首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundwaters feeding travertine‐depositing rivers of the northeastern segment of the Barkly karst (NW Queensland, Australia) are of comparable chemical composition, allowing a detailed investigation of how the rate of downstream chemical evolution varies from river to river. The discharge, pH, temperature, conductivity and major‐ion concentrations of five rivers were determined by standard field and laboratory techniques. The results show that each river experiences similar patterns of downstream chemical evolution, with CO2 outgassing driving the waters to high levels of calcite supersaturation, which in turn leads to widespread calcium carbonate deposition. However, the rate at which the waters evolve, measured as the loss of CaCO3 per kilometre, varies from river to river, and depends primarily upon discharge at the time of sampling and stream gradient. For example, Louie Creek (Q = 0·11 m3 s?1) and Carl Creek (Q = 0·50 m3 s?1) have identical stream gradients, but the loss of CaCO3 per kilometre for Louie Creek is twice that of Carl Creek. The Gregory River (Q = 3·07 m3 s?1), O'Shanassy River (Q = 0·57 m3 s?1) and Lawn Hill Creek (Q = 0·72 m3 s?1) have very similar gradients, but the rate of hydrochemical evolution of the Gregory River is significantly less than either of the other two systems. The results have major implications for travertine deposition: the stream reach required for waters to evolve to critical levels of calcite supersaturation will, all others things being equal, increase with increasing discharge, and the length of reach over which travertine is deposited will also increase with increasing discharge. This implies that fossil travertine deposits preserved well downstream of modern deposition limits are likely to have been formed under higher discharge regimes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
In the Tyrrhenian region of central Italy, late Quaternary fossil travertines are widespread along two major regional structures: the Tiber Valley and the Ancona-Anzio line. The origin and transport of spring waters from which travertines precipitate are elucidated by chemical and isotopic studies of the travertines and associated thermal springs and gas vents. There are consistent differences in the geochemical and isotopic signatures of thermal spring waters, gas vents and present and fossil travertines between east and west of the Tiber Valley. West of the Tiber Valley, δ13C of CO2 discharged from gas vents and δ13C of fossil travertines are higher than those to the east. To the west the travertines have higher strontium contents, and gases emitted from vents have higher 3He/4He ratios and lower N2 contents, than to the east. Fossil travertines to the west have characteristics typical of thermogene (thermal spring) origin, whereas those to the east have meteogene (low-temperature) characteristics (including abundant plant casts and organic impurities). The regional geochemical differences in travertines and fluid compositions across the Tiber Valley are interpreted with a model of regional fluid flow. The regional Mesozoic limestone aquifer is recharged in the main axis of the Apennine chain, and the groundwater flows westward and is discharged at springs. The travertine-precipitating waters east of the Tiber Valley have shallower flow paths than those to the west. Because of the comparatively short fluid flow paths and low (normal) heat flow, the groundwaters to the east of the Tiber Valley are cold and have CO2 isotopic signatures, indicating a significant biogenic contribution acquired from soils in the recharge area and limited deeply derived CO2. In contrast, spring waters west of the Tiber Valley have been conductively heated during transit in these high heat-flow areas and have incorporated a comparatively large quantity of CO2 derived from decarbonation of limestone. The elevated strontium content of the thermal spring water west of the Tiber Valley is attributed to deep circulation and dissolution of a Triassic evaporite unit that is stratigraphically beneath the Mesozoic limestone. U-series age dates of fossil travertines indicate three main periods of travertine formation (ka): 220-240, 120-140 and 60-70. Based on the regional flow model correlating travertine deposition at thermal springs and precipitation in the recharge area, we suggest that pluvial activity was enhanced during these periods. Our study suggests that travertines preserve a valuable record of paleofluid composition and paleoprecipitation and are thus useful for reconstructing paleohydrology and paleoclimate.  相似文献   

3.
Indarri Falls is a spectacular travertine dam which impounds Lawn Hill Creek, a perennial karst stream draining the Barkly Tableland in northwest Queensland, Australia. The dam is at least 13·5 m high, making it the largest feature of its kind known in Australia. Carbonate precipitation at the falls is favoured by downstream changes in the bulk chemistry of the karst spring waters which feed the Creek, although deposition at the microenvironmental level may be encouraged by biological factors. The dam has dramatically altered the hydrology and geomorphology of the area, transforming the middle reaches of Lawn Hill Creek from a fluvial to a lacustrine environment. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
Travertine deposits overlie the highest Number 2 surfaces in central Montana and clasts of travertine occur in gravels on lower Number 2 surfaces. Dating these travertine deposits may provide limits on the ages of surfaces that record intervals of extensive erosion during Pleistocene time. Analysis of three travertine samples from the southeast side of The Park yield an average uranium-thorium age of 73 000 ±+M 7 000 years. Another sample from the west side of The Park is 320 000 (+ 160 000, ? 70 000) years old. These results indicate that travertine deposits may have formed at several intervals. The surface beneath The Park travertine is older than about 320 000 years. Number 2 pediment gravels that contain travertine downslope from the oldest dated sample may be younger than about 320 000 years.  相似文献   

5.
6.
Drainage reorganization events have the potential to drive incision and erosion at high rates normally attributed to tectonic or climatic forcing. It can be difficult, however, to isolate the signal of transient events driven by drainage integration from longer term tectonic or climatic forcing. We exploit an ideal field setting in Aravaipa Creek Basin of southeastern Arizona, USA, to isolate just such a signal. Aravaipa Creek Basin underwent a period of transient incision that formed Aravaipa Canyon, evacuating a significant volume of sedimentary basin fill and Tertiary bedrock from the previously internally drained basin. We use digital terrain analyses to reconstruct the pre-incision landscapes of both Aravaipa Creek Basin and the adjacent Lower San Pedro Basin, which we use to quantify the magnitude of incision and erosion since the drainage basins integrated. Terrestrial cosmogenic nuclide burial dates from 10Be and 26Al concentrations in latest stage basin fill in Aravaipa Creek enable us to calculate long-term incision and erosion rates from 3 Myr to the present. A 10Be concentration–depth profile from the Lower San Pedro Basin confirms that the San Pedro River incised into its high stand deposits prior to 350 000–400 000 years ago. Combining our landscape reconstructions with these age constraints, we determine that the transient rates of incision that created Aravaipa Canyon were 150 m/Myr or more, but that the background rate of erosion since integration is an order of magnitude lower, between 10 and 20 m/Myr. These results support our growing understanding that tectonic and climatic forcings need not apply for all episodes of rapid, transient incision and erosion during landscape evolution. © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
Knowledge and understanding of shore platform erosion and tidal notch development in the tropics and subtropics relies mainly on short‐term studies conducted on recently deposited carbonate rocks, predominantly Holocene and Quaternary reef limestones and aeolianites. This paper presents erosion rates, measured over a 10 year period on notches and platforms developed on the Permian, Ratburi limestone at Phang Nga Bay, Thailand. In so doing it contributes to informing a particular knowledge gap in our understanding of the erosion dynamics of shore platform and tidal notch development in the tropics and subtropics – notch erosion rates on relatively hard, ancient limestones measured directly on the rock surface using a micro‐erosion meter (MEM) over time periods of a decade or more. The average intertidal erosion rate of 0.231 mm/yr is lower than erosion rates measured over 2–3 years on recent, weaker carbonate rocks. Average erosion rates at Phang Nga vary according to location and site and are, in rank order from highest to lowest: Mid‐platform (0.324 mm/yr) > Notch floor (0.289 mm/yr) > Rear notch wall (0.228 mm/yr) > Lower platform (0.140 mm/yr) > Notch roof (0.107 mm/yr) and Supratidal (0.095 mm/yr). The micro‐relief of the eroding rock surfaces in each of these positions exhibits marked differences that are seemingly associated with differences in dominant physical and bio‐erosion processes. The results begin to help inform knowledge of longer term shore platform erosion dynamics, models of marine notch development and have implications for the use of marine notches as indicators of changes in sea level and the duration of past sea levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Detection of anomalies in measurements of low rates of limestone surface lowering with a traversing micro-erosion meter (MEM) led to temperature-controlled laboratory and field investigations of some sources of error in the method. Regressions for the correction of temperature change in the instrument and in the stud-rock interface were obtained. Probe erosion tests permitted a correction to be devised and also provided information whereby a measure of operational irregularity was adopted. Corrections and error terms were applied to field measurements from two southern New South Wales karsts and a collection of Australian limestone slabs exposed at one site. Examination of these results and of published MEM rates from other parts of the world validated the MEM method. Marine platforms are lowered at such gross rates that these error sources may be neglected there. However limestone lowering in terrestrial environments cannot be assumed to proceed at rates which permit this and recommendations are made about procedures to ensure that investigations are prosecuted within the limitations of the method.  相似文献   

9.
Vegetation mosaics have commonly been thought to include two principal zones with distinctly different hydrology: relatively bare and impermeable runoff source zones (intergroves) and more strongly absorbing vegetated runon zones (groves). However, the data required to verify the internal uniformity of hydrologic response within these components of mosaic landscapes have been lacking, as have data on the nature (abrupt or gradational) of the boundaries between them. This study examines the degree of internal uniformity of key soil properties in the intergroves and groves of an Australian vegetation mosaic. Infiltration rates, soil water content, shear strength, bulk density and texture were determined at intervals of 1·5–2·5 m across several grove–intergrove cycles of an Australian banded shrubland. Results demonstrate that order‐of‐magnitude variability in soil infiltration rates can occur across intergroves, with lesser variation in groves. Patterns of infiltration are systematically related to slope position. Rates are relatively high in the uppermost parts of the intergrove, and fall to low values only in the lowermost intergrove where soils are mechanically strong. Infiltration rates increase rapidly from the lowermost intergrove to reach maxima within the upper to middle grove, from where rates once again decline toward the next intergrove. However, there is only a gradational change in infiltration rates across the pioneer zone–grove boundary, which is the sharpest of the mosaic boundaries when identified using plant cover data. Hydrologic models built on the presumption that mapped plant cover units are equally distinct hydrologically may need to be refined to incorporate the presence of systematic internal variability of infiltration rates and gradational change in soil hydraulic properties. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Wildfire denudes vegetation and impacts chemical and physical soil properties, which can alter hillslope erosion rates. Post‐wildfire erosion can also contribute disproportionately to long‐term erosion rates and landscape evolution. Post‐fire hillslope erosion rates remain difficult to predict and document at the hillslope scale. Here we use 210Pbaex (lead‐210 mineral‐adsorbed excess) inventories to describe net sediment erosion on steep, convex hillslopes in three basins (unburned, moderately and severely burned) in mountainous central Idaho. We analyzed nearly 300 soil samples for 210Pbaex content with alpha spectrometry and related net sediment erosion to burn severity, aspect, gradient, curvature and distance from ridgetop. We also tested our data against models for advective, linear and non‐linear diffusive erosion. Statistically lower net soil losses on north‐ versus south‐facing unburned hillslopes suggest that greater vegetative cover and soil cohesion on north‐facing slopes decrease erosion. On burned hillslopes, erosion differences between aspects were less apparent and net erosion was more variable, indicating that vegetation influences erosion magnitude and fire drives erosion variability. We estimated net soil losses throughout the length of unburned hillslopes, including through a footslope transition to concave form. In contrast, on burned hillslopes, the subtle shift from convex to concave form was associated with deposition of a post‐fire erosion pulse. Such overall patterns of erosion and deposition are consistent with predictions from a non‐linear diffusion equation. This finding also suggests that concave sections of overall convex hillslopes affect post‐disturbance soil erosion and deposition. Despite these patterns, no strong relationships were evident between local net soil losses and gradient, curvature, distance from ridgetop, or erosion predicted with advection or diffusion equations. The observed relationship between gradient and erosion is therefore likely more complex or stochastic than often described theoretically, especially over relatively short timescales (60–100 years). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Extreme sedimentation in Swift Creek, located in the Cascades foothills in NW Washington (48°55′N, 122°16′W), results from erosion of the oversteepened, unvegetated toe of a large (55 hectares) active landslide. Deposition of landslide‐derived sediment has necessitated costly mitigation projects in the channel including annual dredging and temporary sediment traps in an attempt to reduce the risk of flooding and damage to man‐made structures downstream. This study attempts to understand the process of sediment production along with the corresponding erosion rates of the sediment source to help with the development of mitigation plans and construction of optimal sediment reservoirs. The bedload and suspended sediment in the creek are a direct result of the weathering process of the serpentinitic bedrock underlying the landslide. The serpentinite does not weather to smectite clay, as previously thought. Instead, it weathers to asbestiform chrysotile with minor amounts of chlorite, illite and hydrotalcite, all of which occur in clay seeps on the unvegetated surface of the landslide. The chrysotile fibers average 2 µm in length and make up at least 50%, by volume, of the suspended load transported in Swift Creek. This study does not address the environmental or health implications of the asbestiform chrysotile transport or deposition. During the sampled time between February 2005 and February 2006, 127 discrete suspended sediment samples were collected and discharge was measured 66 times. The suspended sediment concentrations ranged from 0·02 g L?1 to 41·6 g L?1 and the discharge ranged from 0·0 m3 s?1 to 0·5 m3 s?1. A nonlinear functional model estimated the total suspended sediment flux from detailed precipitation records and discrete suspended sediment concentration and discharge measurements to be 910 t km?2 yr?1. When the suspended sediment flux is coupled with estimates of downstream deposition of coarse sediment, the estimated erosion rate for the entire Swift Creek landslide is 158 mm yr?1. The majority of the material entering Swift Creek is presumed to originate on the unvegetated toe of the landslide, for which the erosion rate is thus approximately 1 m yr?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Extreme rainfall in June 1949 and November 1985 triggered numerous large debris flows on the steep slopes of North Fork Mountain, eastern West Virginia. Detailed mapping at four sites and field observations of several others indicate that the debris flows began in steep hillslope hollows, propagated downslope through the channel system, eroded channel sediment, produced complex distributions of deposits in lower gradient channels, and delivered sediment to floodwaters beyond the debris-flow termini. Based on the distribution of deposits and eroded surfaces, up to four zones were identified with each debris flow: an upper failure zone, a middle transport/erosion zone, a lower deposition zone, and a sediment-laden floodwater zone immediately downstream from the debris-flow terminus. Geomorphic effects of the debris flows in these zones are spatially variable. The initiation of debris flows in the failure zones and passage through the transport/erosion zones are characterized by degradation; 2300 to 17 000 m3 of sediment was eroded from these zones. The total volume of channel erosion in the transport/erosion zones was 1·3 to 1·5 times greater than the total volume of sediment that initially failed, indicating that the debris flows were effective erosion agents as they travelled through the transport/erosion zones. The overall response in the deposition zones was aggradation. However, up to 43 per cent of the sediment delivered to these zones was eroded by floodwaters from joining tributaries immediately after debris-flow deposition. This sediment was incorporated into floodwaters downstream from the debris-flow termini causing considerable erosion and deposition in these channels. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Limited information exists on one of the mechanisms governing sediment input to streams: streambank erosion by ground water seepage. The objective of this research was to demonstrate the importance of streambank composition and stratigraphy in controlling seepage flow and to quantify correlation of seepage flow/erosion with precipitation, stream stage and soil pore water pressure. The streambank site was located in Northern Mississippi in the Goodwin Creek watershed. Soil samples from layers on the streambank face suggested less than an order of magnitude difference in vertical hydraulic conductivity (Ks) with depth, but differences between lateral Ks of a concretion layer and the vertical Ks of the underlying layers contributed to the propensity for lateral flow. Goodwin Creek seeps were not similar to other seeps reported in the literature, in that eroded sediment originated from layers underneath the primary seepage layer. Subsurface flow and sediment load, quantified using 50 cm wide collection pans, were dependent on the type of seep: intermittent low‐flow (LF) seeps (flow rates typically less than 0·05 L min?1), persistent high‐flow (HF) seeps (average flow rate of 0·39 L min?1) and buried seeps, which eroded unconsolidated bank material from previous bank failures. The timing of LF seeps correlated to river stage and precipitation. The HF seeps at Goodwin Creek began after rainfall events resulted in the adjacent streambank reaching near saturation (i.e. soil pore water pressures greater than ?5 kPa). Seep discharge from HF seeps reached a maximum of 1·0 L min?1 and sediment concentrations commonly approached 100 g L?1. Buried seeps were intermittent but exhibited the most significant erosion rates (738 g min?1) and sediment concentrations (989 g L?1). In cases where perched water table conditions exist and persistent HF seeps occur, seepage erosion and bank collapse of streambank sediment may be significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A common explanation for intense soil erosion and gullying in SE Australia is the introduction by Europeans of new land use practices following their arrival in Australia in the late 18th century. Eucalyptus woodlands were cleared to introduce farming, and valley bottoms, characterized by chains of ponds with organic‐rich swampy meadow (SM) soils, were subsequently buried by thick deposits of ‘post‐settlement alluvium’ (PSA) generated by erosion in the catchment. In this study, optically stimulated luminescence (OSL) is used to evaluate the source(s) of the PSA in Grabben Gullen Creek (GGC), Australia. We use a portable OSL reader to measure total photon counts on bulk polymineral and polygrain‐size samples from nine profiles along the Creek. We use these luminescence signals as geotracers of sediment source(s) and transport pathways. We obtained higher luminescence signals in the PSA than in the SM sediments, suggesting different sources and fluvial transport conditions for these two widespread sedimentary units. Portable OSL reader data from soils in the GGC catchment that are potential sources for the SM sediments and PSA show that the high luminescence signals recorded in the PSA are similar to those from subsoil samples in granite soils, suggesting that the PSA was derived by gullying of granite subsoils. In the SM sediments, luminescence signals decrease upwards from the base of the profile, as expected in well‐reset fluvial deposits, but with one or more changes in gradient in the profile of photon counts with depth, most likely indicating changes in sediment deposition rates. To calculate deposition rates in the SM sediments, several samples were dated using OSL. The OSL ages produced low scatter in the equivalent doses, confirming the well‐reset nature of the grains composing the SM and indicating a process of sediment transport in dilute flows, as is interpreted from the portable OSL signals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Alluvial channel bed incision and bank widening have been reported in both the south‐western and south‐eastern US throughout the past century. Distinct regional differences in climate and landscape properties likely influence the rate of erosion. This study discusses regional differences in hydraulic driving forces and substrate resistance and tests the hypothesis that regional differences exist in average rates of channel incision, bank erosion, and knickpoint retreat. Specifically, we hypothesize that erosion rates are higher in south‐western US streams and reason that this is because of greater flood magnitudes and limited substrate resistance. A review of the literature documenting incision, bank erosion, and knickpoint retreat, however, indicates that intra‐regional differences are larger than inter‐regional differences and that average rates in the south‐western US are either statistically similar or less than the rates in parts of the south‐eastern US. This could either be a result of strong intra‐regional hydroclimatic and substrate variability or because average erosion rate may not be an appropriate metric for inter‐regional comparisons because of the variability between case studies associated with the field methods to measure erosion, duration of study period, and time since disturbance to the channel. Nevertheless, these findings provide a basis for future evaluations of the relative importance of different controls on driving and resisting forces in these and other landscapes characterized by rapid channel incision and arroyo formation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The SIBERIA landscape evolution model was used to simulate the geomorphic development of the Tin Camp Creek natural catchment over geological time. Measured hydrology, erosion and geomorphic data were used to calibrate the SIBERIA model, which was then used to make independent predictions of the landform geomorphology of the study site. The catchment, located in the Northern Territory, Australia is relatively untouched by Europeans so the hydrological and erosion processes that shaped the area can be assumed to be the same today as they have been in the past, subject to the caveats regarding long‐term climate fluctuation. A qualitative, or visual comparison between the natural and simulated catchments indicates that SIBERIA can match hillslope length and hillslope profile of the natural catchments. A comparison of geomorphic and hydrological statistics such as the hypsometric curve, width function, cumulative area distribution and area–slope relationship indicates that SIBERIA can model the geomorphology of the selected Tin Camp Creek catchments. Copyright 2002 © Environmental Research Institute of the Supervising Scientist, Commonwealth of Australia.  相似文献   

17.
Key processes in stream ecosystems are linked to hydraulic retention, which is the departure of stream flow from ideal ‘plug flow’, and reflects fluid movement through surface and hyporheic storage zones. Most existing information about hyporheic exchange is based on flume studies or field measurements in relatively steep streams with beds coarser than sand. Stream tracer studies may be used to quantify overall hydraulic retention, but disaggregation of surface and hyporheic retention remains difficult. A stream tracer approach was used to compute the rates at which stream water is exchanged with water in storage zones (total storage) in short reaches of two small, sand‐bed streams under free and obstructed flow conditions. Tracer curves were fit to the one‐dimensional transport with inflow storage model OTIS‐P. Networks of piezometers were used to measure specific discharge between the stream and the groundwater. In the sand‐bed streams studied, parameters describing total retention were in the upper 50% of data compiled from the literature, most of which represented streams with beds coarser than sand. However, hyporheic storage was an insignificant component of total hydraulic retention, representing only 0·01–0·49% of total exchange, and this fraction did not increase after installation of flow obstructions. Total retention did not vary systematically with bed material size, but increased 50–100% following flow obstruction. Removal of roughness elements, such as large wood and debris dams, is detrimental to processes dependent upon transient storage in small, sand‐bed streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
We report erosion rates and processes, determined from in situ‐produced beryllium‐10 (10Be) and aluminum‐26 (26Al), across a soil‐mantled landscape of Arnhem Land, northern Australia. Soil production rates peak under a soil thickness of about 35 cm and we observe no soil thicknesses between exposed bedrock and this thickness. These results thus quantify a well‐defined ‘humped’ soil‐production function, in contrast to functions reported for other landscapes. We compare this function to a previously reported exponential decline of soil production rates with increasing soil thickness across the passive margin exposed in the Bega Valley, south‐eastern Australia, and found remarkable similarities in rates. The critical difference in this work was that the Arnhem Land landscapes were either bedrock or mantled with soils greater than about 35 cm deep, with peak soil production rates of about 20 m/Ma under 35–40 cm of soil, thus supporting previous theory and modeling results for a humped soil production function. We also show how coupling point‐specific with catchment‐averaged erosion rate measurements lead to a better understanding of landscape denudation. Specifically, we report a nested sampling scheme where we quantify average erosion rates from the first‐order, upland catchments to the main, sixth‐order channel of Tin Camp Creek. The low (~5 m/Ma) rates from the main channel sediments reflect contributions from the slowly eroding stony highlands, while the channels draining our study area reflect local soil production rates (~10 m/Ma off the rocky ridge; ~20 m/Ma from the soil mantled regions). Quantifying such rates and processes help determine spatial variations of soil thickness as well as helping to predict the sustainability of the Earth's soil resource under different erosional regimes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Saline seepage zone development, and hence the onset of dryland salinity, is a major environmental problem occurring within the Spicers Creek catchment. The primary objective of this paper was to identify previously unmapped faults and show the correlation between these faults and groundwater salinization. As identified from this study, there is a close association between geological structural features and the formation of saline seepage zones. The most saline groundwaters in the catchment were encountered where two geological structures join and form a fault intersection. These saline groundwaters are found at various depths within the fractured aquifers, and changes in groundwater chemistry in the aquifers are associated with the presence of fault zones. 18O and δ2H stable isotopes, together with 87Sr/86Sr isotopic ratios, indicate that groundwaters within the fault zones are enriched in 18O and have a strontium signature similar to seawater. This study identifies several geological structures in the Spicers Creek catchment and demonstrates that groundwaters with the highest salinity arise where fault intersections occur. The results of this study may be used to interpret further the mechanisms leading to seepage zone formation in dryland salinity‐affected catchments located throughout the Central West region of New South Wales, Australia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Erosion rates and processes define how mountainous landscapes evolve. This study determines the range of erosion rates in a semi‐arid landscape over decadal time spans and defines the dominant processes controlling variability in erosion rates. The varying topography and climatic regimes of the Xiying Basin (Qilian Shan Mountains, China) enables us to examine the relative roles of sheet wash versus rainsplash and the influence of vegetation on soil erosion and deposition. Soil erosion rates since 1954 were determined using 137Cs along 21 transects at four sites with varying gradient, rainfall, and vegetation cover. The mean 137Cs derived soil erosion rate ~0.42 mm/a was consistent with the catchment level erosion rate derived from total sediment yield for a 44 year record. However, there is considerable variability in 137Cs erosion rates both between transects and along transects, perhaps reflecting variation not only in the effectiveness of individual processes but also in their relative roles. We compare the 137Cs‐derived erosion rates with 1‐D models for sediment flux that incorporate sheet wash and rainsplash processes, testing them over a previously untested 60 year timescale. The variability in 137Cs erosion rates along transects is best replicated by sheet wash dominated simulations, suggesting that this is the dominant erosion process in this semi‐arid landscape. The functional form of the sheetwash model can also explain our observations that 137Cs erosion rates decrease with upslope length (i.e. distance down slope) while its variability increases. However, sparsely vegetated sites, located in slightly drier locations, have higher erosion rates, and are not as accurately modeled as densely vegetated sites, suggesting that patchiness of vegetation introduces fine scale variability in erosion rates on these slopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号