首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Summary Using large-scale circulation statistics from the Pacific Ocean basin, predictability of the coupled ocean-atmosphere system on interannual time scales is found both to be limited in extent and to possess a strong annual cycle. Irrespective of when lagged correlations are commenced, correlations decrease rapidly through the boreal spring, indicating an inherent predictability limitation for large scale coupled oceanicatmospheric processes such as El Niño. Long term prediction experiments using numerical coupled-models show that the models are excellent facsimiles of the real system. They, too, encounter the predictability barrier and exhibit a substantial decrease in observation-prediction correlation across the boreal spring. Thus, a predictive system based solely on the interactive physics of the Pacific Basin appears limited to a maximum of less than one year and a minimum of only one or two months.Two hypotheses are made to explain the existence of the predictability barrier. First, it is argued that the tropical coupled system is at its frailest state during the boreal spring and that the signal-to-noise ratio is weakest. In such a system, maximum random error growth may occur as the atmosphere and the ocean become temporally detached and wander onto different climate trajectories. A series of 144 preliminary Monte Carlo experiments were conducted with a coupled ocean-atmosphere model to test the hypothesis. Irrespective of when the experiments were commenced, error growth was maximized at the same time of the year. The second hypothesis suggests that the near-equatorial circulation is perturbed at the time of its weakest state by external influences such as the monsoon and that the climate wanderings are nudged deterministically. There is observational and theoretical evidence to support the hypothesis. Observations suggest that anomalous monsoons impart basin-wide coherent alterations of the wind stress field in the Pacific Ocean. Experiments with a coupled ocean-atmosphere model show that the period of an ENSO event is altered substantially by an anomalous monsoon. Given that there appear to be precursors to anomalous monsoons, it is suggested that there may be ways to avoid the predictability barrier and thus extend prediction of the entire system.Finally, noting that the two hypotheses are not mutually exclusive, they are combined to form a unified theory. As the asymmetric monsoonal and the symmetric near-equatorial heating are in approximate quadrature, it is argued that the monsoons influence the Walker circulation during the boreal spring. However, during the boreal fall and early winter the near-equatorial heating variability dominates the winter monsoon.With 18 Figures  相似文献   

2.
3.
Adjustment and feedbacks in a global coupled ocean-atmosphere model   总被引:2,自引:1,他引:2  
 We report the analysis of two 20-year simulations performed with the low resolution version of the IPSL coupled ocean-atmosphere model, with no flux correction at the air-sea interface. The simulated climate is characterized by a global sea surface temperature warming of about 4 °C in 20 years, driven by a net heat gain at the top of the atmosphere. Despite this drift, the circulation is quite realistic both in the ocean and the atmosphere. Several distinct periods are analyzed. The first corresponds to an adjustment during which the heat gain weakens both at the top of the atmosphere and at the ocean surface, and the tropical circulation is slightly modified. Then, the surface warming is enhanced by an increase of the greenhouse feedback. We show that the mechanisms involved in the model share common features with sensitivity experiments to greenhouse gases or to SST warming. At the top of the atmosphere, most of the longwave trapping in the atmosphere is driven by the tropical circulation. At the surface, the reduction of longwave cooling is a direct response to increased temperature and moisture content at low levels in the atmospheric model. During the last part of the simulation, a regulation occurs from evaporation at the surface and longwave cooling at TOA. Most of the model drift is attributed to a too large heating by solar radiation in middle and high latitudes. The reduction of the north–south temperature gradient, and the related changes in the meridional equator-to-pole ocean heat transport lead to a warming of equatorial and subtropical regions. This is also well demonstrated by the difference between the two simulations which differ only in the parametrization of sea-ice. When the sea-ice cover is not restored to climatology the model does not maintain sea-ice at high latitudes. The climate warms more rapidly and the water vapor and clouds feedback occurs earlier. Received: 24 May 1996 / Accepted: 29 November 1996  相似文献   

4.
The Interannual Variability of Climate in a Coupled Ocean-Atmosphere Model   总被引:2,自引:0,他引:2  
In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation model of the Institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with that by the corresponding IAP AGCM which uses the climatic sea surface temperature as the boundary condition in 25 year integrations.The mean climatic states of January and July simulated by IAP CGCM are in good agreement with that by IAP AGCM, i.e., no serious ‘climate drift’ occurs in the CGCM simulation. A comparison of the results from AGCM and CGCM indicates that the standard deviation of the monthly averaged sea level pressure simulated by IAP CGCM is much greater than that by IAP AGCM in tropical region. In addition, both Southern Oscillation (SO) and North Atlantic Oscillation (NAO) can be found in the CGCM simulation for January, but these two oscillations do not exist in the AGCM simulation.The interannual variability of climate may be classified into two types: one is the variation of the annual mean, another is the variation of the annual amplitude. The ocean-atmosphere interaction mainly increases the first type of variability. By means of the rotated EOF, the most important patterns corresponding to the two types of interannual variability are found to have different spatial and temporal characteristics.  相似文献   

5.
Meridional, linear, and free modes of global, primitive-equation, ocean-atmosphere models were analyzed to see if they contain multi-year, especially decadal ( 10–30 years), oscillation time scale modes. A two-layer model of the global ocean and a two-level model of the global atmosphere were formulated. Both models were linearized around axially-symmetric basic states containing mean meridional circulations. The linearized perturbation system was solved as an eigenvalue problem. The operator matrix was discretized in the north-south direction with centered finite differences. Uncoupled, meridional modes of oscillation of the ocean and the atmosphere models were calculated. Calculations were performed at three grid spacings (5°, 2.5° and 1.25°) and for two types of basic states (symmetric and asymmetric). Uncoupled, free oceanic modes in the presence of mean meridional circulations have oscillation time scales ranging from two years to several centuries. Such low frequency meridional modes do not exist in the ocean model if there are no mean meridional circulations. A large number of oceanic modes are grouped around decadal oscillation time scales. All the oceanic modes have neutral growth rates. The spatial structures of some of the oceanic modes are comparable to observed spatial structures of sea surface temperature variations in the Pacific Ocean. Most years to decades variability of meridional modes of the ocean model is contained in tropical and midlatitude modes. Some oceanic modes with years to decades periods have standing oscillations in the tropics and poleward propagation of zonal velocity and layer thickness outside the tropics. Uncoupled, free atmospheric modes in the presence of mean meridional circulations have oscillation time scales ranging from a week to several decades. Such low-frequency meridional modes do not exist in the atmospere model if there are no mean meridional circulations. A large number of modes are grouped around intraseasonal time scales. Unlike the oceanic modes, the atmospheric modes are weakly unstable. Most of the intraseasonal variability of atmospheric modes is contained in tropical, midlatitude, and polar modes. Atmospheric modes with oscillation periods longer than about one year have global extent. Meridional ocean-atmospheric modes exist in the models wherever there are mean meridional circulations, i.e., tropical, midlatitude, polar, and global. Oceanic and atmospheric eigenvectors have symmetric (assymetric) latitudinal structures if their basic states are symmetric (asymmetric) around the equator. For both models, models calculated at coarser than 2.5° grid spacing do not accurately represent low-frequency variability. Scale analysis shows taht advection by tge basic state meridional velocities is the primary cause of the meridional oscillations on time scales longer than two years in the ocean model and longer than a few weeks in the atmosphere model. Meridional modes of the coupled ocean-atmosphere models are the subject of a subsequent paper.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

6.
The Oregon State University coupled upper ocean-atmosphere GCM is evaluated in terms of the simulated winds, ocean currents and thermocline depth variations. Although the zonal wind velocities in the model are underestimated by a factor of about three and the zonal current velocities are underestimated by a factor of about five, the model is seen to qualitatively simulate the major features of the gyral scale currents, and the phases of the seasonal variation of the principal equatorial currents are in reasonable agreement with observations. The simulated tropical currents are dominated by Ekman transport and the eastern boundary currents do not penetrate far enough equatorward, while the western boundary currents do not penetrate far enough poleward. The subtropical trade wind belt and the mid-latitude westerlies are displaced equatorward of observations; hence, the mid-latitude eastward currents, principally the Kuroshio-North Pacific Drift and the Gulf Stream-North Atlantic Current are displaced equatorward. In spite of these shortcomings the surface current simulation of this two-layer upper ocean model is comparable with that of other ocean GCMs of coarse resolution. The coupled model successfully simulates the deepening of the thermocline westward across Pacific as a consequence of the prevailing Walker circulation. The region of most intense simulated surface forcing is located in the western Pacific due to a southwestward displacement of the northeast trade winds relative to observations; hence the equatorial Pacific is dominated by eastward propagation of thermocline depth variations. The excessively strong Ekman divergence and upwelling in the western Pacific cools the local warm pool, while incorrectly simulated westerlies in the eastern Pacific suppress upwelling and inhibit cooling from below. These features reduce the simulated trans-Pacific sea-surface temperature gradient, weakening the Walker circulation and the anomalies associated with the simulated Southern Oscillation. Offprint requests to: KR Sperber  相似文献   

7.
8.
This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM-FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the first two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular ValueDecomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimatedeast-west gradient of SST in the equatorial Pacific in the ocean spin-up process, and (2) the underestimatedamount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, VersionThree). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, affected by the Coriolis force in the Southern Hemisphere, turns into an anomalouswesterly in a broad area south of the equator and is enhanced by atmospheric anomalous circulationdue to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. Theanomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Pacific.The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustmentprocesses in the coupled system, which can be traced to the uncoupled models, oceanic component, andatmospheric component. The zonal gradient of the equatorial SST is too large in the ocean componentand the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.  相似文献   

9.
J. Egger 《Climate Dynamics》1997,13(4):285-292
 Flux correction schemes are used in order to suppress the drift of coupled ocean atmosphere models. This technique is tested for a simple box model of the climate system. Two “perfect” models of the ocean and the atmosphere are available. These are coupled to form an ocean-atmosphere model representing the true climate system. This climate system is simulated by a climate model which is also constructed by coupling those two perfect models. This time, however, both models are run first separately as models of the atmosphere and the ocean. In that case, “observations” from the climate system are prescribed at the ocean surface in the uncoupled models. It is assumed that these observations are imperfect. A drift results, when these models are coupled to form an ocean-atmosphere stimulation model. A flux adjustment scheme is implemented to remove this drift. It is argued that the merits and shortcomings of the flux correction technique can be assessed more clearly this way than by coupling imperfect models as is done normally. Sensitivity tests are performed where either radiation parameters are changed or a salt anomaly is implanted. Model parameters are chosen such that the ocean has a thermally direct circulation in the unperturbed climate state. It is found that the flux correction technique is performing satisfactorily as long as the imposed perturbations are small enough so that the ocean circulation does not change its sense. If, however, the model climate is close to the transition to an indirect circulation, then the flux correction technique is unreliable. The predictions of the coupled model with flux correction may deviate substantially from the response of the climate system in that case. Received: 4 December 1995/Accepted: 15 October 1996  相似文献   

10.
Climate changes during the next 100 years caused by anthropogenic emissions of greenhouse gases have been simulated for the Intergovernmental Panel on Climate Change Scenarios A (business as usual) and D (accelerated policies) using a coupled ocean-atmosphere general circulation model. In the global average, the near-surface temperature rises by 2.6 K in Scenario A and by 0.6 K in Scenario D. The global patterns of climate change for both IPCC scenarios and for a third step-function 2 x CO2 experiment were found to be very similar. The warming delay over the oceans is larger than found in simulations with atmospheric general circulation models coupled to mixed-layer models, leading to a more pronounced land-sea contrast and a weaker warming (and in some regions even an initial cooling) in the Southern Ocean. During the first forty years, the global warming and sea level rise due to the thermal expansion of the ocean are significantly slower than estimated previously from box-diffusion-upwelling models, but the major part of this delay can be attributed to the previous warming history prior to the start of present coupled ocean-atmosphere model integration (cold start).  相似文献   

11.
Spatial patterns of mid-latitude large-scale ocean-atmosphere interaction on monthly to seasonal time scales have been observed to exhibit a similar structure in both the North Pacific and North Atlantic basins. These patterns have been interpreted as a generic oceanic response to surface wind anomalies, whereby the anomalous winds give rise to corresponding anomalous regions of surface heat flux and consequent oceanic cooling. This mechanistic concept is investigated in this study using numerical models of a global atmosphere and a mid-latitude ocean basin (nominally the Atlantic). The models were run in both coupled and uncoupled mode. Model output was used to generate multi-year time series of monthly mean fields. Empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses were then used to obtain the principal patterns of variability in heat flux, air temperature, wind speed, and sea surface temperature (SST), and to determine the relationships among these variables. SVD analysis indicates that the turbulent heat flux from the ocean to the atmosphere is primarily controlled by the surface scalar wind speed, and to a lesser extent by air temperature and SST. The principal patterns of air-sea interaction are closely analogous to those found in observational data. In the atmosphere, the pattern consists of a simultaneous strengthening (or weakening) of the mid-latitude westerlies and the easterly trades. In the ocean there is cooling (warming) under the anomalously strong (weak) westerlies and trade winds, with a weaker warming (cooling) in the region separating the westerly and easterly wind regimes. These patterns occur in both coupled and uncoupled models and the primary influence of the coupling is in localizing the interaction patterns. The oceanic patterns can be explained by the principal patterns of surface heat flux and the attendant warming or cooling of the ocean mixed layer.  相似文献   

12.
Carried out is the study of the response of microwave radiation of the ocean-atmosphere system to the horizontal heat transfer in the atmospheric boundary layer (ABL). Model estimates are obtained for the radiation on the wave lengths of 0.6, 0.8, 1, 1.35, and 1.6 cm. It is demonstrated that the value and sign of bright ness temperature contrasts induced by the horizontal transfer depend on the ABL density stratification and transfer direction relative to the orientation of horizontal gradients of air temperature and air humidity. Variations of brightness temperature in the ABL at the wave length of 1.35 cm reach 30–40 K. Ob served is the high correlation between the variations of brightness temperature in the ABL at the wave length of 1.35 cm and the vertical fluxes of sensible and la tent heat for different types of the ABL stratification and for different conditions of advective transport.  相似文献   

13.
 The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and linearly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the intertropical convergence zone over the Atlantic is displaced southward and the westerlies in the Northern Hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface water in high-northern latitudes, which allows them to accumulate more precipitation and runoff from the continents. As a consequence the stratification in the North Atlantic becomes more stable. This effect is further amplified by an enhanced northward atmospheric water vapour transport, which increases the freshwater input into the North Atlantic. The reduced northward oceanic heat transport leads to colder sea-surface temperatures and an intensification of the atmospheric cyclonic circulation over the Norwegian Sea. The associated Ekman transports cause increased upwelling and increased freshwater export with the East Greenland Current. Both the cooling and the wind-driven circulation changes largely compensate for the effects of the first two feedbacks. The wind-stress feedback destabilizes modes without deep water formation in the North Atlantic, but has been neglected in almost all studies so far. After the meltwater input stops, the North Atlantic deepwater formation resumed in all experiments and the meridional overturning returned within 200 years to a conveyor belt pattern. This happened although the formation of North Atlantic deep water was suppressed in one experiment for more than 300 years and the Atlantic overturning had settled into a circulation pattern with Antarctic bottom water as the only source of deep water. It is a clear indication that cooling and wind-stress feedback are more effective, at least in our model, than advection feedback and increased atmospheric water vapour transport. We conclude that the conveyor belt-type thermohaline circulation seems to be much more stable than hitherto assumed from experiments with simpler models. Received 31 January 1996/Accepted 22 August 1996  相似文献   

14.
Summary A coupled ocean-atmosphere anomaly model has been developed for simulating ENSO cycle and its mechanism-study in this paper. After a long model run, the coupled model is successful in demonstrating ENSO-like irregular interannual variability and corresponding horizontal spatial structures. Based on the simulated results, the dynamics and the thermodynamics of the model ENSO cycle have been investigated, and in particular the negative feedback mechanisms that act to oppose instability of air-sea interaction, inducing termination of warm and cold events, have been examined. A detailed analysis of the oceanic wave dynamical properties and heat budget of the SST changes in a representative cycle suggest that the negative feedback mechanism to check the unstable growth of a warm event obviously differs from that of a cold event. The mechanism that induces decay and termination of a cold event is closely related to the negative, delayed feedback effect produced by the oceanic dynamical wave reflection at the western boundary. However, independent of the wave reflection effect, the negative feedback mechanism by which the coupled system returns from a warm event is associated with a slowly eastward-propagating coupling mode. Accompanied with the strong unstable development of the equatorial positive SST anomaly, the anomalous upwelling of cold water generated off the equator and the nonlinear anomalous meridional advection generated in the equator west of instability area jointly restrain the instability and finally plunge the system from a mature warm phase into a weak cold phase. A comparison between the results from the present model and the previous works is also discussed in this paper.With 16 Figures  相似文献   

15.
The Southern Oscillation is a major component in the interannual variations of global climate. The Oregon State University global climate model, with a dynamically interactive upper ocean, reproduces in qualitatively correct fashion some of the major characteristics of the Southern Oscillation. This model simulates the observed anti-correlation of annually averaged sea-level pressure (SLP) between the eastern Pacific and the Indonesian region, the primary atmospheric signal of the Southern Oscillation. In the composite of the simulated warm events positive sea-surface temperature (SST) anomalies expand eastward towards South America from the tropical western Pacific during the first half of the calendar year. The SST anomalies develop in conjunction with eastward mixed layer current anomalies in the tropical Pacific. In the late summer and early fall anomalously warm water near South America develops and moves westward to merge with the central Pacific anomalies. This lagged development in the eastern Pacific is analogous to the evolution of the 1982/83 and 1986/87 El Ninos. The temperature of the thermocline layer also increases, with the slope of the equatorial Pacific thermocline decreasing in response to the relaxation of the surface forcing. Enhanced precipitation occurs in the mid-Pacific while in the Indian and Australian monsoon regions a deficit occurs. The peak of the warm phase occurs in late northern fall/early winter, somewhat earlier than during observed El Ninos. The cold phase of the Southern Oscillation, enhancement of the zonal circulation, evolves in a fashion similar to the warm phase with the signs of the anomalies reversed, similar to observations. Occurrence of Southern Oscillation in this coarse resolution GCM indicates that high resolution ocean waves do not play a crucial role in the generation of this phenomenon as suggested by Pacific basin models. These results also show that ocean-atmosphere global climate models are useful tools for investigation of time dependent changes on the interannual timescale in addition to their hitherto accepted use for studying equilibrium properties of climate.  相似文献   

16.
Techniques of numerical bifurcation theory are used to study stationary and periodic solutions of an intermediate coupled model for tropical ocean-atmosphere interaction. The qualitative dynamical behavior is determined for a volume in parameter space spanned by the atmospheric damping length, the coupling parameter, the surface layer feedback strength and the relative adjustment time coefficient. Time integration methods have previously shown much interesting dynamics, including multiple steady states, eastward- or westward-propagating orbits and relaxation oscillations. The present study shows how this dynamics arises in parameter space through the interaction of the different branches of equilibrium solutions and the singularities on these branches. For example, we show that westward-propagating periodic orbits arise through an interaction of two unstable stationary modes and that relaxation oscillations occur through a limit cycle-saddle node interaction. There are several dynamical regimes in the coupled model which are determined by the primary bifurcation structure; this structure depends strongly on the parameters in the model. Although much of the dynamics may be studied in the fast-wave limit, it is shown that ocean wave dynamics introduces additional oscillatory instabilities and how these relate to propagating oscillations.  相似文献   

17.
The role of terrestrial snow cover in the climate system   总被引:2,自引:0,他引:2  
Snow cover is known to exert a strong influence on climate, but quantifying its impact is difficult. This study investigates the global impact of terrestrial snow cover through a pair of GCM simulations run with prognostic snow cover and with all snow cover on land eliminated (NOSNOWCOVER). In this experiment all snowfall over land was converted into its liquid–water equivalent upon reaching the surface. Compared with the control run, NOSNOWCOVER produces mean-annual surface air temperatures up to 5 K higher over northern North America and Eurasia and 8–10 K greater during winter. The globally averaged warming of 0.8 K is one-third as large as the model’s response to 2 × CO2 forcing. The pronounced surface heating propagates throughout the troposphere, causing changes in surface and upper-air circulation patterns. Despite the large atmospheric warming, the absence of an insulating snow pack causes soil temperatures in NOSNOWCOVER to fall throughout northern Asia and Canada, including extreme wintertime cooling of over 20 K in Siberia and a 70% increase in permafrost area. The absence of snow melt water also affects extratropical surface hydrology, causing significantly drier upper-layer soils and dramatic changes in the annual cycle of runoff. Removing snow cover also drastically affects extreme weather. Extreme cold-air outbreaks (CAOs)—defined relative to the control climatology—essentially disappear in NOSNOWCOVER. The loss of CAOs appears to stem from both the local effects of eliminating snow cover in mid-latitudes and a remote effect over source regions in the Arctic, where −40°C air masses are no longer able to form.  相似文献   

18.
Annual precipitation,evaporation,and calculated accumulation from reanalysis model outputs have been investigated for the Greenland Ice Sheet (GrIS),based on the common period of 1989-2001.The ERA-40 and ERA-interim reanalysis data showed better agreement with observations than do NCEP-1 and NCEP-2 reanalyses.Further,ERA-interim showed the closest spatial distribution of accumulation to the observation.Concerning temporal variations,ERA-interim showed the best correlation with precipitation observations at five synoptic stations,and the best correlation with in situ measurements of accumulation at nine ice core sites.The mean annual precipitation averaged over the whole GrIS from ERA-interim (363 mm yr 1) and mean annual accumulation (319 mm yr 1) are very close to the observations.The validation of accumulation calculated from reanalysis data against ice-core measurements suggests that further improvements to reanalysis models are needed.  相似文献   

19.
A review of ocean-atmosphere interaction studies in China   总被引:2,自引:0,他引:2  
A large number of papers have been published and great efforts have been made in the recent 20 years by the Chinese oceanographic and meteorological scientists in the ocean-atmosphere interaction studies. The present paper is an overview of the major achievements made by Chinese scientists aad their collaborators in studies of larger scale ocean-atmosphere interaction in the following oceans: the South China Sea, the Tropical Pacific, the indian Ocean and the North Pacific. Many interesting phenomena and dynamic mechanisms have been discovered and studied in these papers. These achievements have improved our understanding of climate variability and have great implications in climate prediction, and thus are highly relevant to the ongoing international Climate Variability and Predictability (CLIVAR) efforts.  相似文献   

20.
The mean climatology and the basic characteristics of the ENSO cycle simulated by a coupled model FGCM-1.0 are investigated in this study. Although with some common model biases as in other directly coupled models, FGCM-1.0 is capable of producing the interannual variability of the tropical Pacific, such as the ENSO phenomenon. The mechanism of the ENSO events in the coupled model can be explained by “delayed oscillator” and “recharge-discharge” hypotheses. Compared to the observations, the simulated ENSO events show larger amplitude with two distinctive types of phase-locking: one with its peak phase-locked to boreal winter and the other to boreal summer. These two types of events have a similar frequency of occurrence, but since the second type of event is seldom observed, it may be related to the biases of the coupled model. Analysis show that the heat content anomalies originate from the central south Pacific in the type of events peaking in boreal summer, which can be attributed to a different background climatology from the normal events. The mechanisms of their evolutions are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号