首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article addresses spatial variability of comtemporary floodplain sedimentation at the event scale. Measurements of overbank deposition were carried out using sediment traps on 11 floodplain sections along the rivers Waal and Meuse in The Netherlands during the high-magnitude flood of December 1993. During the flood, sand sheets were locally deposited behind a natural levee. At distances greater than 50 to 100 m from the river channel the deposits consisted mainly of silt- and clay-sized material. Observed patterns of deposition were related to floodplain topography and sediment transporting mechanisms. Though at several sites patterns were observed that suggest transport by turbulent diffusion, convection seems the dominant transporting mechanism, in particular in sections that are bordered by minor embankments. The average deposition of overbank fines ranged between 1·2 and 4·0 kg m−2 along the river Waal, and between 1·0 and 2·0 kg m−2 along the river Meuse. The estimated total accumulation of overbank fines (not including sand sheets) on the entire river Waal floodplain was 0·24 Mton, which is 19 per cent of the total suspended sediment load transported through the river Waal during the flood. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Q. He  D. E. Walling 《水文研究》1998,12(7):1079-1094
River floodplains have been widely recognized as important sinks for storing suspended sediment and associated contaminants transported by river systems. The grain size composition of floodplain deposits exerts an important influence on contaminant concentrations, and commonly exhibits significant spatial variability in response to the dynamic nature of overbank flow and sediment transport. Information on the spatial variability of the grain size composition of overbank deposits is therefore essential for developing an improved understanding of the processes controlling sediment transport on floodplains, and for investigating the fate of sediment-associated contaminants. Such information is also important for validating existing floodplain sedimentation models. This paper reports the results of a study aimed at investigating the spatial variability of the grain size composition of floodplain sediments at different spatial scales, through analysis of surface sediment samples representative of contemporary floodplain deposits collected from frequently inundated floodplain sites on five British lowland rivers. Significant lateral and downstream variations in the grain size composition of the sediment deposits have been identified in the study reaches. An attempt has been made to relate the observed spatial distribution of the grain size composition of the overbank deposits to the local floodplain geometry and topography. The importance of the particle size characteristics of the suspended sediment transported by the rivers in influencing the spatial variability of the grain size composition of the overbank sediments deposited on these floodplains is also considered. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Remote sensing was used to understand the seasonal and spatial variation of suspended sediment in the Ganges and Brahmaputra Rivers in Bangladesh for two different discharge periods. Suspended sediment concentration (SSC) in these rivers was estimated from the reflectance of Landsat TM band 3. During the high discharge period, SSC in the Ganges is higher than that in the Brahmaputra. But in the low discharge period, this is reversed. Both erosional and depositional processes are active on their flood plains. Significant fluctuations in SSC and in suspended sediment load were observed along their courses because of river bank erosion and deposition and/or scouring and aggradation of river beds. Owing to scouring and turbulence, SSC increases markedly at the confluence of these rivers. Reflectance of AVHRR band 1 data was also analysed to study the distribution of suspended sediment along other reaches of these rivers. Like SSC, reflectance at the confluence zone increases compared with that in the Brahmaputra. However, this increase is not marked compared with the Ganges. The influence of their tributaries on the suspended sediment load could be inferred from the pattern of reflectance. Remote sensing data used in this study was corrected for atmospheric effects. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   

5.
The distribution of trace metals in alluvial sediments depends on their natural background concentrations, and on the dynamics of contemporary depositional and erosional (mainly flood‐induced) processes. Geological and geochemical investigations were carried out in the valley of Vistula River near Magnuszew (central Poland). Sediment samples were collected from a depth of 35 cm and comprise sediments of all defined geomorphological features. Identification and geological interpretation of the morphodynamic sediment features was supported by aerial photographs and high‐resolution satellite images. These studies revealed that the distribution of trace metals is closely linked to the morphogenesis of the alluvial floodplain. The highest concentrations of Cu, Co, Zn, V, Cr and Ni were observed in crevasse‐splays deposits. By contrast, Sr, Pb and As were concentrated in deposits which fill oxbow lakes (partly infilled with organic deposits). The lowest concentrations of trace metals were detected in flood sediments deposited within erosional troughs. The geomorphological and sedimentological history of the fluvial features explains the pattern of heavy metal distribution on the current floodplain surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
《国际泥沙研究》2022,37(5):619-638
The large confluence between the Yangtze River and the outflow channel of Poyang Lake is receiving attention due to its importance in flood control and ecological protection in the Yangtze River basin. There is a large floodplain along the outflow channel of Poyang Lake, which is submerged during high flow and dry during low flow. The effects of the submergence of this floodplain on sediment and morphological characteristics at this large confluence have not been known. Hence, a field investigation was done in March 2019 (relatively high flow, Survey 3) to complement the previous field studies done in August (high flow, Survey 1) and December 2018 (low flow, Survey 2) to identify the temporal variations of sediment and morphological characteristics considering the submergence of this large floodplain. The predominant sediment transport modes were wash load for Poyang Lake and confluence particles and mixed bedload/suspended load for the Yangtze River particles. The sediment transport processes were largely affected by both the secondary flows and the water density contrast between the tributaries with a lock-exchange sediment rich, denser flow moving across the inclined mixing interface in Surveys 1 and 2. The sediment flux across the mixing interface was weakened in Survey 3 when the density contrast was very small. The stagnation zone near the confluence apex had a low sediment concentration and played a role in preventing the sediment flux exchange between the two flows, and its size, and, thus, its importance as a barrier to sediment mixing were related to the submergence of the floodplain. The bed morphology with the local scour holes at the confluence was largely affected by the large-size helical cells, and this kind of effect was weakened as the secondary flows got restricted in Survey 3. The current results expand the database and knowledge on the sediment transport and morphological features of large river confluences.  相似文献   

7.
Although river confluences have received geomorphic attention in recent years it is difficult to upscale these studies, so confluence‐dominated reaches are commonly presumed to be either: (1) braided; or (2) meandering and characterized by laterally migrating channels. If the geomorphology of a confluence zone is to be considered over longer timescales, changes in river style need to be taken into account. This paper uses a combination of remote sensing techniques (LiDAR, GPR, ER), borehole survey and chronometric dating to test this differentiation in the confluence‐zone of a medium‐sized, mixed‐load, temperate river system (Trent, UK), which on the basis of planform evidence appears to conform to the meandering model. However, the analysis of ‘confluence sediment body stratigraphy’ demonstrates that the confluence does not correspond with a simple meander migration model and chronostratigraphic data suggests it has undergone two major transformations. Firstly, from a high‐energy braid‐plain confluence in the Lateglacial (25–13 K yrs cal BP), to a lower‐energy braided confluence in the early to middle Holocene (early Holocene‐2.4 kyr BP), which created a compound terrace. Second, incision into this terrace, creating a single‐channel confluence (2.4–0.5 kyr cal BP) with a high sinuosity south bank tributary (the River Soar). The confluence sediment‐body stratigraphy is characterized by a basal suite of Late Pleistocene gravels bisected by younger channel fills, which grade into the intervening levee and overbank sediments. The best explanation for the confluence sediment body stratigraphy encountered is that frequent switching (soft‐avulsions sensu Edmonds et al., 2011) of the tributary are responsible for the downstream movement of the channel confluence (at an average rate of approximately 0.5 m per year) dissecting and reworking older braid‐plain sediments. The late Holocene evolution of the confluence can be seen as a variant of the incisional‐frequent channel reorganization (avulsion) model with sequential downstream migration of the reattachment point. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Previously undocumented deposits are described that store suspended sediment in gravel‐bedded rivers, termed ‘fine‐grained channel margin’ (FGCM) deposits. FGCM deposits consist of sand, silt, clay, and organic matter that accumulate behind large woody debris (LWD) along the margins of the wetted perimeter of the single‐thread, gravel‐bed South River in Virginia. These deposits store a total mass equivalent to 17% to 43% of the annual suspended sediment load. Radiocarbon, 210Pb and 137C dating indicate that sediment in FGCM deposits ranges in age from 1 to more than 60 years. Reservoir theory suggests an average turnover time of 1·75 years and an annual exchange with the water column of a mass of sediment equivalent to 10% to 25% of the annual sediment load. The distribution of ages in the deposits can be fitted by a power function, suggesting that sediment stored in the deposits has a wide variety of transit times. Most sediment in storage is reworked quickly, but a small portion may remain in place for many decades. The presence of FGCM deposits indicates that suspended sediment is not simply transported downstream in gravel‐bed rivers in agricultural watersheds: significant storage can occur over decadal timescales. South River has a history of mercury contamination and identifying sediment sources and sinks is critical for documenting the extent of contamination and for developing remediation plans. FGCM deposits should be considered in future sediment budget and sediment transport modeling studies of gravel‐bed rivers in agricultural watersheds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Engineered flood bypasses, or simplified conveyance floodplains, are natural laboratories in which to observe floodplain development and therefore present an opportunity to assess delivery to and sedimentation within a specific class of floodplain. The effects of floods in the Sacramento River basin were investigated by analyzing hydrograph characteristics, estimating event‐based sediment discharges and reach erosion/deposition through its bypass system and observing sedimentation patterns with field data. Sediment routing for a large, iconic flood suggests high rates of sedimentation in major bypasses, which is corroborated by data for one bypass area from sedimentation pads, floodplain cores and sediment removal reporting from a government agency. These indicate a consistent spatial pattern of high sediment accumulation both upstream and downstream of lateral flow diversions and negligible sedimentation in a ‘hydraulic shadow’ directly downstream of a diversion weir. The pads located downstream of the shadow recorded several centimeters of deposition during a moderate flood in 2006, increasing downstream to a peak of ~10 cm thick and thinning rapidly thereafter. Flood deposits in the sediment cores agree with this spatial pattern, containing discrete sedimentation layers (from preceding floods) that increase in thickness with distance downstream of the bypass entrance to several decimeters thick at the peak and then thin downstream. These patterns suggest that a quasi‐natural physical process of levee construction by advective overbank transport and deposition of sediment is operating. The results improve understanding of the evolution of bypass flood control structures, the transport and deposition of sediment within these environments and the evolution of one class of natural levee systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Six plains cottonwoods along the axis of a meander were excavated to determine if dendrochronology could identify the year and location of germination and date past overbank sedimentation events. Samples from all excavated trees showed clear anatomical changes associated with burial, including increased vessel size, decreased definition of annual ring boundaries, and decreased ring widths. Some of these burial signatures were created by deposition of only a few centimeters of sediment, and most burial events were detected by multiple samples from the same tree. Four of the trees germinated at or near the upper surfaces of bar deposits, while two germinated within thin overbank deposits draped over bar deposits, indicating that germination is closely associated with bars. Dates and inferred thicknesses of overbank sedimentation events are consistent with repeated topographic surveys and data obtained from cesium-137 (137Cs) analyses. However, the record of overbank sedimentation extracted from the trees does not entirely reflect the history of past peak discharges documented by stream gaging, largely because individual trees are progressively less likely to be flooded through time as the river migrates farther away. Germination dates and locations closely track past positions of the river channel. Germination elevations and the elevations of the tops of point bars appear to be decreasing with time as the bend migrates, implying vertical incision by Powder River at a rate of 7.1 ± 4.3 mm/yr. The rate of floodplain growth determined by elevation changes decreases progressively through time, ultimately reaching an apparent plateau after 0.8–1.3 m of vertical accretion. While similar patterns of vertical accretion have previously been interpreted as resulting from decreasing flood probability with increasing floodplain elevation, distance from the channel is also a first-order control on vertical floodplain growth. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
This paper outlines a numerical model for the prediction of floodplain inundation sequences, overbank deposition rates and deposit grain size distributions. The model has two main components: first, a simplified hydraulic scheme which predicts floodwater flow depths and velocities, and second, a sediment transport element which employs a mass balance relation describing suspended sediment dispersion by convective and diffusive processes and sediment deposition as a function of particle settling rates. These relationships are solved numerically on a finite difference grid that accurately replicates the complex topographic features typical of natural river floodplains. The model is applied to a 600 m reach of the River Culm, Devon, U.K. using data derived from a range of field and laboratory techniques. Continuous records of river stage and suspended sediment concentration provide the model's upstream boundary input requirements. These are supplemented by measurements of the in situ settling characteristics of the suspended sediment load. The model's sediment transport component is calibrated with the aid of a dataset of measured overbank deposition amounts derived from flood events over a 16 month period. The model is shown to predict complicated floodwater inundation sequences and patterns of suspended sediment dispersion and deposition, which are largely a product of the complex topography of the floodplain. These results compare favourably with observations of overbank processes and are an improvement over those of previous models which have employed relatively simple representations of floodplain geometry. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
Arsenic-contaminated mine tailings that were discharged into Whitewood Creek at Lead, South Dakota, from 1876 to 1978, were deposited along the floodplains of Whitewood Creek and the Belle Fourche River. The resulting arsenic-contaminated floodplain deposit consists mostly of overbank sediments and filled abandoned meanders along White-wood Creek, and overbank and point-bar sediments along the Belle Fourche River. Arsenic concentrations of the contaminated sediments indicate the degree of dilution of mine tailings by uncontaminated alluvium. About 13 per cent of the 110 × 106 Mg of mine tailings that were discharged at Lead were deposited along the Whitewood Creek floodplain. Deposition of mine tailings near the mouth of Whitewood Creek was augmented by an engineered structure. About 29 per cent of the mine tailings delivered by Whitewood Creek were deposited along the Belle Fourche River floodplain. About 60 per cent of that sediment is contained in overbank deposits. Deposition along a segment of the Belle Fourche River was augmented by rapid channel migration. The proportions of contaminated sediment stored along Whitewood Creek and the Belle Fourche River are consistent with sediment storage along the floodplains of perennial streams in other, similar sized watersheds.  相似文献   

13.
The relation between morphological change and patterns of variation in bedload transport rate in braided streams was observed by repeated, daily topographic surveys over a 25 day study period in a 60 m reach of the proglacial Sunwapta River, Alberta, Canada. There are two major periods of morphological change, each lasting several days and each involving the complete destruction and reconstruction of bar complexes. Bar complex destruction was caused by redirection of the flow and by downstream extension of the confluence scour zone upstream. Reconstruction involved accretion of unit bars on bar head, flank and tail and in one case was initiated by disection of a large, lobate unit bar. High rates of sediment movement, measured from net scour and fill of the cross-sections, coincided with these morphological changes. Sediment was supplied from both bed and bank erosion, and patterns and distances of transfer were highly variable. Rates of transport estimated by matching upstream erosional volumes with downstream deposition were much greater than those estimated from either a step-length approach or a sediment budget. Measurements of scour and fill and observations of morphological change indicate that step lengths (virtual transport distances) were typically 40–100m during a diurnal discharge cycle. Shorter step lengths occurred when transfer was confined to a single anabranch and longer steps involved channel changes at the scale of the entire reach. Sediment budgeting was used to describe the spatial patterns of sediment transport associated with the morphological changes and to estimate minimum daily reach-averaged transport rates. Mean bedload transport rates correlate with discharge, but with considerable scatter. The largest deviations from the mean relation can be tied to phases of channel incision, bank erosion, scour hole migration, bar deposition and channel filling apparently controlled by changes and fluctuations in sediment supply from upstream, independent of discharge. These are interpreted as field evidence of ‘autopulses’ or ‘macropulses’ in bedload transport, previously observed only in laboratory models of braided streams.  相似文献   

14.
Measurements of thickness and grain size along flow‐parallel transects across onshore deposits of the 2004 Indian Ocean tsunami revealed macroscopic horizontal variations and provided new insights into tsunami sedimentation. The tsunami caused severe erosion of beaches, river mouths, and the shallow seafloor along the coast of southwestern Thailand and supplied sufficient sediment to deposit a kilometer‐wide blanket of sand on the land surface. The tsunami deposits generally fine landward with some fluctuations caused by local entrainment and settlement of sediments. Sediments of medium and fine sand are restricted to a few hundreds of meters inland from their source, whereas finer grained sediments were suspended longer and deposited 1 km or more inland. Although the thickness of the tsunami deposits is strongly influenced by local topography, they generally thin landward. In areas of low‐relief topography, the rate of landward thinning is exponential and reflects the dominance of sediment supply to nearshore areas over that to areas farther inland.  相似文献   

15.
Slow earth sliding is pervasive along the concave side of Red River meanders that impinge on Lake Agassiz glaciolacustrine deposits. These failures form elongated, low‐angled (c. 6 to 10°) landslide zones along the valleysides. Silty overbank deposits that accumulated during the 1999 spring freshet extend continuously along the landslide zones over hundreds of metres and aggraded the lower slopes over a distance 50 to 80 m from the channel margin. The aggradation is not obviously related to meander curvature or location within a meander. Along seven slope profiles surveyed in 1999 near Letellier, Manitoba, the deposits locally are up to 21 cm thick and generally thin with increasing distance from, and height above, the river. Local deposit thickness relates to distance from the channel, duration of inundation of the landslide surface, mesotopography, and variations in vegetation cover. Immediately adjacent to the river, accumulated overbank deposits are up to 4 m thick. The 1999 overbank deposits also were present along the moderately sloped (c. 23 to 27°) concave banks eroding into the floodplain, but the deposits are thinner (locally up to c. 7 cm thick) and cover a narrower area (10 to 30 m wide) than the deposits within the landslide zones. Concave overbank deposition is part of a sediment reworking process that consists of overbank aggradation on the landslide zones, subsequent gradual downslope displacement from earth sliding, and eventually reworking by the river at the toe of the landslide. The presence of the deposits dampens the outward migration of the meanders and contributes to a low rate of contemporary lateral channel migration. Concave overbank sedimentation occurs along most Red River meanders between at least Emerson and St. Adolphe, Manitoba. © Her Majesty the Queen in right of Canada.  相似文献   

16.
Tsunami Sediment Characteristics at the Thai Andaman Coast   总被引:1,自引:0,他引:1  
This paper describes and summarizes the 2004 Indian Ocean tsunami sediment characteristics at the Thai Andaman coast. Field investigations have been made approximately 3 years after the 2004 Indian Ocean tsunami event. Seven transects have been examined at five locations. Sediment samples have been collected for grain-size analyses by wet-sieve method. Tsunami sediments are compared to three deposits from coastal sub-environments. The mean grain-size and standard deviation of deposits show that shoreface deposits are fine to very fine sand, poorly to moderately well sorted; swash zone deposits are coarse to fine sand, poorly to well sorted; berm/dune deposits are medium to fine sand, poorly to well sorted; and tsunami deposits are coarse to very fine sand, poorly to moderately well sorted. A plot of deposit mean grain-size versus sorting indicates that tsunami deposits are composed of shoreface deposits, swash zone deposits and berm/dune deposits as well. The tsunami sediment is a gray sand layer deposited with an erosional base on a pre-existing soil (rooted soil). The thickness of the tsunami sediment layer is variable. The best location for observation of the recent tsunami sediment is at about 50–200 m inland from the coastline. In most cases, the sediment layer is normally graded. In some cases, the sediment contains rip-up clasts of muddy soils and/or organic matter. The vertical variation of tsunami sediment texture shows that the mean grain-size is fining upward and landward. Break points of slope in a plot of standard deviation versus depth mark a break in turbulence associated with a transition to a lower or higher Reynolds number runup. This can be used to evaluate tsunami sediment main layer and tsunami sediment sub layers. The skewness of tsunami sediment indicates a grain size distribution with prominent finer-grain or coarse-grain particles. The kurtosis of tsunami sediment indicates grain-size distributions which are flat to peak distribution (or multi-modal to uni-modal distribution) upward. Generally, the major origins of tsunami sediment are swash zone and berm/dune zone sands where coarse to medium sands are the significant material at these locations. The minor origin of tsunami sediment is the shoreface where the significant materials are fine to very fine sands. However, for a coastal area where the shoreface slope is mild, the major origin of tsunami sediment is the shoreface. The interpretation of runup number from tsunami sediment characteristics gets three runups for the 2004 Indian Ocean tsunami at the Thai Andaman coast. It corresponds to field observations from local eyewitnesses. The 1st runup transported and deposited more coarse particles than the following runups. Overall, the pattern of onshore tsunami sediment transportation indicates erosion at swash zone and berm/dune zone, followed by dynamic equilibrium at an area behind the berm/dune zone and after that deposition at inland zone until the limit of sediment inundation. The total deposition is a major pattern in onshore tsunami sediment transportation at the deposition zone which the sediment must find in the direction of transport.  相似文献   

17.
This paper reports on the erosion, transport, and deposition processes associated with an overbank deposit formed by the flooding of the Abu River on July 28, 2013, in Yamaguchi City, Japan. At the study site, river flows overtopped the levee revetment upstream of a meander bend cutting it off and flowing back into the main channel downstream. In this sequential process, it deposited large amounts of sediments, ranging from mud to cobbles, on the floodplain. The surface of paddy fields adjacent to a railway line, located at the center of the affected floodplain, was severely eroded by the flood flows. Overbank deposits composed of both upstream finer sediments and eroded coarser terrestrial sediments are laid down in the affected area. Large amounts of pebbles and cobbles originating from the eroded terrestrial area formed a gravelly pile on top of the sand and gravel sediments derived from the river. This finding indicates that sands and gravels were deposited prior to the formation of the gravelly pile, probably before and during peak flood flows. An inverse grading structure is evident in the lower to middle part of these comparatively thick deposits, most likely due to differences in transport pattern between entrained terrestrial gravels and upstream finer sediments.  相似文献   

18.
The formation and evolution of tidal platforms are controlled by the feedbacks between hydrodynamics, geomorphology, vegetation, and sediment transport. Previous work mainly addresses dynamics at the scale of individual marsh platforms. Here, we develop a process-based model to investigate salt marsh depositional/erosional dynamics and resilience to environmental change at the scale of tidal basins. We evaluate how inputs of water and sediment from river and ocean sources interact, how losses of sediment to the ocean depend on this interaction, and how erosional/depositional dynamics are coupled to these exchanges. Model experiments consider a wide range of watershed, basin, and oceanic characteristics, represented by river discharge and suspended sediment concentration, basin dimensions, tidal range, and ocean sediment concentration. In some scenarios, the vertical accretion of a tidal flat can be greater than the rate of sea level rise. Under these conditions, vertical depositional dynamics can lead to transitions between tidal flat and salt marsh equilibrium states. This type of transition occurs much more rapidly than transitions occurring through horizontal marsh expansion or retreat. In addition, our analyses reveal that river inputs can affect the existence and extent of marsh/tidal flat equilibria by both directly providing suspended sediment (favoring marshes) and by modulating water exchanges with the ocean, thereby indirectly affecting the ocean sediment input to the system (favoring either marshes or tidal flats depending on the ratio of the river and ocean water inputs and their sediment concentrations). The model proposed has the goal of clarifying the roles of the main dynamic processes at play, rather than of predicting the evolution of a particular tidal system. Our model results most directly reflect micro- and meso-tidal environments but also have implications for macro-tidal settings. The model-based analyses presented extend our theoretical understanding of marsh dynamics to a greater range of intertidal environments. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
Before 1900, the Missouri–Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987–2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water‐ and sediment‐discharge data indicates that the dams alone are not the sole cause. These dams trap about 100–150 million metric tons per year, which represent about half the decrease in sediment discharge near the mouth of the Mississippi. Changes in relations between water discharge and suspended‐sediment concentration suggest that the Missouri–Mississippi has been transformed from a transport‐limited to a supply‐limited system. Thus, other engineering activities such as meander cutoffs, river‐training structures, and bank revetments as well as soil erosion controls have trapped sediment, eliminated sediment sources, or protected sediment that was once available for transport episodically throughout the year. Removing major engineering structures such as dams probably would not restore sediment discharges to pre‐1900 state, mainly because of the numerous smaller engineering structures and other soil‐retention works throughout the Missouri–Mississippi system. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

20.
River floodplains act as sinks for fine‐sediment and sediment‐associated contaminants. Increasing recognition of their environmental importance has necessitated a need for an improved understanding of the fate and residence times of overbank sediment deposits over a broad range of timescales. Most existing investigations have focused on medium‐term accretion rates, which represents net deposition from multiple flood events over several decades. In contrast, the fate of recently‐deposited sediment during subsequent overbank events has received only limited attention. This paper presents a novel tracing‐technique for documenting the remobilization of recent overbank sediment on river floodplains during subsequent inundation events, using the artificial radionuclides, caesium‐134 (134Cs) and cobalt‐60 (60Co). The investigation was conducted within floodplains of the Rivers Taw and Culm in Devon, UK. Small quantities of fine‐sediment (< 63 µm dia.), pre‐labelled with known activities of either 134Cs or 60Co, were deposited at 15 locations across each floodplain. Surface inventories, measured before and after three consecutive flood events, were used to estimate sediment loss (in g m–2). Significant reductions provided evidence of the remobilization of the labelled sediment by inundating floodwaters. Spatial variations in remobilization were related to localized topography. Sediment remobilized during the first two events for the River Taw floodplain were equivalent to 63 · 8% and 11 · 9%, respectively, of the original mass. Equivalent values for the River Culm floodplain were 49 · 6% and 12 · 5%, respectively, of the original mass. Sediment loss during the third event proved too small to be attributed to remobilization by overbank floodwaters. After the third event, a mean of 22 · 5% and 35 · 2% of the original mass remained on the Taw and Culm floodplains, respectively. These results provide evidence of the storage of the remaining sediment. The findings highlight the importance of remobilization of recently‐deposited sediment on river floodplains during subsequent overbank events and demonstrate the potential of the tracing‐technique. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号