首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spänkuch  D.  Döhler  W.  Kubasch  H. 《Pure and Applied Geophysics》1973,106(1):1208-1218
Summary The correlation matrix for the vertical ozone distribution and the temperature-ozone cross-correlation matrix, which was calculated from ozone soundings made over Berlin between 1967 and 1970, the statistical structure of the vertical ozone profile (correlation coefficients, average profiles, average standard deviation, relative variability) was derived for the three ozone seasons. The partial ozone pressure does not at all heights follow a normal distribution (e. g. at tropopause level). Generally, the correlation between tropospheric and stratospheric ozone is rather poor. In some layers the highest correlation coefficients, i.e. –0.3 and +0.4, occur in autumn (October to December) and in winter and spring (January to April). The correlation between the ozone amounts of various stratospheric layers is distinct in autumn, less distinct in summer (May to September) and entirely missing from January to April. Conspicuous cross-correlations between temperature and ozone have been found for all three seasons. a) With a negative correlation between tropospheric temperature and middle tropospheric to middle stratospheric ozone (maximum up to –0.8); b) with a rather strong positive correlation between the ozone amount and the temperature in the lower stratosphere (maximum up to +0.84); c) with a positive correlation between the ozone amount of the middle stratosphere and the temperature of the middle stratosphere (maximum up to +0.8). The highest correlation coefficients occur in autumn.  相似文献   

2.
3.
Diurnal variations in the vertical ozone density distribution have been calculated for the height range 40–150 km by extending our existing computer programs. The steady-state profiles were first calculated for fifteen constituents in the original program and three additional constituents (CH4, CO and CO2); the result was used as the initial condition for the time-dependent solution. The profile of the eddy diffusion coefficient used in this study was determined by comparing the model profile with the observations for CH4, whose density distribution is verysenstive to the eddy diffusion coefficient The effects of hydrogen and nitrogen compounds on the ozone density are discussed somewhat quantitatively; they reduce the ozone density mainly in the mesosphere and stratosphere, respectively. Special attention is given to the large depression of the ozone density at around 70–85 km, which has been obtained in many theoretical models but has neither been explained nor definitely confirmed by observations. Our time-dependent model indicates that the depression develops at night by the effect of hydrogen-oxygen and nitrogen-oxygen reactions and of eddy diffusion transports. The latter effect also produces an increase of the ozone density after midnight at some heights in the depression region.  相似文献   

4.
Mani  A.  Sreedharan  C. R.  Joseph  P. V.  Sinha  S. S. 《Pure and Applied Geophysics》1973,106(1):1192-1199
A series of ozone soundings were made at New Delhi (77°E 28°N) from 21 to 30 January 1969 and 10 to 22 February 1972 to study the changes in the vertical distribution of atmospheric ozone associated with western disturbances. The sonde used was the Indian ozonesonde made in the Instruments Laboratories at Poona.In February 1972, two western disturbances moved eastwards in quick succession across the western Himalayas, the first between the 11th and 13th and the second between the 13th and 15th. Associated with the first tropospheric trough was a high-speed jet stream with wind speeds reaching 180 knots, when the tropopause descended to 304 mb over Delhi. The second trough had no high-speed jet associated with it and the tropopause was at 227 mb. Ozone maxima were observed at 350, 180 and 125 mb in addition to the main peak at 35 mb in association with the upper tropospheric troughs over Delhi and its neighbourhood. A similar lowering of the tropopause and the influx of ozone in shallow layers was observed during the passage of two upper air troughs in January 1969. The study shows that with the approach of upper tropospheric troughs and the simultaneous lowering of the tropopause there is an increased influx in shallow layers of middle latitude ozone-rich air through breaks in the tropopause, replacing the subropical ozone-poor air over the station.  相似文献   

5.
Summary Observations of the vertical ozone distribution over Arosa, Switzerland, have been carried out routinely since 1956 (with one two-year gap). Long-term trends of ozone concentration at different levels indicated by this series are discussed in the light of the results obtained from five years of parallel measurements with two Dobson spectrophotometers. Further substantiation of the suggested correlation between ozone concentration in the upper stratosphere and solar activity (with a two- to three-year lag of ozone against sun-spot numbers) is needed because no full agreement was obtained from the two instruments with respect to the secular variation at those top levels.  相似文献   

6.
Nicolet  M.  Peetermans  W. 《Pure and Applied Geophysics》1973,106(1):1400-1416
The vertical distribution of the methane concentration in the stratosphere is related to its dissociation by two simultaneous daytime reactions with excited oxygen atoms O(1D) and with OH radicals and depends on the stratospheric eddy diffusion coefficient.Dissociation of CH4 in the lower stratosphere leads to the production of CO molecules while in the upper stratosphere thepphotodissociation of CO2 molecules is an additional process to the CO production.In the upper stratosphere (40±10 km) there is an equilibrium between the formation and destruction processes of carbon monoxide which leads to a minimum of its mixing ratio. There is an increase of the CO mixing ratio in the troposphere and mesosphere compared with that of the stratosphere.The vertical distribution of the CO mixing ratio is closely related to the eddy diffusion coefficient in the whole stratosphere but the absolute values of the hydroxyl radical concentration also determine the values of the CO mixing ratio.  相似文献   

7.
The spatial representativeness of gauging stations was investigated in two low‐mountainous river basins near the city of Trier, southwest Germany. Longitudinal profiles during low and high flow conditions were sampled in order to identify sources of solutes and to characterize the alteration of flood wave properties during its travel downstream. Numerous hydrographs and chemographs of natural flood events were analysed in detail. Additionally, artificial flood events were investigated to study in‐channel transport processes. During dry weather conditions the gauging station was only representative for a short river segment upstream, owing to discharge and solute concentrations of sources contiguous to the measurement site. During artificial flood events the kinematic wave velocity was considerably faster than the movement of water body and solutes, refuting the idea of a simple mixing process of individual runoff components. Depending on hydrological boundary conditions, the wave at a specific gauge could be entirely composed of old in‐channel water, which notably reduces the spatial representativeness of a sampling site. Natural flood events were characterized by a superimposition of local overland flow, riparian water and the kinematic wave process comprising the downstream conveyance of solutes. Summer floods in particular were marked by a chronological occurrence of distinct individual runoff components originating only from a few contributing areas adjacent to the stream and gauge. Thus, the representativeness of a gauge for processes in the whole basin depends on the distance of the nearest significant source to the station. The consequence of our study is that the assumptions of mixing models are not satisfied in river basins larger than 3 km2. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Six sets of electrochemical ozonesondes along with radiosondes were launched during 11–29 December 2004 from Kanpur (26.03N, 80.04E). Large variabilities in the vertical distribution of ozone have been observed during the campaign period. Higher ozone levels as compared to the average of all the profiles during this period have been observed in the height ranges of 3–7 and 10–18 km on December 18 and 25, respectively. Ozone levels in the 11–14 km range were observed to be much lower on December 29. These events have been analyzed in detail using meteorological parameters, back trajectories and potential vorticity. Higher ozone on December 18 may be associated with lateral transport from Africa and Gulf countries, where higher CO had been observed along the trajectory path. However, on December 25, enhanced ozone layers could be associated with transport from the stratosphere. Potential vorticity data suggest that a jet stream from midlatitude was approaching this location along the isentropic surface (350 K) towards the southeast direction. The lower ozone observed on December 29 originated from the marine region near the equator. These sharp changes in this period reflecting changing meteorology have given evidence of transport of ozone from different regions including stratospheric intrusion.  相似文献   

9.
利用地震层析成像技术探讨黑龙江省及临区(44°~49°N,121°~131°E)地震的分布与速度结构的关系,指出地震分布在速度的过渡地带上,为地震预测提供较有价值的资料。  相似文献   

10.
Vertical eddy diffusivities (Kv's) have been estimated at fourteen widely separated locations from fourteen222Rn profiles and two228Ra profiles measured near the ocean floor as part of the Atlantic and Pacific GEOSECS programs. They show an inverse proportionality to the local buoyancy gradient [(g/?)(??pot/?z)] calculated from hydrographic measurements. The negative of the constant of proportionality is the buoyancy flux [?Kv(g/?)(??pot/?z)] which has a mean of ?4 × 10?6 cm2/sec3. Our results suggest that the buoyancy flux varies very little near the ocean floor. Kv's for the interior of the deep Pacific calculated from the relationship Kv = (4 × 10?6cm2/sec3)/[(g/?)(??pot/?z)] agree well with published estimates. Kv's calculated for the pycnocline are one to two orders of magnitude smaller than upper limits estimated from tritium and7Be distributions.Heat fluxes calculated with the model Kv's obtained from the222Rn profiles average 31 μcal cm?2 sec?1 in the Atlantic Ocean and 8 μcal cm?2 sec?1 in the Pacific Ocean.  相似文献   

11.

本文利用2013年6月至2015年10月北京南苑观象台两年多午后臭氧探空资料,初步分析了北京城区大气混合层内臭氧浓度的垂直分布规律以及典型天气条件下大气边界层臭氧的变化特征.主要结果有:(1)季节平均而言,地表至对流层中部(8 km)的臭氧浓度在夏季最高,冬季最低,相差50~130 μg·m-3,最大差异在边界层.总体而言,对流层臭氧浓度随高度有比较缓慢的增加,但是边界层内臭氧浓度的垂直结构随季节有比较大的差异:夏季混合层中部存在一个臭氧浓度极大值,这与夏季比较强的光化学生成臭氧有关;而在冬季地面臭氧浓度很低,平均值小于40 μg·m-3,说明冬季地面是臭氧很强的汇.(2)臭氧浓度季节内变率的季节差异也十分明显,夏季最大、冬季最小.季节内变率在从边界层向自由对流层过渡区域最小(夏季为24 μg·m-3,冬季仅为10 μg·m-3),在边界层内变率较大,夏季可达64 μg·m-3(冬季为30 μg·m-3),这也说明边界层化学过程明显影响臭氧浓度的变化.(3)我们从所有白天样本中严格筛选了部分混合层样本,并把臭氧浓度在由混合层向自由大气过渡时的垂直分布分成了三类,即臭氧浓度随高度增大(Ⅰ型)、减小(Ⅱ型)以及基本稳定不变(Ⅲ型);臭氧垂直结构类型有明显的季节特征,夏季主要是Ⅱ型,而冬季则以Ⅰ型为主.(4)此外,我们还针对一些典型天气过程(强风、静稳雾天和PM2.5污染)边界层内臭氧的变化特征进行了分析,结果表明:强风切变产生的机械对流引起的充分混合,有利于高层臭氧向低层输送,使得混合层内臭氧浓度的垂直梯度明显减小,同时混合层高度较高,达3 km以上;在高湿度静稳天气控制下,大气混合层较稳定,对北京上空污染物的垂直扩散十分不利:颗粒物浓度升高,削弱到达近地层的太阳辐射,从而降低臭氧的生成效率,混合层内臭氧浓度与混合层厚度都处于较低水平.

  相似文献   

12.
Although it is well known that the vast majority of the time only a portion of any watershed contributes run‐off to the outlet, this extent is rarely documented. Also, the power law form of the streamflow and contributing area (Q‐Ac) relationship has been known for a half century, but it is uncommon for it to be quantified, and time series of contributing area extensive enough to calculate its frequency distribution are almost non‐existent. Data from the Canadian Prairies, where there are extensive estimates of contributing area during the median annual flood, imply that the power law coefficient for any Q‐Ac curve is a function of flow magnitude and return period. These data also suggest that regional flood frequency curves are a construct of Q‐Ac curves from individual basins. This paper will discuss research that attempted to reproduce the Q‐Ac curves for the La Salle River Watershed with a semidistributed numerical hydrological model, MESH‐PDMROF. The model simulated streamflow reasonably well (Nash Sutcliffe values = 0.62) compared with published examples of comparable models applied in the region. Estimates of the coefficient and exponent of the Q‐Ac power law function ranged from 0.08–0.14 and 0.9–1.12, respectively. These exponent values were lower than those of regional flood frequency curves and support the theory that regional flood frequency curves are a construct of Q‐Ac curves. Simulations of the area contributing to the median annual flood were lower (0.3) than those derived from independent topographic analysis (0.9) described in earlier literature though there is uncertainty in both these estimates. This uncertainty was extended across the flood frequency distribution and may be too large to definitively verify the study hypothesis.  相似文献   

13.
By means of a meridional chain of 19 stations between Tromso, Norway, and Hermanus, South Africa, a permanent registration of ozone near the ground has been obtained since 1970. From the first year of operation surprisingly systematic annual variations come out, which agree with theoretical calculations on stratospheric-tropospheric exchange.  相似文献   

14.
Mani  A.  Sreedharan  C. R. 《Pure and Applied Geophysics》1973,106(1):1180-1191
The latitudinal and temporal variations in the vertical profiles of ozone over the Indian subcontinent are discussed. In the equatorial atmosphere represented by Trivandrum (8°N) and Poona (18°N), while tropospheric ozone shows marked seasonal variations, the basic pattern of the vertical distribution of ozone in the stratosphere remains practically unchanged throughout the year, with a maximum at about 28 to 26 km and a minimum just below the tropopause. The maximum total ozone occurs over Trivandrum in the summer monsoon season and the latitudinal anomaly observed over the Indian monsoon area at this time is explained as arising from the horizontal transport of ozone-rich stratospheric air from over the thermal equator to the southern regions.In the higher latitudes represented by New Delhi (28°N), the maximum occurs at 23 km. Delhi, which lies in the temperate regime in winter, shows marked day-to-day variations in association with western disturbances and the strong westerly jet stream that lies over north and central India at this time.Although the basic pattern of the vertical distribution of ozone in the equatorial atmosphere is generally the same in all seasons, significant though small changes occur in the lower stratosphere and in the troposphere. There are small perturbations in the ozone and temperature structures, distinct ozone maxima being always associated with temperature inversions. There are also large perturbances not related to temperature, ozone-depleted regions normally reflecting a stratification of either destructive processes or materials such as dust layers or clouds at these levels. Particularly interesting are the upper tropospheric levels just below the tropopause where the ozone concentration is consistently the smallest, in all seasons and at all places where soundings have been made in India.  相似文献   

15.
16.
Summary Eight vertical profiles compiled from simultaneous measurements of Aitken nuclei and ozone concentrations over Germany in different weather conditions are discussed. The position and shape of the profiles is shown to depend on the prevailing weather conditions and the type of air masses. High aerosol concentrations in smoke plumes correlate in some cases with lower ozone concentrations, indicating that ozone in such cases is destroyed in the presence of high concentrations of pollutants such as aerosols and gases. A layered structure in the profiles was found only in association with temperature inversions and where the air above 2 km was subsiding, and was not found in convective parts of the troposphere.  相似文献   

17.
18.
A general equation is proposed for the relationship between bedrock lowering and regolith thickness which includes, as special cases, hypotheses by Ahnert, Armstrong, Culling, Kirkby and Young, at least approximately.  相似文献   

19.
The content of K, Th and U in the continental crust is estimated based on the assumption that the concentration of these elements decreases with depth asAx = A0e?x/D [11], withAx andA0 the heat production rates at depthx and at the surface, respectively. Taking the weighted mean heat production rate of the intrusive rocks of the upper crust asA0 = 2.33 μWm?3, that of the granulites representing the lower crust asAx = 0.72 μWm?3, and the mean scale heightD= 9.5km [1] the average vertical distancex = b between these intrusives and granulites is 11.2 km. Withb known and the average concentrations of K, Th and U in granulites and intrusive rocks of the upper crust the scale heights of the vertical distribution of these elements areDK = 71km,DTh = 9.5km,DU = 5.8km. The knowledge of these parameters permits to calculate the average concentrations of these elements in a 33.3 km thick crust:K= 2.19%,Th= 4.43ppm,U= 0.66ppm; Th/U = 6.7 and K/U = 3.3 × 104. The resulting heat flow is 23.0 mW m?2 which is practically identical with the value deduced from heat flow measurements. Assuming that the Th/U ratio of the entire crust—including the sediments—is 3.9, the high ratio of 6.7 in the crystalline crust indicates that about 7.2 × 1012 t U were extracted from it. All rocks with Th/U ratios <3.9 are possible sinks of this U. About half that amount is deposited in sedimentary rocks, mainly in black shales. The second important sink are the volcanic rocks of the continental margins.  相似文献   

20.
Computations of the mean meridional motion field in the stratosphere are applied to ozone distributions to evaluate the associated ozone concentration changes. These changes are compared with those produced by photochemical and quasi-horizontal eddy processes. For the period January–April 1964 there is a cooperative action between the mean and eddy motions with mean subsidence in middle latitudes supplying ozone to be carried polawards and equatorwards by quasi-horizontal eddy processes. At low latitudes mean horizontal motions offset the eddy transport while at high latitudes mean rising motion is the offsetting term. The mean ozone flux through 50 mb, 3.5×1029 molecules sec–1, is comparable with the fluxes evaluated by other techniques.The spring maximum is thought to be due to a modulation of the energy supply to the stratospheric eddies which, in turn, force the mean motions. Longer-term changes are to be expected; for example during Ice Ages when increased tropospheric eddy activity is anticipated there should be higher total ozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号