首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study investigates the possibility to estimate bed-material transfer in gravel-bed rivers by analysis of morphological changes along Vedder River, British Columbia. Data from repeated cross-section surveys are used to estimate volume changes along the length of an 8 km reach. Gravel budgets are based on a continuity approach. An error analysis is performed to evaluate the uncertainty in the best estimate of transport rates. The mean annual gravel transport into the reach over a 9 year period was estimated to be 36600 ± 5600 m3 yr?1. The sediment transport regime along the length of the river is evaluated and examined in relation to peak flood flows. Significant spatial and temporal variability in transport rates is demonstrated, making dubious the generalization of transport estimates from hydraulic calculations, or from sample measurements at a single cross-section. The assumptions, procedures and limitations of the ‘morphological approach’ to sediment transport analysis are discussed. It is concluded that this approach provides information of quality comparable or superior to that of direct measurements of transport, yet requires less field effort. It also provides additional information about river morphological changes, making it a preferred method for geomorphlogical investigations and for many river management concerns.  相似文献   

2.
The transfer of sediment through a highly regulated large fluvial system (lower Ebro River) was analysed during two consecutive floods by means of sediment sampling. Suspended sediment and bedload transport were measured upstream and downstream of large reservoirs. The dams substantially altered flood timing, particularly the peaks, which were advanced downstream from the dams for flood control purposes. The suspended sediment yield upstream from the dams was 1 700 000 tonnes, which represented nearly 99 per cent of the total solid yield. The mean concentrations were close to 0·5 g l?1. The sediment yield downstream from the dams was an order of magnitude lower (173 000 tonnes), showing a mean concentration of 0·05 g l?1. The dams captured up to 95 per cent of the fine sediment carried in suspension in the river channel, preventing it from reaching the lowermost reaches of the river and the delta plain. Total bedload transport upstream from the dams was estimated to be about 25 000 tonnes, only 1·5 per cent of the total load. The median bedload rate was 100 gms?1. Below the dams, the river carried 178 000 tonnes, around 51 per cent of the total load, at a mean rate of 250 g ms?1. The results of sediment transport upstream and downstream from the large dams illustrate the magnitude of the sediment deficit in the lower Ebro River. The river mobilized a total of 350 000 tonnes in the downstream reaches, which were not replaced by sediment from upstream. Therefore, sediment was necessarily entrained from the riverbed and channel banks, causing a mean incision of 33 mm over the 27 km long study reach, altogether a significant step towards the long‐term degradation of the lower Ebro River. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
This study examined the effects of natural and anthropogenic changes in confining margin width by applying remote sensing techniques – fusing LiDAR topography with image‐derived bathymetry – over a large spatial extent: 58 km of the Snake River, Wyoming, USA. Fused digital elevation models from 2007 and 2012 were differenced to quantify changes in the volume of stored sediment, develop morphological sediment budgets, and infer spatial gradients in bed material transport. Our study spanned two similar reaches that were subject to different controls on confining margin width: natural terraces versus artificial levees. Channel planform in reaches with similar slope and confining margin width differed depending on whether the margins were natural or anthropogenic. The effects of tributaries also differed between the two reaches. Generally, the natural reach featured greater confining margin widths and was depositional, whereas artificial lateral constriction in the leveed reach produced a sediment budget that was closer to balanced. Although our remote sensing methods provided topographic data over a large area, net volumetric changes were not statistically significant due to the uncertainty associated with bed elevation estimates. We therefore focused on along‐channel spatial differences in bed material transport rather than absolute volumes of sediment. To complement indirect estimates of sediment transport derived by morphological sediment budgeting, we collected field data on bed mobility through a tracer study. Surface and subsurface grain size measurements were combined with bed mobility observations to calculate armoring and dimensionless sediment transport ratios, which indicated that sediment supply exceeded transport capacity in the natural reach and vice versa in the leveed reach. We hypothesize that constriction by levees induced an initial phase of incision and bed armoring. Because levees prevented bank erosion, the channel excavated sediment by migrating rapidly across the restricted braidplain and eroding bars and islands. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
The geomorphic effect of introducing a gravel augmentation totaling 520 m3 into a gravel‐bed stream during a dam‐controlled flood in May of 2015 was monitored with bedload transport measurements, an array of seismometers, and repeated topographic surveys. Half of the augmented gravel was injected into the flow with front‐end loaders on the rising limb of the flood and the other half was injected on the first day of the peak. Virtually all of the gravel transported past the injection point was deposited within about 7 to 10 channel widths of the injection point. Most of the injected gravel deposited along the left bank of the river whereas the right half of the channel bed was dominated by scour. The downstream third of the depositional area consisted of a small dune field that developed prior to the second gravel injection and subsequently migrated about one channel width downstream. A second depositional front was observed upstream from the gravel injection point, where a delta‐like wedge of bed material developed in the first hours of the flow release and changed little over the remainder of the release. These two depositional areas represent small‐scale bed‐material storage reservoirs with the potential to accumulate and periodically release packets of bed material. Interactions with such storage reservoirs are hypothesized to cause large bed‐material pulses to disperse by fragmenting into multiple smaller pulses. As a refinement to the conceptual model that views sediment pulse evolution in terms of dispersion and translation, the concept of pulse fragmentation has practical implications for gravel management. It implies that gravel augmentations can produce morphologic changes at locations that are separated from the augmentation point by arbitrarily long reaches, and it highlights the dependence of pulse propagation rates on the nature and distribution of the bed‐material storage reservoirs in the channel system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Before 1900, the Missouri–Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987–2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water‐ and sediment‐discharge data indicates that the dams alone are not the sole cause. These dams trap about 100–150 million metric tons per year, which represent about half the decrease in sediment discharge near the mouth of the Mississippi. Changes in relations between water discharge and suspended‐sediment concentration suggest that the Missouri–Mississippi has been transformed from a transport‐limited to a supply‐limited system. Thus, other engineering activities such as meander cutoffs, river‐training structures, and bank revetments as well as soil erosion controls have trapped sediment, eliminated sediment sources, or protected sediment that was once available for transport episodically throughout the year. Removing major engineering structures such as dams probably would not restore sediment discharges to pre‐1900 state, mainly because of the numerous smaller engineering structures and other soil‐retention works throughout the Missouri–Mississippi system. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

6.
Confluences with low discharge and momentum ratios, where narrow steep tributaries with high sediment load join a wide low‐gradient main channel that provides the main discharge, are often observed in high mountain regions such as in the upper‐Rhone river catchment in Switzerland. Few existing studies have examined the hydro‐morphodynamics of this type of river confluence while considering sediment discharge in both confluent channels. This paper presents the evolution of the bed morphology and hydrodynamics as observed in an experimental facility with a movable bed. For that purpose, one experiment was carried out in a laboratory confluence with low discharge and momentum ratios, where constant sediment rates were supplied to both flumes. During the experiment, bed topography and water surface elevations were systematically recorded. When the bed topography reached a steady state (so‐called equilibrium) and the outgoing sediment rate approximated the incoming rate, flow velocity was measured at 12 different points distributed throughout the confluence, and the grain size distribution of the bed surface was analyzed. Typical morphodynamic features of discordant confluences such as a bank‐attached bar and a flow deflection zone are identified in this study. Nevertheless, the presence of a marked scour hole in the discordant confluence and distinct flow regimes for the tributary and main channel, differ from results obtained in previous studies. Strong acceleration of the flow along the outer bank of the main channel is responsible for the scour hole. This erosion is facilitated by the sediment discharge into the confluence from the main channel which inhibits bed armoring in this region. The supercritical flow regime observed in the tributary is the hydrodynamic response to the imposed sediment rate in the tributary. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The question: ‘how does a streambed change over a minor flood?’ does not have a clear answer due to lack of measurement methods during high flows. We investigate bedload transport and disentrainment during a 1.5‐year flood by linking field measurements using fiber optic distributed temperature sensing (DTS) cable with sediment transport theory and an existing explicit analytical solution to predict depth of sediment deposition from amplitude and phase changes of the diurnal near‐bed pore‐water temperature. The method facilitates the study of gravel transport by using near‐bed temperature time series to estimate rates of sediment deposition continuously over the duration of a high flow event coinciding with bar formation. The observations indicate that all gravel and cobble particles present were transported along the riffle at a relatively low Shields Number for the median particle size, and were re‐deposited on the lee side of the bar at rates that varied over time during a constant flow. Approximately 1–6% of the bed was predicted to be mobile during the 1.5‐year flood, indicating that large inactive regions of the bed, particularly between riffles, persist between years despite field observations of narrow zones of local transport and bar growth on the order ~3–5 times the median particle size. In contrast, during a seven‐year flood approximately 8–55% of the bed was predicted to become mobile, indicating that the continuous along‐stream mobility required to mobilize coarse gravel through long pools and downstream to the next riffle is infrequent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Two controlled flow events were generated by releasing water from a reservoir into the Olewiger Bach, located near Trier, Germany. This controlled release of near bank‐full flows allowed an investigation of the fine sediment (<63 µm) mobilized from channel storage. Both a winter (November) and a summer (June) release event were generated, each having very different antecedent flow conditions. The characteristics of the release hydrographs and the associated sediment transport indicated a reverse hysteresis with more mass, but smaller grain sizes, moving on the falling limb. Fine sediment stored to a depth of 10 cm in the gravels decreased following the release events, indicating the dynamic nature and importance of channel‐stored sediments as source materials during high flow events. Sediment traps, filled with clean natural gravel, were buried in riffles before the release of the reservoir water and the total mass of fine sediment collected by the traps was measured following the events. Twice the mass of fine sediment was retained by the gravel traps compared with the natural gravels, which may be due to their altered porosity. Although the amount of fine sediment collected by the traps was not significantly related to measures of gravel structure, it was found to be significantly correlated to measures of local flow velocity and Froude number. A portion of the traps were fitted with lids to restrict surface exchange of water and sediment. These collected the highest amounts of event‐mobilized sediments, indicating that inter‐gravel lateral flows, not just surface infiltration of sediments, are important in replenishing and redistributing the channel‐stored fines. These findings regarding the magnitude and direction of fine sediment movement in gravel beds are significant in both a geomorphic and a biological context. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Uncertainty in discharge data must be critically assessed before data can be used in, e.g. water resources estimation or hydrological modelling. In the alluvial Choluteca River in Honduras, the river‐bed characteristics change over time as fill, scour and other processes occur in the channel, leading to a non‐stationary stage‐discharge relationship and difficulties in deriving consistent rating curves. Few studies have investigated the uncertainties related to non‐stationarity in the stage‐discharge relationship. We calculated discharge and the associated uncertainty with a weighted fuzzy regression of rating curves applied within a moving time window, based on estimated uncertainties in the observed rating data. An 18‐year‐long dataset with unusually frequent ratings (1268 in total) was the basis of this study. A large temporal variability in the stage‐discharge relationship was found especially for low flows. The time‐variable rating curve resulted in discharge estimate differences of ? 60 to + 90% for low flows and ± 20% for medium to high flows when compared to a constant rating curve. The final estimated uncertainty in discharge was substantial and the uncertainty limits varied between ? 43 to + 73% of the best discharge estimate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Bedload transport measurements were made in a braided reach of the Onyx River, Wright Valley, Antarctica, during summer 1984/85. Transport was predominantly of sand in the form of dunes, which moved in a band down the centre of the channels, the perimeters of which were composed of a gravel pavement created during short duration high flows in earlier years. Transport rates at-a-point and past-a-cross-section were highly variable in space and time, even under conditions of constant discharge, and it was inferred that many factors other than hydraulic conditions—particularly sediment supply—control transport rates. An empirical power function relationship between sediment discharge and water discharge was used to predict an average annual total sediment discharge of 3400 t y?1 past the study reach. This gives a specific sediment yield of 5.9 t km?2 · y?1, which is two orders of magnitude less than values for Arctic and Alpine proglacial rivers, and confirms earlier conclusions that sedimentation rates on Antarctic sandur are much lower than in the arctic.  相似文献   

11.
Spatial and temporal patterns of spring break‐up flooding in the Slave River Delta (SRD), Northwest Territories, are characterized during three years (2003–2005) using water isotope tracers and total inorganic suspended sediment (TSS) concentrations measured from lakewater samples collected shortly after the spring melt. Strongly contrasting spring melt periods led to a moderate flood in 2003, no flooding in 2004 and widespread flooding in 2005. Flooded lakes have isotopically‐depleted δ18O (δ2H) signatures, ranging between ? 19·2‰ (?145‰) and ? 17·1‰ (?146‰) and most have high TSS concentrations (>10 mg L?1), while non‐flooded lakes have more isotopically‐enriched δ18O (δ2H) signatures, ranging between ? 18·2‰ (?149‰) and ? 10·6‰ (?118‰) and low TSS concentrations (<10 mg L?1). These results, in conjunction with the isotopic signatures of Slave River water and snowmelt, are used to estimate the proportion of river‐ or snowmelt‐induced dilution in delta lakes during the spring of each study year. Calculations indicate river flooding caused dilution of ~70–100% in delta lakes, while snowmelt dilution in the absence of river flooding ranged from ~0–56%. A positive relationship exists between the spatial extent of spring flooding in the SRD and level and discharge on the Slave River and upstream tributaries, suggesting that upstream flow generation plays a key role in determining the magnitude of spring flooding in the SRD. Parallel variations in the 46‐year instrumental Slave River discharge record and flood stratigraphy in the active delta indicate that there is potential for extending the flood history of the SRD, a development that will contribute to a more robust understanding of the drivers of historic, contemporary and future flood frequency in the delta. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Intensive field monitoring of a reach of upland gravel‐bed river illustrates the temporal and spatial variability of in‐channel sedimentation. Over the six‐year monitoring period, the mean bed level in the channel has risen by 0·17 m with a maximum bed level rise of 0·5 m noted at one location over a five month winter period. These rapid levels of aggradation have a profound impact on the number and duration of overbank flows with flood frequency increasing on average 2·6 times and overbank flow time increasing by 12·8 hours. This work raises the profile of coarse sediment transfer in the design and operation of river management, specifically engineering schemes. It emphasizes the need for the implementation of strategic monitoring programmes before engineering work occurs to identify zones where aggradation is likely to be problematic. Exploration of the sediment supply and transfer system can explain patterns of channel sedimentation. The complex spatial, seasonal and annual variability in sediment supply and transfer raise uncertainties into the system's response to potential changes in climate and land‐use. Thus, there is a demand for schemes that monitor coarse sediment transfer and channel response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper we use multiple field surveys spanning several decades to systematically evaluate the geomorphic consequences of a change in flow hydraulics from uniform flow to backwater flow for the lower Trinity River in east Texas, USA. Spatial changes in lateral migration rate, channel geometry, and point bar size correspond to two distinct geomorphic zones. Within the upstream uniform flow reach, the river channel is defined by fully developed point bars and a high rate of lateral channel migration. This zone transitions where the median channel bottom elevation drops below sea level. At this point flow is affected by the backwater influence of the Trinity Bay water surface elevation, as opposed to being bed slope control dominated. The change in hydraulics within the backwater zone is reflected in the channel morphology, which is characterized by smaller point bars, narrower and more symmetrical cross-sectional channel geometry, lower channel migration rates, and little to no bend deformation or cutoffs. Studying the connection between channel geometry, river bend kinematics, sediment transport, and fluid mechanics in each zone provides a deeper understanding of the relationship between channel shape and river mechanics. © 2019 John Wiley & Sons, Ltd.  相似文献   

14.
The summer discharge pattern of the Skeldal River, which drains a 560 km2 partly glacierized catchment in north‐east Greenland, is dominated by diurnal oscillations reflecting variations in the melt rate of snow and ice in the basin. Superimposed on this diurnal pattern are numerous short‐lived discharge fluctuations of irregular periodicity and magnitude. The larger fluctuations are described and attributed to both rainfall events and periodic collapse of the glacier margin damming flow from beneath the Skelbrae glacier. Other minor fluctuations are less readily explained but are associated with changes in the channelized and distributed reservoirs and possibly temporary blockage of subglacial conduits caused by ice melt with subsequent damming. Fluctuations in suspended sediment concentration (SSC) are normally associated with discharge fluctuations, although examples of ‘transient flushes’ were observed where marked increases in SSC occurred in the absence of corresponding discharge variations. A strong relationship between the event discharge increase and event SSC increase for rainfall‐induced events was established, but no such relationship existed for non‐rainfall‐induced events. There is some evidence for an exhaustion effect in the SSC patterns both at the event time‐scale and as the month proceeds. A mean suspended sediment load of 1765 ± 0·26 t day?1 was estimated for the study period, which would be equivalent to a suspended sediment yield of 732 ± 4 t km?2 year?1. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
The aim of this study is to examine the annual regime of channel scour and fill by monitoring bed‐elevation changes in a reach of Squamish River in southwestern British Columbia, Canada. Sonar surveys of 13 river cross‐sections in a sandy gravel‐bed single‐channel study reach were repeated biweekly over a full hydrologic year (1995/6). The survey results show that bedload movement occurs as waves or pulses forming bedwaves that appear to maintain an overall coherence with movement downstream. These bedwaves propagate downstream by a mode here termed pulse scour and pulse fill, a process distinguished from the conventional mode of scour and fill commonly associated with flood events (here termed local scour and local fill). Bedwave celerity was estimated to be about 15·5 m d−1 corresponding to a bedwave residence time in the study reach of almost one hydrologic year. The total amount of local bed‐elevation change ranged between 0·22 m and 2·41 m during the period of study. Analysis of the bed‐elevation and flow data reveals that, because of the bedwave phenomenon, there is no simple relation between the mean bed‐elevation and discharge nor any strong linear correlation among cross‐sectional behaviour. The bed‐elevation data also suggest that complex changes to the bed within a cross‐section are masked when the bed is viewed in one dimension, although no definitive trends in bed behaviour were found in the two‐dimensional analysis. Although a weak seasonal effect is evident in this study, the bed‐elevation regime is dominated by sediment supply‐driven fluctuations in bedload transport occurring at timescales shorter than the seasonal fluctuation in discharge. The study also indicates that bed‐elevation monitoring on Squamish River, and others like it, for purposes of detecting and measuring aggradation/degradation must take into account very considerable and normal channel‐bed variability operating at timescales from hours to months. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Indirect, passive approaches for monitoring coarse bedload transport could allow cheaper, safer, higher‐resolution, longer‐term data that revolutionises bedload understanding and informs river management. Here, insights provided by seismic impact plates in a downstream reach of a flashy gravel‐bed river (River Avon, Devon, UK) are explored in the context of plate performance. Monitoring of a centrally‐situated plate (IP1) during an extremely wet 12‐month period demonstrated that impacts were related to discharge as a measure of transport potential (R2 = 0.38) but that factors other than transport limitations are important. Analysis of discrete flow events revealed consistent rising‐limb and falling‐limb impact spikes biased toward the latter for larger events. Such patterns may result from disruption of the upstream armour layer (rising limb) and supply enhancements related to both upstream mass bank failures and/or flood routing of non‐local sediment sources (falling limb). Installation of additional impact plates indicated that plate IP1 was indeed dominantly related to instantaneous discharge, that a three‐plate lateral array somewhat better explained impact variability (R2 = 0.49), and that the bedload track shifts laterally with discharge. Aggregating event‐total IP1 impacts against volumetric discharge further increases explanation as intra‐event and stochastic bedload factors are subsumed but left 26% unexplained variance related to the unsampled bedload mass, inter‐event supply differences, and attributes of plate performance. Annualising the data created an impact‐based 'effective discharge’ for this extremely wet year that was closer to morphological bar‐full in magnitude than bankfull, but the preceding results imply this outcome is related as much to supply limitations as transport limitations. Overall, passive approaches offer a liberating prospect for bedload monitoring, capable of producing insights only achievable through high resolution, extended time periods. Such results could potentially inform threshold conditions and geomorphological effectiveness of flows for future river management strategies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The internal riverine processes acting upon phosphorus and dissolved silicon were investigated along a 55 km stretch of the River Swale during four monitoring campaigns. Samples of river water were taken at 3 h intervals at sites on the main river and the three major tributaries. Samples were analysed for soluble reactive phosphorus, total dissolved phosphorus, total phosphorus, dissolved silicon and suspended solid concentration. Mass‐balances for each determinand were calculated by comparing the total load entering the river with the total load measured at the downstream site. The difference, i.e. the residual load, showed that there was a large retention of phosphorus and silicon within the system during the March 1998 flood event, but the other three campaigns produced net‐exports. Cumulative residual loads were calculated for each determinand at 6 h intervals throughout each campaign. This incremental approach showed that the mass‐balance residuals followed relatively consistent patterns under various river discharges. During stable low‐flow, there was a retention of particulate phosphorus within the system and also a retention of total dissolved phosphorus and soluble reactive phosphorus, most likely caused by the sorption of soluble phosphorus by bed‐sediments. In times of high river‐discharge, there was a mobilization and export of stored bed‐sediment phosphorus. During overbank flooding, there was a large retention (58% of total input) of particulate phosphorus within the system, due to the mass deposition of phosphorus‐rich sediment onto the floodplain. Soluble phosphorus was also retained within the system by sequestration from the water column by the high concentration of suspended solids. The dissolved silicon mass‐balance residuals had a less consistent pattern in relation to river discharge. There was a large retention of dissolved silicon during overbank flooding, possibly due to sorption onto floodplain soil, and net‐exports during periods of both stable low‐flow and rising limbs of hydrographs, due to release of dissolved silicon from pore‐waters. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
A137Cs-balance for the catchment of the River Öre in central northern Sweden which received about 30 kBq m–2 of radiocesium from the Chernobyl accident was calculated for the period 1986–1991. Altogether, slightly less than 10% of the total deposition in the catchment was estimated to be exported from the terrestrial parts during this period of time. More than 90% of this loss is transported with the River Öre to the outer sea of the Gulf of Bothnia. The retention in Lake Örträsket which is the only lake along the river course and the Öre Estuary outside the river mouth was thus slightly less than 10%. Nearly all of the radiocesium deposited in the lake is permanently retained in the sediments and successively covered with less radioactive sediment. A considerable export of radiocesium from the estuary to the outer sea takes place due to resuspension and subsequent transport by wind and wave generated currents.  相似文献   

19.
The acquisition of reliable discharge estimates is crucial in hydrological studies. This study demonstrates a promising acoustic method for measuring streamflow at high sampling rate for a long period using the fluvial acoustic tomography system (FATS). The FATS recently emerged as an innovative technique for continuous measurements of streamflow. In contrast to the traditional point/transect measurements of discharge, the FATS enables the depth‐averaged and range‐averaged flow velocity along the ray path to be measured in a fraction of a second. The field test was conducted in a shallow gravel‐bed river (0.9 m deep under low‐flow conditions, 115 m wide) for 1 month. The parameters (stream direction and bottom elevation) required for calculating the streamflow were deduced by a nonlinear regression to the discharge data from the well‐established rating curve. The cross‐sectional average velocities were automatically calculated from the acoustic data, which were collected on both riverbanks every 30 s. The FATS was connected to the internet so that the real‐time flow data could be obtained. The FATS captured discharge variations at a cut‐off frequency of approximately 70 day?1. The stream exhibited temporal discharge changes at multiple time scales ranging from a few tens of minutes to days. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In debris‐flow‐prone channels, normal fluvial sediment transport occurs (nearly exclusively in suspended mode) between episodic debris‐flow events. Observations of suspended sediment transport through a winter season in a steepland gully in logged terrain revealed two event types. When flows exceeded a threshold of 270 l s−1, events yielded significant quantities of sediment and suspended sediment concentration increased with flow. Smaller events were strongly ‘supply limited’; sediment concentration decreased as flow increased. Overall, there is no consistent correlation between runoff and sediment yield. Within the season, three subseasons were identified (demarcated by periods of freezing weather) within which a pattern of fine sediment replenishment and evacuation occurred. Finally, a signature of fine sediment mobilization and exhaustion was observed within individual events. Fine sediment transport occurred in discrete pulses within storm periods, most of the yield occurring within 5 to 15% of storm runoff duration, so that it is unlikely that scheduled sampling programs would identify significant transport. Significant events are, however, generally forecastable on the basis of regional heavy rainfall warnings, providing a basis for targeted observations. Radiative snowmelt events and rain‐on‐snow remain difficult to forecast, since the projection of temperatures from the nearest regular weather station yields variable results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号