首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is part of a series devoted to the study of the stellar populations in brightest cluster galaxies (BCGs), aimed at setting constraints on the formation and evolution of these objects. We have obtained high signal-to-noise ratio, long-slit spectra of 49 BCGs in the nearby Universe. Here, we derive single stellar population (SSP)-equivalent ages, metallicities and α-abundance ratios in the centres of the galaxies using the Lick system of absorption line indices. We systematically compare the indices and derived parameters for the BCGs with those of large samples of ordinary elliptical galaxies in the same mass range. We find no significant differences between the index-velocity dispersion relations of the BCG data and those of normal ellipticals, but we do find subtle differences between the derived SSP parameters. The BCGs show, on average, higher metallicity ([ Z /H]) and α-abundance ([E/Fe]) values. We analyse possible correlations between the derived parameters and the internal properties of the galaxies (velocity dispersion, rotation, luminosity) and those of the host clusters (density, mass, distance from BCG to X-ray peak, presence of cooling flows), with the aim of dissentangling if the BCG properties are more influenced by their internal or host cluster properties. The SSP parameters show very little dependence on the mass or luminosity of the galaxies, or the mass or density of the host clusters. Of this sample, 26 per cent show luminosity-weighted ages younger than 6 Gyr, probably a consequence of recent – if small – episodes of star formation. In agreement with previous studies, the BCGs with intermediate ages tend to be found in cooling-flow clusters with large X-ray excess.  相似文献   

2.
We use semi-analytic techniques to study the formation and evolution of brightest cluster galaxies (BCGs). We show the extreme hierarchical nature of these objects and discuss the limitations of simple ways to capture their evolution. In a model where cooling flows are suppressed at late times by active galactic nucleus (AGN) activity, the stars of BCGs are formed very early (50 per cent at z ∼ 5, 80 per cent at z ∼ 3) and in many small galaxies. The high star formation rates in these high- z progenitors are fuelled by rapid cooling, not by merger-triggered starbursts. We find that model BCGs assemble surprisingly late: half their final mass is typically locked up in a single galaxy after   z ∼ 0.5  . Because most of the galaxies accreted on to BCGs have little gas content and red colours, late mergers do not change the apparent age of BCGs. It is this accumulation of a large number of old stellar populations – driven mainly by the merging history of the dark matter halo itself – that yields the observed homogeneity of BCG properties. In the second part of the paper, we discuss the evolution of BCGs to high redshifts, from both observational and theoretical viewpoints. We show that our model BCGs are in qualitative agreement with high- z observations. We discuss the hierarchical link between high- z BCGs and their local counterparts. We show that high- z BCGs belong to the same population as the massive end of local BCG progenitors, although they are not in general the same galaxies. Similarly, high- z BCGs end up as massive galaxies in the local Universe, although only a fraction of them are actually BCGs of massive clusters.  相似文献   

3.
We use the Sloan Digital Sky Survey (SDSS) to construct a sample of 625 brightest group and cluster galaxies (BCGs) together with control samples of non-BCGs matched in stellar mass, redshift and colour. We investigate how the systematic properties of BCGs depend on stellar mass and on their privileged location near the cluster centre. The groups and clusters that we study are drawn from the C4 catalogue of Miller et al. but we have developed improved algorithms for identifying the BCG and for measuring the cluster velocity dispersion. Since the SDSS photometric pipeline tends to underestimate the luminosities of large galaxies in dense environments, we have developed a correction for this effect which can be readily applied to the published catalogue data. We find that BCGs are larger and have higher velocity dispersions than non-BCGs of the same stellar mass, which implies that BCGs contain a larger fraction of dark matter. In contrast to non-BCGs, the dynamical mass-to-light ratio of BCGs does not vary as a function of galaxy luminosity. Hence BCGs lie on a different Fundamental Plane than ordinary elliptical galaxies. BCGs also follow a steeper Faber–Jackson relation than non-BCGs, as suggested by models in which BCGs assemble via dissipationless mergers along preferentially radial orbits. We find tentative evidence that this steepening is stronger in more massive clusters. BCGs have similar mean stellar ages and metallicities to non-BCGs of the same mass, but they have somewhat higher α/Fe ratios, indicating that star formation may have occurred over a shorter time-scale in the BCGs. Finally, we find that BCGs are more likely to host radio-loud active galactic nuclei than other galaxies of the same mass, but are less likely to host an optical active galactic nucleus (AGN). The differences we find are more pronounced for the less massive BCGs, i.e. they are stronger at the galaxy group level.  相似文献   

4.
We analyse the K -band Hubble diagram for a sample of brightest cluster galaxies (BCGs) in the redshift range 0< z <1. In good agreement with earlier studies, we confirm that the scatter in the absolute magnitudes of the galaxies is small (0.3 mag). The BCGs exhibit very little luminosity evolution in this redshift range: if q 0=0.0, we detect no luminosity evolution; for q 0=0.5, we measure a small negative evolution (i.e., BCGs were about 0.5 mag fainter at z =1 than today). If the mass in stars of these galaxies had remained constant over this period of time, substantial positive luminosity evolution would be expected: BCGs should have been brighter in the past, since their stars were younger. A likely explanation for the observed zero or negative evolution is that the stellar mass of the BCGs has been assembled over time through merging and accretion, as expected in hierarchical models of galaxy formation. The colour evolution of the BCGs is consistent with that of an old stellar population ( z for>2) that is evolving passively. We can thus use evolutionary population synthesis models to estimate the rate of growth in stellar mass for these systems. We find that the stellar mass in a typical BCG has grown by a factor ≃2 since z ≃1 if q 0=0.0, or by factor ≃4 if q 0=0.5. These results are in good agreement with the predictions of semi-analytic models of galaxy formation and evolution set in the context of a hierarchical scenario for structure formation. The models predict a scatter in the luminosities of the BCGs that is somewhat larger than the observed one, but that depends on the criterion used to select the model clusters.  相似文献   

5.
We present near-infrared K -band spectroscopy of 21 elliptical or cD brightest cluster galaxies (BCGs), for which we have measured the strength of the 2.293-μm CO stellar absorption feature. We find that the strength of this feature is remarkably uniform among these galaxies, with a smaller scatter in equivalent width than for the normal elliptical population in the field or clusters. The scatter for BCGs is 0.156 nm, compared with 0.240 nm for Coma cluster ellipticals, 0.337 nm for ellipticals from a variety of other clusters, and 0.422 nm for field ellipticals. We interpret this homogeneity as being the result of a greater age, or more uniform history of star formation in BCGs than in other ellipticals; only a small fraction of the scatter can be caused by metallicity variations, even in the BCGs. Notwithstanding the small scatter, correlations are found between CO strength and various galaxy properties, including R -band absolute magnitude, which could improve the precision of these galaxies as distance indicators in measurements of cosmological parameters and velocity flows.  相似文献   

6.
We search for ongoing major dry mergers in a well-selected sample of local brightest cluster galaxies (BCGs) from the C4 cluster catalogue. 18 out of 515 early-type BCGs with redshift between 0.03 and 0.12 are found to be in major dry mergers, which are selected as pairs (or triples) with r -band magnitude difference  δ m r < 1.5  and projected separation   r p < 30 kpc  , and showing signatures of interaction in the form of significant asymmetry in residual images. We find that the fraction of BCGs in major dry mergers increases with the richness of the clusters, consistent with the fact that richer clusters usually have more massive (or luminous) BCGs. We estimate that present-day early-type BCGs may have experienced on average  ∼0.6 ( t merge/0.3 Gyr)−1  major dry mergers and through this process increases their luminosity (mass) by 15 per cent  ( t merge/0.3 Gyr)−1 ( f mass/0.5)  on average since   z = 0.7  , where t merge is the merging time-scale and f mass is the mean mass fraction of companion galaxies added to the central ones. We also find that major dry mergers do not seem to elevate radio activities in BCGs. Our study shows that major dry mergers involving BCGs in clusters of galaxies are not rare in the local Universe, and they are an important channel for the formation and evolution of BCGs.  相似文献   

7.
X-ray observations of galaxy clusters have shown that the intra-cluster gas has iron abundances of about one-third of the solar value. These observations also show that part (if not all) of the intra-cluster gas metals was produced within the member galaxies. We present a systematic analysis of 20 galaxy clusters to explore the connection between the iron mass and the total luminosity of early- and late-type galaxies, and of the brightest cluster galaxies (BCGs). From our results, the intra-cluster medium (ICM) iron mass seems to correlate better with the luminosity of the BCGs than with that of the red and blue galaxy populations. As the BCGs cannot produce alone the observed amount of iron, we suggest that ram-pressure plus tidal stripping acts together to enhance, at the same time, the BCG luminosities and the iron mass in the ICM. Through the analysis of the iron yield, we have also estimated that SN Ia are responsible for more than 50 per cent of the total iron in the ICM. This result corroborates the fact that ram-pressure contributes to the gas removal from galaxies to the ICM, being very efficient for clusters in the temperature range  2 < kT (keV) < 10  .  相似文献   

8.
We present a joint analysis of near-ultraviolet ( NUV ) data from the GALEX ( Galaxy Evolution Explorer ) mission and (optical) colour profiles for a sample of seven brightest cluster galaxies (BCGs) in the Canadian Cluster Comparison Project. We find that every BCG, which has a blue rest-frame UV colour, also shows a blue core in its optical colour profile. Conversely, BCGs that lack blue cores and show monotonic colour gradients typical of old elliptical galaxies are red in the UV. We interpret this as evidence that the NUV enhancement in the blue BCGs is driven by recent star formation and not from old evolved stellar populations such as horizontal branch stars. Furthermore, the UV enhancement cannot be from an active galactic nuclei (AGN) because the spatial extent of the blue cores is significantly larger than the possible contamination region due to a massive black hole. The recent star formation in the blue BCGs typically has an age less than 200 Myr and contributes mass fractions of less than a per cent. Although the sample studied here is small, we demonstrate, for the first time , a one-to-one correspondence between blue cores in elliptical galaxies (in particular BCGs) and a NUV enhancement observed using GALEX . The combination of this one-to-one correspondence and the consistently young age of recent star formation, coupled with additional correlations with the host cluster's X-ray properties, strongly suggests that the star formation is fuelled by gas cooling out of the intracluster medium. In turn, this implies that any AGN heating of the intracluster medium in massive clusters only acts to reduce the magnitude of the cooling flow and once this flow starts, it is nearly always active. Collectively, these results suggest that AGN feedback in present-day BCGs, while important, cannot be as efficient as suggested by the recent theoretical model by proposed by De Lucia et al.  相似文献   

9.
We examine the optical emission-line properties of brightest cluster galaxies (BCGs) selected from two large, homogeneous data sets. The first is the X-ray selected National Optical Astronomy Observatory Fundamental Plane Survey (NFPS), and the second is the C4 catalogue of optically selected clusters built from the Sloan Digital Sky Survey Data Release 3 (SDSS DR3). Our goal is to better understand the optical line emission in BCGs with respect to properties of the galaxy and the host cluster. Throughout the analysis we compare the line emission of the BCGs to that of a control sample made of the other bright galaxies near the cluster centre. Overall, both the NFPS and SDSS show a modest fraction of BCGs with emission lines (∼15 per cent). No trend in the fraction of emitting BCGs as a function of galaxy mass or cluster velocity dispersion is found. However, we find that, for those BCGs found in cooling flow clusters,  71+9−14  have optical emission. Furthermore, if we consider only BCGs within 50 kpc of the X-ray centre of a cooling flow cluster, the emission-line fraction rises further to  100+0−15  per cent. Excluding the cooling flow clusters, only ∼10 per cent of BCGs are line emitting, comparable to the control sample of galaxies. We show that the physical origin of the emission-line activity varies: in some cases it has LINER-like line ratios, whereas in others it is a composite of star-formation and LINER-like activity. We conclude that the presence of emission lines in BCGs is directly related to the cooling of X-ray gas at the cluster centre.  相似文献   

10.
We present integral field spectroscopy of the nebular line emission in a sample of nine brightest cluster galaxies (BCGs). The sample was chosen to probe both cooling flow and non-cooling flow clusters, as well as a range of cluster X-ray luminosities. The line emission morphology and velocity gradients suggest a great diversity in the properties of the line emitting gas. While some BCGs show evidence for filamentary or patchy emission (Abell 1060, Abell 1668 and MKW 3s), others have extended emission (Abell 1204, Abell 2199), while still others have centrally concentrated emission (Abell 2052). We examine diagnostic line ratios to determine the dominant ionization mechanisms in each galaxy. Most of the galaxies show regions with active galactic nucleus like spectra, however, for two BCGs, Abell 1060 and Abell 1204, the emission line diagnostics suggest regions which can be described by the emission from young stellar populations. The diversity of emission-line properties in our sample of BCGs suggests that the emission mechanism is not universal, with different ionization processes dominating different systems. Given this diversity, there is no evidence for a clear distinction of the emission-line properties between cooling flow and non-cooling flow BCGs. It is not always cooling flow BCGs which show emission (or young stellar populations), and non-cooling flow BCGs which do not.  相似文献   

11.
We present an examination of the kinematics and stellar populations of a sample of three brightest group galaxies (BGGs) and three brightest cluster galaxies (BCGs) in X-ray groups and clusters. We have obtained high signal-to-noise ratio Gemini/Gemini South Multi-Object Spectrograph (GMOS) long-slit spectra of these galaxies and use Lick indices to determine ages, metallicities and α-element abundance ratios out to at least their effective radii. We find that the BGGs and BCGs have very uniform masses, central ages and central metallicities. Examining the radial dependence of their stellar populations, we find no significant velocity dispersion, age, or α-enhancement gradients. However, we find a wide range of metallicity gradients, suggesting a variety of formation mechanisms. The range of metallicity gradients observed is surprising, given the homogeneous environment these galaxies probe and their uniform central stellar populations. However, our results are inconsistent with any single model of galaxy formation and emphasize the need for more theoretical understanding of both the origins of metallicity gradients and galaxy formation itself. We postulate two possible physical causes for the different formation mechanisms.  相似文献   

12.
We report Hα observations of a sample of very isolated blue compact galaxies (BCGs) located in the direction of large cosmic voids obtained to understand their stellar population compositions, the present star formation (SF) properties and their SF histories (SFHs). Our observations were combined with photometric data from the Sloan Digital Sky Survey (SDSS) and near-infrared data from the Two Micron All Sky Survey (2MASS), wherever such data were available. The combined data sets were compared with predictions of evolutionary synthesis models by Bruzual & Charlot. Current SF rates (SFRs) were determined from the Hα measurements, and simplified SFHs were derived from broad-band and Hα photometry and comparisons with the models.
We found that the SFRs range within  0.1–1.0 M yr−1  , with a median rate of  0.6 M yr−1  . The observed galaxy colours are better explained by the combination of a continuous SF process with a recent instantaneous SF burst, than by a combination of several instantaneous bursts, as has been suggested previously. We compare our results for the SFR of the sample galaxies with that of samples of dwarf galaxies (DGs) in the Virgo cluster (VC) and find that the BCGs have significantly stronger SFRs. The BCGs follow the correlation between Hα emission and starlight found for DGs in the VC and for other BCGs.  相似文献   

13.
We present Chandra and Very Large Array observations of two galaxy clusters, Abell 160 and Abell 2462, whose brightest cluster galaxies (BCGs) host wide angle tailed radio galaxies (WATs). We search for evidence of interactions between the radio emission and the hot, X-ray emitting gas, and we test various jet termination models. We find that both clusters have cool BCGs at the cluster centre, and that the scale of these cores (∼30–40 kpc for both sources) is of approximately the same scale as the length of the radio jets. For both sources, the jet flaring point is coincident with a steepening in the host cluster's temperature gradient, and similar results are found for 3C 465 and Hydra A. However, none of the published models of WAT formation offers a satisfactory explanation as to why this may be the case. Therefore, it is unclear what causes the sudden transition between the jet and the plume. Without accurate modelling, we cannot ascertain whether the steepening of the temperature gradient is the main cause of the transition, or merely a tracer of an underlying process.  相似文献   

14.
In this contribution we review the properties of Brightest Cluster Galaxies (BCGs) and discuss the impact that X-ray cluster selection is having on their use as cosmological probes. BCGs form a unique galaxy population. They are located near the gravitational centre of galaxy clusters and are the most massive galaxies in the universe, being some 10 times more luminous than L* systems. Historically, BCGs have been credited with small intrinsic dispersion in their absolute magnitudes (Δ≃0.2–0.3 mag) and used as standard candles to constrain the cosmological parameters. Although indirect signs of mass accretion out to z≃1 have been observed, uncovering their full evolutionary picture has remained an elusive goal. Studies of BCGs based on serendipitiously discovered X-ray cluster samples, particularly from ROSAT, provide large numbers of unbiased clusters at z≤1. Furthermore X-ray emission guarantees the presence of a large gravitationally bound potential well and the X-ray information can be used to locate the centroids of clusters, aiding the identification of the BCG. We show that this has important consequences for studies of distance determination and large-scale streaming flows based on the optical properties of BCGs. Recent results based on X-ray selected clusters show large differences in near-IR BCG properties with their cluster environment; such that those in clusters with L x≥1.9×1044erg s-1 are brighter and more uniform than those in their low-L x counterparts. The BCGs in highL x systems show no evidence of having undergone mass growth, whereas those in low L x systems show a widerrange of evolution, with evidence that some have grown by a factor of 4 ormore since z≃1. These results are a direct indication of howa single homogeneous population of galaxies evolves and are a challenge to simple semi-analytical hierarchical models. If future observations at high redshift are to seriously challenge theory then better predictions of the evolutionary process are required. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We have observed the largest optical spectra sample of 97 blue compact galaxies. Stellar population properties of 74 star-forming BCGs of them were derived by comparing the equivalent widths of strong absorption features and continuum colors, using a method of empirical population synthesis based on star cluster sample. The results indicate that blue compact galaxies are typically age-composite stellar system, the continuum flux fractions at 5870Å due to old stellar components and young stellar components are both important for most of the galaxies. The stellar populations of blue compact galaxies present a variety of characteristics, and the contribution from different age and metallicity components is different. The star formation episodes are usually short, some galaxies maybe undergoing their first global episode of star formation, while for the most sample galaxies, older stars contribute to at most half the optical emission. Our results suggest that BCGs are old galaxies, in which star formation occurs in short intense burst separated by long quiescent phases.  相似文献   

16.
We present the 6-m SAO telescope spectroscopy of HS 2134+0400, a blue compact galaxy (BCG) discovered within the framework of a dedicated Hamburg/SAO survey for low-metallicity BCGs (HSS-LM). Its very low abundance of oxygen (12 + log(O/H) = 7.44) and other heavy elements (S, N, Ne, Ar) allows this dwarf galaxy to be assigned to the group of eight lowest-metallicity BCGs among the several thousand BCGs known in the nearby Universe. The measured heavy-element abundance ratios (S/O, Ne/O, N/O, and Ar/O) are in good agreement with the typical values found for other very metal-poor BCGs. The spatial location of HS 2134+0400 is atypical of the majority of BCGs: it lies in the Pegasus void, a large region with a very low density of galaxies with normal or higher luminosities. In addition to HS 2134+0400, we found a dozen more very metal-poor galaxies in voids. Therefore, we discuss the hypothesis that this type of objects may be representative for the population of dwarf galaxies in voids.  相似文献   

17.
We present the first modern systematic study of local brightest cluster galaxy (BCG) profiles that extends to radii beyond 200h -1kpc. Measuring the surface brightness profiles of BCGs out to large radii is critical for understanding the processes driving their formation. The form of the profiles yields information about the current dynamical state, constrains the accretion history of these galaxies, and places limits on any radially symmetric component of intracluster light. The observational challenges associated with CCD photometry at low surface brightness levels have until now precluded such an analysis for a statistical sample of BCGs. Utilizing drift-scan data and new techniques that we have developed, we extend upon previous work by modelling the profiles for a sample of 31 clusters at z≃ that span a wide range in mass and dynamical state. We find that the BCGs in our sample generally are best fit using two-component models consisting of inner and outer Sersic profiles. In this proceeding we present the preliminary results of our analysis and discuss implications for current models of BCG formation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Based on a sample of 72 Blue Compact Galaxies (BCGs) observed with the 2.16m telescope of the National Astronomical Observatories, Chinese Academy of Sciences (NAOC) and about 4000 strong emission line galaxies from the Sloan Digital Sky Survey, we analyzed their chemical evolution history using the revised chemical evolution model of Larsen et al. Our sample covers a much larger metallicity range (7.2 < 12 log(O/H) < 9.0). We found that, in order to reproduce the observed abundance pattern and gas fraction over the whole metallicity range, a relatively continuous star formation history is needed for high metallicity galaxies, while assuming a series of instantaneous bursts with long quiescent periods (some Gyrs) for low metallicity galaxies. Model calculations also show that only the closed-box model is capable of reproducing the observational data over the whole metallicity range. Models that consider the ordinary winds and/or inflow can only fit the observations in the low metallicity range, and a model with enriched wind cannot fit the data in the whole metallicity range. This implies that the current adopted simple wind and inflow models are not applicable to massive galaxies, where the underlying physics of galactic winds or inflow could be more complicated.  相似文献   

19.
We put upper limits on the secondary burst of star formation in elliptical galaxies of the González sample, based on the colour dispersion around the U  −  V versus central velocity dispersion relation, and the equivalent width of Hβ absorption. Note that most of these galaxies locate in small groups. There is a significant number of Hβ strong galaxies that have EW(Hβ) > 2 Å, but they do not always have bluer colours in U  −  V . To be consistent with the small colour dispersion of U  −  V , the mass fraction of the secondary burst to the total mass should be less than 10 per cent at the maximum within the most recent 2 Gyr. This result suggests that even if recent galaxy merging has produced some ellipticals, it should not have been accompanied by an intensive starburst, and hence it could not involve large gas-rich systems. The capture of a dwarf galaxy is more likely to explain the dynamical disturbances observed in some elliptical galaxies. The above analysis, based on the U  −  V , is not compatible with the one based on the line indices, which requires that more than 10 per cent of mass is present in a 2-Gyr-old starburst to cover the full range of the observed Hβ (de Jong &38; Davies). The discrepancy might be partly explained by the internal extinction localized at the region where young stars form. However, considering that the Hβ index might have great uncertainties both in models and in observational data, we basically rely on U − V analysis.  相似文献   

20.
Gas deficiency in cluster spirals is well known and ram-pressure stripping is considered the main gas removal mechanism. In some compact groups too gas deficiency is reported. However, gas deficiency in loose groups is not yet well established. Lower dispersion of the member velocities and the lower density of the intragroup medium in small loose groups favour tidal stripping as the main gas removal process in them. Recent releases of data from the H  i Parkes All-Sky Survey (HIPASS) and catalogues of nearby loose groups with associated diffuse X-ray emission have allowed us to test this notion. In this paper, we address the following questions: (i) do galaxies in groups with diffuse X-ray emission statistically have lower gas content compared to the ones in groups without diffuse X-ray emission? (ii) does H  i deficiency vary with the X-ray luminosity, L X, of the loose group in a systematic way? We find that (i) galaxies in groups with diffuse X-ray emission, on average, are H  i deficient, and have lost more gas compared to those in groups without X-ray emission; the latter are found not to have significant H  i deficiency; (ii) no systematic dependence of the H  i deficiency with L X is found. Ram-pressure-assisted tidal stripping and evaporation by thermal conduction are the two possible mechanisms to account for this excess gas loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号