首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
David Verdonck   《Tectonophysics》2006,417(3-4):221-230
Data from 29 tide gauges and 113 pairs of first and second order leveling lines are analyzed to determine the pattern of vertical deformation in the Pacific Northwest of the United States. The data span nearly 100 years and represent the interseismic elastic deformation related to the great earthquake cycle. Uplift rates calculated from leveling surveys are adjusted to a model surface in the tidal reference frame using a robust, weighted, linear, least square technique. Rapid uplift occurs in two distinct broad regions along the coast separated by a narrow zone of slow subsidence. Vertical deformation rates range from > 4 mm/year of uplift on southern Vancouver Island to > 2 mm/year of subsidence in northern coastal Oregon. The deformation pattern is consistent with the results of previous studies and subduction models.  相似文献   

2.
A. Demoulin  E. Hallot 《Tectonophysics》2009,474(3-4):696-708
A good evaluation of the Quaternary uplift of the Rhenish shield is a key element for the understanding of the Cenozoic geodynamics of the western European platform in front of the alpine arc. Previous maps of the massif uplift relied on fluvial incision data since the time of the rivers' Younger Main Terrace to infer a maximum post-0.73 Ma uplift of ~ 290 m in the SE Eifel. Here, we propose a new interpretation of the incision data of the intra-massif streams, where anomalies in the terrace profiles would result from knickpoint retreat in the tributaries of the main rivers rather than from tectonic deformation. We also use additional geomorphological data referring to (1) deformed Tertiary planation surfaces, (2) the history of stream piracy that severely affected the Meuse basin in the last 1 Ma, and (3) incision data outside the Rhenish shield. A new map of the post-0.73 Ma uplift of the Rhenish shield is drawn on the basis of this enlarged dataset. It reduces the maximum amount of tectonic uplift in the SE Eifel to ~ 140 m and modifies the general shape of the uplift, namely straightening its E–W profile. It is also suggested that an uplift wave migrated across the massif, starting from its southern margin in the early Pleistocene and currently showing the highest intensity of uplift in the northern Ardennes and Eifel. These features seem to favour an uplift mechanism chiefly related to lithospheric folding and minimize the impact on the topography of a more local Eifel plume.  相似文献   

3.
The evidence of coseismic uplift on the dynamic, wave-dominated Hua-tung coast fringing the active Coastal Range (eastern Taiwan) has been equivocal, due to complex controls by wave and terrestrial sediment over morphological and ecological systems of the coast. This study, by applying radiocarbon dating methods, demonstrates coseismic-uplift nature of the coast by finding synchronously killed intertidal organisms (mostly boring shell Jouannetia sp.) stranded at different sites of the coast with distinct physiographic characters. Based on these data, together with evidence from wave-cut notch sequences, two coseismic-uplift systems are recognized. One centers around the northern-middle part of the coast and yields events with uplift amounts of maximal 3–6 m and an average recurrence interval of at least several hundred years. The most recent activity of this system, influencing at least 70 km of coast, occurred at ~ 0.9 ka. The earthquake generating this event also triggered extensive landslides/debris flows in the region. Another system, exemplified by the uplift associated with the 2003 Cheng-kung earthquake, centers on the southern part of the coast and yields uplift of likely < 1 m every < 0.2 ky. Two pre-historic events of this system are identified as occurring at ~ 0.7 ka and ~ 1.1 ka. These two coseismic-uplift systems are consistent in position with two anticlinal structures defined by long-term uplift of the coast. However, the areas subjected to maximal coseismic uplift are located off where the climaxes of long-term uplift occur, implying that the latter areas have been uplifted mainly by aseismic and/or relatively frequent/small-magnitude coseismic motion.  相似文献   

4.
The great Indian Ocean earthquake of December 26, 2004 caused significant vertical changes in its rupture zone. About 800 km of the rupture is along the Andaman and Nicobar Islands, which forms the outer arc ridge of the subduction zone. Coseismic deformation along the exposed land could be observed as uplift/subsidence. Here we analyze the morphological features along the coast of the Andaman and Nicobar Islands, in an effort to reconstruct the past tectonics, taking cues from the coseismic effects. We obtained radiocarbon dates from coastal terraces of the island belt and used them to compute uplift rates, which vary from 1.33 mm yr− 1 in the Little Andaman to 2.80 mm yr− 1 in South Andaman and 2.45 mm yr− 1 in the North Andaman. Our radiocarbon dates converge on  600 yr and  1000 yr old coastal uplifts, which we attribute to the level changes due to two major previous subduction earthquakes in the region.  相似文献   

5.
The Northwestern (Maghreb) boundary of the Nubia (Africa) Plate   总被引:1,自引:0,他引:1  
Alain Mauffret   《Tectonophysics》2007,429(1-2):21-44
A study of the present compressional deformation of the Northwestern (Maghreb) Nubia (Africa) margin is derived from the analysis of more than 20,000 km of seismic profiles. In the western part the compression is distributed in a large zone with on-land compression in Algeria, mainly strike-slip deformation on the Algerian margin and folds and strike-slip faulting in Eastern Spain. In the middle of the Algerian margin, around Algiers, the evidences of compression become more obvious. In this area a ridge trending N–S that is interpreted as a middle to late Miocene spreading center interacted with the transpressional margin that trends E–W. North of the location of the Boumerdes–Zemmouri earthquake the oceanic crust is deformed by blind thrusts up to 60 km from the coast. These thrusts are south dipping and with the northward dipping thrusts located onshore form a wedge that maybe a positive flower structure at a crustal scale related to the right-lateral transpression of the margin. In the eastern part of the Northwestern (Maghreb) Nubia (Africa) Deformed Belt, off eastern Algeria and Tunisia, the deformation is more intense but limited to the north by the continental slope. Large late Miocene Tortonian folds are cut by the Messinian erosional surface but the present deformation is also evident. It is suggested that the deformation with a double vergence may be followed up to the north of Sicily. After the docking (18 Ma) of the Kabylies to the Africa Plate, the crust has been thinned and the Algerian Basin opened during the middle-late Miocene with an E–W direction. From the late Miocene to the Present the margin has been rethickened by transpression and uplifted.  相似文献   

6.
A combination of published and new radiometric dates on uplifted Holocene fossil beaches from northeastern Sicily and southern Calabria (southern Italy) is compared with the altitude of the inner margin of the Last Interglacial (LIg) (Late Pleistocene, 124 ka) and older marine terraces in order to gain a regional-scale outline of uplift rates and their temporal changes in a region which is one of the fastest uplifting sectors of the Central Mediterranean Sea. Late Holocene radiocarbon dates from Ioppolo (southern Calabria) and Ganzirri (northeast Sicily), two newly discovered sites are here presented for the first time. The Holocene uplift rates are highest at St. Alessio and Taormina in eastern Sicily (2.4 mm/y) and at Scilla in southwestern Calabria (2.1 mm/y), two sites located across the Messina Straits and which separate the island of Sicily from mainland Italy. Uplift rates decrease towards the south and north from this centre of uplift. Late Holocene uplift rates show an apparent increase of between 64 and 124% when compared with the longer-term uplift rates calculated from the LIg highstand terraces. Furthermore, we discovered that the locations of fastest Late Pleistocene and Late Holocene uplift rates spatially coincide. To what extent the Holocene increase in uplift rates results from incomplete elastic strain release along the major extensional faults which frame the seismotectonic of the area, or indicate a true change in regional tectonic processes, is not resolved. Nonetheless, the heterogeneity of uplift, with a well-defined centre that crosses the Messina Straits, and its persistence at different time-scales indicates a tight connection between wider regional processes and fault-related displacement in controlling crustal instability in this area.  相似文献   

7.
On Tuesday, November 17, 2015 at 07:10:07 (UTC) a strong earthquake struck Lefkas Island (Ionian Sea, Western Greece) with magnitude Mw 6.4, depth of about 6 km and epicenter located 20 km southwest of Lefkas town. It was felt in Lefkas Island and the surrounding region and caused the death of two people, the injury of eight others, many earthquake environmental effects (EEE) and damage to buildings and infrastructures. Secondary EEE were observed in western Lefkas and classified as ground cracks, slope movements and liquefaction phenomena. Primary effects directly linked to surface expression of seismogenic source were not detected in the field. The maximum intensity VIIIESI 2007 was assigned to large-volume slope movements along western coastal Lefkas. Damage to buildings was mainly observed in villages located in Dragano-Athani graben arranged almost parallel to the northern segment of the Cephalonia Transform Fault Zone (Lefkas segment). Among structures constructed with no seismic provisions, the stone masonry buildings and monumental structures suffered most damage, while the traditional buildings of the area with dual structural system performed relatively well and suffered minor damage. Reinforced-concrete buildings were affected not so much by the earthquake itself but by the generation of secondary EEE. The maximum seismic intensities VIIIEMS-98 were assigned to villages located in Dragano-Athani graben due to very heavy structural damage observed on masonry buildings mainly attributed to the combination of the recorded high PGA values, the poor antiseismic design and construction of buildings and the geological and tectonic structure of the affected area.  相似文献   

8.
We estimate current vertical movements along the Apennines (Italy) through repeatedly measured high precision levelling routes. In order to highlight regional crustal deformation the analysis of a geodetic database, with a minimum benchmark density of 0.7 bm/km (1943–2003 time period), is carried out. We evaluate systematic and random error and their propagation along the levelling routes. Tests on original raw height data have been carried out to define error propagation. The computed relative vertical rates stand significantly above error propagation. A series of traverses along and across the Apennines and a map of relative vertical velocities reveal a geodetic signal characterised by values up to 2.5–3.0 mm/a and by wavelengths up to 100 km.  相似文献   

9.
The Yenice–Gönen Fault (YGF) is one of the most important active tectonic structures in the Biga peninsula. On March 18, 1953, a destructive earthquake (Mw = 7.2) occurred on the YGF, which is considered to be a part of the southern branch of the North Anatolian Fault Zone (NAFZ). A 70 km-long dextral surface rupture formed during the Yenice–Gönen Earthquake (YGE).In this study, structural and palaeoseismological features of the YGF have been investigated. The YGF surface ruptures have been mapped and three trenches were excavated at Muratlar, Karaköy and Seyvan sites.According to the palaeoseismic interpretation and the results of 14C AMS dating, Seyvan trench shows that an earthquake of palaeoseismic age ca. 620 AD ruptured a different strand of the 1953 fault, producing rather significant surface rupture displacement, while there are indications that at least two older events occurred during the past millennia. Another set of trenches excavated near Gönen town (Muratlar village) revealed extensive liquefaction not only during the 1953 event, but also during a previous earthquake, dated at 1440 AD. The Karaköy trench shows no indications of recent reactivations.Based on the trenching results, we estimate a recurrence interval of 660 ± 160 years for large morphogenic earthquakes, creating linear surface ruptures. The maximum reported displacement during the 1953 earthquake was 4.2 m. Taking into account the palaeoseismologically determined earthquake recurrence interval and maximum displacement, slip-rate of the YGF has been calculated to be 6.3 mm/a, which is consistent with present-day velocities determined by GPS measurements. According to the geological investigations, cumulative displacement of the YGF is 2.3 km. This palaeoseismological study contributes to model the behaviour of large seismogenic faults in the Biga Peninsula.  相似文献   

10.
The Egion earthquake which occurred in the Gulf of Corinth, central Greece (Ms = 6.2) on 15 June 1995 was caused by normal slip on the north-dipping and WNW-trending Egion fault. The Egion fault ruptured at depth during the Egion mainshock and probably re-ruptured at shallow level during the largest aftershock. The surface trace of the Egion fault has a segmented geometry. Linkage between three segments, which show long-term deformation differences as well as coseismic segmentation, enabled all segments to be incorporated in an earthquake segment. The surface ruptures continued to grow after the coseismic motion; the afterslip throw of the fault 10 weeks after the main event was equal to the 3 cm value for maximum coseismic slip. This afterslip was accompanied by uplift of the footwall block and a warp-like hangingwall subsidence (folding). This pattern of deformation was associated with more complex deformation at the western end of the earthquake segment. Here, afterslip was accompanied by general subsidence of the whole area (between 25th June and 30th July), followed by uplift of the whole area without afterslip (between 30th July and 2nd September). The afterslip-rate averaged over the 73 day period after the main event varied from 0.48 mm day−1 along the central part of the earthquake segment to 0.16 mm day−1 at the eastern end of the earthquake segment.  相似文献   

11.
The western retroarc of the Southern Andes between 38° and 40° S is formed by a NNW-elongated ridge not associated with stacked thrust sheets. On the contrary, during the last 4–3 Ma this ridge was affected by extensional deformation, regional uplift and related folding on a very broad scale. Receiver function analysis shows that the drainage divide area and adjacent retroarc lie over an attenuated crust. Expected crustal thickness at these latitudes is around 38 km, whereas in this part of the retroarc the thickness is less than 32 km. The causes for such attenuation have been linked to a moderate steepening of the subducted Nazca plate beneath the South American plate, which is suggested by a westward shift and narrowing of the magmatic arc during the last 4 to 5 Ma. Gravimetric studies show that the upper plate did not react homogeneously to slab steepening, but ancient sutures and lithospheric discontinuities deeply buried under Mesozoic to Cenozoic sequences in the retroarc were locally reactivated. These processes resulted in an asthenospheric anomaly that correlates at the surface with the area of Pliocene to Quaternary doming, widespread extension and three radial troughs. Two of the troughs have accommodated substantial amounts of extension, but the third was probably aborted at an early stage. Moreover, the presence of an anomalous concentration of calderas and large volcanic centers over the proposed asthenospheric anomaly, and their age distribution, may indicate minor migration of the asthenospheric anomaly between 4 and 2 Ma through the western South American plate.  相似文献   

12.
The Jura-Cretaceous Peninsular Ranges batholith (PRB) of Southern and Baja California contains a remarkable example of variation in crustal composition and structure across a batholith-parallel lithospheric-scale discontinuity. This lithospheric boundary between western oceanic-floored and eastern continental-floored crust influenced contractional deformation, arc magmatism, and differential exhumation of western and eastern zones in the batholith during its evolution.In the Sierra San Pedro Martir of Baja California, Mexico, a ca. 20 km wide, doubly vergent fan structure occurs across the PRB basement transition that consists of inward-dipping mylonite thrust sheets on the sides of the fan that gradually transition to a steeply-dipping tectonized zone in the center. A dramatic inverted metamorphic gradient occurs on the western side of this structure where mid-crustal amphibolite metamorphic grade rocks with peak pressures of 5–6 kbar in the center of the fan were thrust over upper-crustal sub-greenschist grade rocks (peak pressures < 2 kbar) in the western zone footwall. An inverted but smaller gradient occurs on the eastern side of the structure where rocks of the fan interior have been thrust eastwards over amphibolite to upper greenschist grade rocks (peak pressures 4–5 kbar).Gradients in cooling ages determined by 40Ar/39Ar biotite and K-feldspar and apatite fission track methods coupled with U–Pb zircon ages and Al in hornblende thermobarometry studies on plutons across this zone indicate that structures focused along the transition zone between contrasting lithosphere in the PRB accommodated nearly 15 km of the differential exhumation of western and eastern basement in the orogen. The western zone of the batholith was a major forearc depo-center for thick clastic sequences derived from the uplifting eastern PRB and remained at low average elevation during the Late Cretaceous and Paleogene. In contrast the eastern zone experienced dramatic uplift subsequent to achieving a crustal thickness in excess of 55 km by mid-Cretaceous time. This region had the isostatic potential for 4–5 km surface elevations, and likely formed a topographically high orogenic plateau. Exhumation of the fan structure initiated after 100 Ma and was largely complete by 85 Ma. Eastward-migrating unroofing of the rest of the eastern PRB continued into the Paleogene.A variety of factors were responsible for exhumation in this region. Structural thickening of the eastern zone of the orogen resulted from more than 30 million years of episodic contractional deformation in the fan structure, much of which followed island arc accretion of the western zone along this segment of the batholith. An episode of voluminous magmatism involving the intrusion of the 99–92 Ma La Posta-type magmatic suite across the eastern zone of the PRB triggered exhumation in the fan structure. Denudation in this region appears to have been solely by erosion; no evidence has been found for extensional tectonics during this time. This arc orogen demonstrates the important influence of inherited tectonic boundaries in controlling the spatial distribution of structural thickening and magmatism. It also displays the complex interrelationships among structural thickening, exhumation, and the role of magmatism in triggering exhumation episodes within orogens.  相似文献   

13.
A strong earthquake (Mw = 6.2) occurred offshore the island of Lefkada (or Lefkas) on August 14, 2003. The maximum intensity has been evaluated Io = VIII (EMS) at Lefkada municipality, while VI to VII+ intensities were evaluated at many other villages of the island. The offshore NNE-SSW oriented strike-slip right-lateral fault was activated by the main shock. This fault is the northern termination of the Cephalonia transform fault. The most characteristic macroseismic effects were extensive typical ground failures like rock falls, soil liquefactions, subsidence, densification, ground cracks and landslides. These macroseismic effects are remarkably similar to those reported from some historical Lefkada shocks, e.g. 1704, 1914 (Ms = 6.3) and 1948 (Ms = 6.5). Sand boils and ground fissures with ejection of mud were observed at the seaside of the town of Lefkada, and in the villages of Nydri and Vassiliki.In situ soil profiles are obtained based mainly on borings after the earthquake. Boreholes records with SPT values (standard penetration test) are obtained and the “simplified procedure” originally developed by Seed and Idriss was employed to evaluate the liquefaction resistance of soils. The results indicated that the silty sandy layer, which lies beneath the artificial fill in the coastal zone in Lefkada town, had liquefied during the 14 August Earthquake. An attempt was also made to establish a preliminary microzonation map for Lefkada town using the data from Liquefaction Potential Index analyses. Our map was validated by the occurrence of liquefaction phenomena inside the town.  相似文献   

14.
The 2002 earthquake sequence of October 31 and November 1 (main shocks Mw = 5.7) struck an area of the Molise region in Southern Italy. In this paper we analyzed the co-seismic deformation related to the Molise seismic sequence, inferred from GPS data collected before and after the earthquake, that ruptured a rather deep portion of crust releasing a moderate amount of seismic energy with no surface rupture. The GPS data have been reduced using two different processing strategies and softwares (Bernese and GIPSY) to have an increased control over the result accuracy, since the expected surface displacements induced by the Molise earthquake are in the order of the GPS reliability. The surface deformations obtained from the two approaches are statistically equivalent and show a displacement field consistent with the expected deformation mechanism and with no rupture at the surface. In order to relate this observation with the seismic source, an elastic modeling of fault dislocation rupture has been performed using seismological parameters as constraints to the model input and comparing calculated surface displacements with the observed ones. The sum of the seismic moments (8.9 × 1017 Nm) of the two main events have been used as a constraint for the size and amount of slip on the model fault while its geometry has been constrained using the focal mechanisms and aftershocks locations. Since the two main shocks exhibit the same fault parameters (strike of the plane, dip and co-seismic slip), we modelled a single square fault, size of 15 km × 15 km, assumed to accommodate the whole rupture of both events of the seismic sequence. A vertical E–W trending fault (strike = 266°) has been modeled, with a horizontal slip of 120 mm. Sensitivity tests have been performed to infer the slip distribution at depth. The comparison between GPS observations and displacement vectors predicted by the dislocation model is consistent with a source fault placed between 5 and 20 km of depth with a constant pure right-lateral strike-slip in agreement with fault slip distribution analyses using seismological information. The GPS strain field obtained doesn't require a geodetic moment release larger than the one inferred from the seismological information ruling out significant post-seismic deformation or geodetic deformation released at frequencies not detectable by seismic instruments. The Molise sequence has a critical seismotectonic significance because it occurred in an area where no historical seismicity or seismogenic faults are reported. The focal location of the sequence and the strike-slip kinematics of main shocks allow to distinguish it from the shallower and extensional seismicity of the southern Apennines being more likely related to the decoupling of the southern Adriatic block from the northern one.  相似文献   

15.
The Colli Albani volcanic complex (Rome, Italy) has been dominated by episodic eruptions commencing around 561?ka and ending with the most recent activity of the Albano maar phase (<70?ka). Earthquakes of moderate intensity, gas emissions and significant ground deformations are the recent evidences of a residual activity. Former geodetic data from leveling surveys, GPS stations and InSAR observations tracked ongoing significant uplift of the order of few mm/year near the Colli Albani western flank. Different uplift rates were detected by each technique in different time spans, suggesting also the possibility of sporadic recharge of the hydrothermal system. The renewed high precision leveling data from IGMI survey carried out in 1997/1999 and the last leveling survey carried out in 2006 show that the uplift along the route is currently significant at an average rate of ~3?mm/year. Radar interferograms from ALOS satellite show uplift rate of ~6?mm/year, southwest of the central sector of the leveling route. We have undertaken a joint inversion of the various geodetic data (vertical rates from leveling surveys, GPS site velocities and InSAR observations acquired by ALOS satellite) using a nonlinear inversion technique to estimate the parameters of a point-pressure source, possibly capable of explaining the ongoing deformation at Colli Albani volcano.  相似文献   

16.
The eastern border of the Middle Valley of the Tiber River is characterized by several Plio-Pleistocene paleoshorelines, which extend for about 100 km along the western margin of the Central Apennines (Italy). We studied these paleoshorelines by the means of geological and paleontological analyses and new 87Sr/86Sr isotope analyses. The youngest and uppermost paleoshorelines have been detected and mapped through detailed geologic and stratigraphic surveys, which led to the recognition of nearshore deposits, cliff breccias, alignments of Lithophaga borings, fossil abrasion notches and wave-cut platforms. The altitude of these paleoshorelines decreases almost regularly in the NNW–SSE direction from 480 to 220 m a.s.l. Measurements of the 87Sr/86Sr isotope ratio have been conducted on corals and mollusks collected from sediments outcropping close to the paleoshorelines. The isotopic dating results indicate numerical values that range between 0.70907 and 0.70910 all over the 100-km outcrop. These results, together with biostratigraphic data, constrain the age of the youngest paleoshorelines to 1.65–1.50 Ma. These paleoshorelines are thus considered almost isochronous, giving an estimated uplift rate of 0.34–0.17 ± 0.03 mm/a moving from NNW to SSE. Shape, length and continuity of the 100-km-long observed movements indicate that the studied paleoshorelines are an important marker of the Quaternary uplift of the Central Apennines.  相似文献   

17.
The town of La Union (SE, Spain) is located within a metal mining area that has been exploited since the Roman period. This historic exploitation has left behind a high concentration of abandoned underground mining galleries. Currently, an industrial area is subsiding due to the collapse of one of these galleries in May 1998. In this paper, an advanced Differential Interferometry SAR (DInSAR) method called the Coherent Pixels Technique (CPT) has been used to study the subsidence phenomena for two time intervals, from January 1998 to December 2000, and from March 2003 to December 2004. DInSAR-derived deformation maps have enabled the detection and monitoring of different deformation processes that affect several locations within the study area. By comparing these results with the underground mining galleries map, a clear relationship between their presence and the subsidence has been proved. Deformation values retrieved with DInSAR between April 2003 and December 2004 have been compared with the topographical leveling network measurements performed in this same period, providing an absolute average difference of 0.7 cm with a standard deviation of 0.5 cm. Results obtained in the city of La Union have shown that the advanced DInSAR technique is able to provide very useful spatial and temporal deformation data for the measurement of small scale subsidence throughout short time periods. This technique has enabled the temporal evolution of the phenomena in the city of La Unión to be studied and understanding of subsidence to be expanded beyond the limits of a deployed topographical control network, in a more cost effective way than classical methods.  相似文献   

18.
The NW corner of the Little Hungarian Plain, which lies at the junction of the Eastern Alps, the Pannonian Basin and the Western Carpathians, is a neotectonically active region linking the extrusional tectonics of the Eastern Alps with the partly subsiding Little Hungarian Plain. The on-going deformation is verified by the earthquake activity in the region. An extremely flat part of the area, east of Neusiedlersee, the so-called Seewinkel, has been investigated with Airborne Laser Scanning (ALS, also known as airborne LiDAR) techniques, resulting in a digital terrain model (DTM) with a 1 m grid resolution and vertical precision of better than 10 cm. The DTM has been compared with known and inferred neotectonic features.Potential neotectonic structures of the DTM have been evaluated, together with geological maps, regional tectono-geomorphic studies, geophysical data, earthquake foci, as well as geomorphological features and the Quaternary sediment thickness values of the Seewinkel and the adjacent Parndorfer plateau. A combined evaluation of these data allows several tectonic features with a relief of < 2 m to be recognized in the DTM. The length of these linear geomorphological structures ranges from several hundred meters up to several kilometers. The most prominent feature forms a 15 km long, linear, 2 m high NE–SW trending ridge with gravel occurrences having an average grain size of ca. 5 cm on its top. We conclude this feature to represent the surface expression of the previously recognized Mönchhof Fault. In general, this multi-disciplinary case study shows that ALS DTMs are extremely important for tectono-geomorphic investigations, as they can detect and accurately locate neotectonic structures, especially in low-relief areas.  相似文献   

19.
At the 2003 Tokachi-oki earthquake of M8, seafloor phenomena such as a generation process of tsunami, seafloor uplifts, turbidity current, etc., were observed using a cabled observatory installed on the seafloor. The turbidity current was observed as a benthic storm caused presumably by the mainshock. The seafloor uplifts were observed at the mainshock and continuously after the mainshock. The uplifts were 0.35, 0.37, and 0.12 m for epicentral distances of 25.5, 31.4, and 81.7 km, respectively. After the mainshock, a continuous uplift of the seafloor is observed at all three pressure gauge locations indicating that there was a change in the state of friction on the plate boundary interface by the mainshock. In this paper, we first show what was observed using the cabled observatory installed right above the focal area of the earthquake, and then we discuss to summarize these phenomena associated with the earthquake, its possible causes, and future directions in long term monitoring of seismogenic processes.  相似文献   

20.
We analyzed small repeating earthquakes recorded over a 13-year period and GPS data recorded over an 8-month period to estimate interplate quasi-static slip associated with the 2003 Tokachi-oki earthquake (M8.0) and the 2004 off-Kushiro earthquake (M7.1). The repeating-earthquake analysis revealed that the slip rate near the source region of the Tokachi-oki earthquake was relatively low (< 5 cm/year) prior to the earthquake; however, in the last 3 years leading up to the event, a minor acceleration in slip occurred upon the deeper extension of the coseismic slip area of the earthquake. Repeating-earthquake and GPS data indicate that large amounts of afterslip occurred around the rupture area following the earthquake; the afterslip mainly propagated to the east of the coseismic slip area. We also infer that the occurrence of the 2004 off-Kushiro earthquake, located about 100 km northeast of the epicenter of the Tokachi-oki earthquake, was advanced by the afterslip associated with the Tokachi-oki earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号