相似文献   

20.
A semi-active strategy for model predictive control (MPC), in which magneto-rheological dampers are used as an actuator, is presented for use in reducing the nonlinear seismic response of high-rise buildings. A multi-step predictive model is developed to estimate the seismic performance of high-rise buildings, taking into account of the effects of nonlinearity, time-variability, model mismatching, and disturbances and uncertainty of controlled system parameters by the predicted error feedback in the multi-step predictive model. Based on the predictive model, a Kalman-Bucy observer suitable for semi-active strategy is proposed to estimate the state vector from the acceleration and semi-active control force feedback. The main advantage of the proposed strategy is its inherent stability, simplicity, on-line real-time operation, and the ability to handle nonlinearity, uncertainty, and time-variability properties of structures. Numerical simulation of the nonlinear seismic responses of a controlled 20-story benchmark building is carried out, and the simulation results are compared to those of other control systems. The results show that the developed semi-active strategy can efficiently reduce the nonlinear seismic response of high-rise buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号