首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal predictions of Arctic sea ice have typically been based on statistical regression models or on results from ensemble ice model forecasts driven by historical atmospheric forcing. However, in the rapidly changing Arctic environment, the predictability characteristics of summer ice cover could undergo important transformations. Here global coupled climate model simulations are used to assess the inherent predictability of Arctic sea ice conditions on seasonal to interannual timescales within the Community Climate System Model, version 3. The role of preconditioning of the ice cover versus intrinsic variations in determining sea ice conditions is examined using ensemble experiments initialized in January with identical ice?Cocean?Cterrestrial conditions. Assessing the divergence among the ensemble members reveals that sea ice area exhibits potential predictability during the first summer and for winter conditions after a year. The ice area exhibits little potential predictability during the spring transition season. Comparing experiments initialized with different mean ice conditions indicates that ice area in a thicker sea ice regime generally exhibits higher potential predictability for a longer period of time. In a thinner sea ice regime, winter ice conditions provide little ice area predictive capability after approximately 1?year. In all regimes, ice thickness has high potential predictability for at least 2?years.  相似文献   

2.
The river ice regime is considered a sensitive indicator of climate change and within this study long term changes (in case of River Daugava starting from 1530, but for other studied rivers starting from first half of twentieth century) river ice regimes in the Baltic region have been studied. The ice cover duration on the rivers (17 rivers) in the Baltic countries and Belarus has decreased during the recent decades. In addition to this, long term observational records of ice break on the rivers of the studied region exhibit a pattern of periodic changes in the intensity of ice regime. Both the ice regime and the seasonal river discharge are shown to be strongly influenced by large-scale atmospheric circulation processes over North Atlantic that manifests through close correlation with North Atlantic Oscillation index.  相似文献   

3.
A coupled ice-ocean model of the Arctic is developed in order to study the effects of precipitation and river runoff on sea ice. A dynamic-thermodynamic sea ice model is coupled to an ocean general circulation model which includes a turbulent closure scheme for vertical mixing. The model is forced by interannually varying atmospheric temperature and pressure data from 1980–1989, and spatially varying mean monthly precipitation and river runoffs. Salinity and fresh water fluxes to the ocean from ice growth, snow melt, rain, and runoffs are computed, with no artificial constraints on the ocean salinity. The modeled ice thickness is similar to the observed pattern, with the thickest ice remaining against the Canadian Archipelago throughout the year. The modeled ice drift reproduces the Beaufort gyre and Transpolar drift exiting through Fram Strait. The stable arctic halocline produced by the vertical mixing scheme isolates the surface from the Atlantic layer and reduces the vertical fluxes of heat and salinity. A sensitivity experiment with zero precipitation results in rapidly decreasing ice thickness, in response to greater ocean heat flux from a weakening of the halocline, while an experiment with doubled precipitation results in a smaller increase in ice thickness. A zero-runoff experiment results in a slower decrease in ice thickness than the zero-precipitation case, due to the decadal time scale of the transport of runoff in the model. The results suggest that decadal trends in both arctic precipitation and river runoffs, caused either by anthropogenic or natural climatic change, have the potential to exert broad-scale impacts on the arctic sea ice regime. Received: 6 February 1996 / Accepted: 4 April 1996  相似文献   

4.
Submarine and satellite observations show that the Arctic Ocean ice cover has undergone a large thickness reduction and a decrease in the areal extent during the last decades. Here the response of the Arctic Ocean ice cover to changes in the poleward atmospheric energy transport, F wall, is investigated using coupled atmosphere-ice-ocean column models. Two models with highly different complexity are used in order to illustrate the importance of different internal processes and the results highlight the dramatic effects of the negative ice thickness—ice volume export feedback and the positive surface albedo feedback. The steady state ice thickness as a function of F wall is determined for various model setups and defines what we call ice thickness response curves. When a variable surface albedo and snow precipitation is included, a complex response curve appears with two distinct regimes: a perennial ice cover regime with a fairly linear response and a less responsive seasonal ice cover regime. The two regimes are separated by a steep transition associated with surface albedo feedback. The associated hysteresis is however small, indicating that the Arctic climate system does not have an irreversible tipping point behaviour related to the surface albedo feedback. The results are discussed in the context of the recent reduction of the Arctic sea ice cover. A new mechanism related to regional and temporal variations of the ice divergence within the Arctic Ocean is presented as an explanation for the observed regional variation of the ice thickness reduction. Our results further suggest that the recent reduction in areal ice extent and loss of multiyear ice is related to the albedo dependent transition between seasonal and perennial ice i.e. large areas of the Arctic Ocean that has previously been dominated by multiyear ice might have been pushed below a critical mean ice thickness, corresponding to the above mentioned transition, and into a state dominated by seasonal ice.  相似文献   

5.
Abstract

The Mackenzie Shelf in the Canadian Beaufort Sea receives large amounts of freshwater runoff in winter and, yet, it also produces ventilating water masses by brine rejection from growing ice. We examine physical and chemical data to see how these contradictory processes can occur juxtaposed on the shelf. Measurements of salinity and δ18O both from ice cores and the water column are used to infer the separation into two convective regimes due to the under‐ice topography of the system of large pressure ridges that forms at the boundary between landfast ice and pack ice. Outside this ridge system the ice cover is subject to frequent openings due to offshore ice motion. The inner regime is thus dominated by the impoundment of Mackenzie River water, whereas the outer regime is subject to brine enhancement. This paper compares freezing processes and system evolution for these two regimes in winter.  相似文献   

6.
A 4-month deployment on Ice Station Weddell (ISW) in the western Weddell Sea yielded over 2000 h of nearly continuous surface-level meteorological data, including eddy-covariance measurements of the turbulent surface fluxes of momentum, and sensible and latent heat. Those data lead to a new parameterization for the roughness length for wind speed, z0, for snow-covered sea ice that combines three regimes: an aerodynamically smooth regime, a high-wind saltation regime, and an intermediate regime between these two extremes where the macroscale or `permanent' roughness of the snow and ice determines z0. Roughness lengths for temperature, zT, computed from this data set corroborate the theoretical model that Andreas published in 1987. Roughness lengths for humidity,zQ, do not support this model as conclusively but are all, on average, within an order of magnitude of its predictions. Only rarely arezTand zQ equal to z0. These parameterizations have implications for models that treat the atmosphere-ice-ocean system.  相似文献   

7.
A thermomechanical model of ice flow in West Antarctica   总被引:5,自引:2,他引:3  
 This study uses a three-dimensional thermo-mechanical model to investigate the internal flow dynamics of the West Antarctic Ice Sheet (WAIS). The model allows ice thickness, flow and temperature to interact freely. Its domain is prescribed as that of the present-day grounded WAIS. Realistic present-day climatic and topographical boundary conditions are employed. The analysis of a series of experiments pays particular attention to the location and dynamics of concentrations of ice flow (ice streams). Underlying topographic troughs are crucial in determining the strength and location of these concentrations of flow. The flow pattern generated by subglacial troughs is made more distinct by the inclusion of ice flow/temperature coupling. The inclusion of sliding leads to the generation of limit cycles in the ice flow. They are concentrated around the present-day ice streams B and C of the Siple Coast and have a period of 5 to 10 ky. There appears to be competition between several preferred ice flow pathways in this area. The two end members of the flow regime are a strong ice stream C with a weakened ice stream A/B complex, and strong ice streams A and B with a dormant ice stream C. Ice streams appear to require ice discharges above a certain threshold in order to maintain frictional heat generation and fast flow. Individual ice streams can therefore interact through changes in catchment-area size: a reduction in catchment area reduces the volume of ice entering a stream and can cause stagnation as the amount of frictional heating falls. Received: 22 July 1997/Accepted: 27 July 1998  相似文献   

8.
Long-term variations of ice formation dates are studied using the long (more than 100 years) series of observations of ice regime on the rivers of the Votkinsk Reservoir catchment. Proposed is the methodological approach to assessing the long-term variability of these dates using both parametric and nonparametric statistical criteria.  相似文献   

9.
Presented are the results of studying the regional peculiarities of climatic variations of spatiotemporal distribution of ice in the Barents Sea water area in 1977?C2010. Demonstrated is the dynamics of the interannual and seasonal variability of main elements of the ice regime (ice cover area, ice edge position, and ice period duration). Revealed are the common features and differences in the ice conditions in the water areas under study. It has been found that there is a significant feedback between the specific ice coverage in different areas of the sea. The climatic variations of the total ice coverage of the Barents Sea for the period of 1960?C2010 are analyzed using the electronic database on the Barents Sea ice coverage. It can be supposed that the current warm phase of climatic variations in the Barents Sea is coming to the end.  相似文献   

10.
The effects are considered that global warming and rapid sea ice decline in the Arctic (up to the formation of ice-free conditions in the Arctic Ocean in summer) made on the hydrological regime of Northern Eurasia. Ensemble computations of climate are provided and changes in the atmospheric water cycle and in water balance in large catchment areas after the loss of multiyear sea ice in the Arctic are estimated. Considerable changes in the hydrological regime are demonstrated on the example of the large catchments of the Siberian rivers; the changes are especially manifested in the period of intense snow melting, i.e., in spring and in early summer. It is revealed that the increase in the frequency of spring floods is expected in the river catchments adjoining the Arctic Ocean. It is demonstrated that the Arctic Ocean ice reduction does not exert as significant influence on variations in the water cycle in Northern Eurasia as the global warming does.  相似文献   

11.
12.
The long-term variability of an aquaplanet climate is analyzed with a coupled atmosphere–ocean–sea ice general circulation model. The main result of the 20,000 years simulation is a very dominant low-frequency oscillation with a period of approximately 700 years. All compartments of the aquaplanet (atmosphere, ocean, and sea ice) are involved as the climate alternates between warmer and colder states. Comprehensive time series analyses, as well as a comparison between mean states of cold and warm phases, give a detailed picture of the life cycle of the low-frequency oscillation. The warm phases are characterized by ice-free polar waters and a weaker meridional overturning circulation. During cold phases, the poles are completely covered by sea ice (down to 65° N/S) and the overturning cells in the ocean are stronger. The climate state changes throughout atmosphere and ocean; however, surface areas in high latitudes are especially affected due to the changing sea ice cover. The meridional energy transport in atmosphere and ocean alternates with the climate regime, since the ocean is more efficient in transporting heat poleward when the poles are ice-free.  相似文献   

13.
In accordance with the contract of the LUKOIL Oil Company, a cooperation of the Roshydromet organizations (Planeta Research Center for Space Hydrometeorology, a main contractor, Hydrometeorological Research Center of the Russian Federation, Arctic and Antarctic Research Institute, and State Oceanographic Institute) carried out in 2008 complex studies of the hydrometeorological and ice conditions for the Filanovskii oil- and gas-field facility construction on the northwestern shelf of the Caspian Sea. Three expeditions were organized and conducted within that project: a helicopter ice research expedition (specialists from the Arctic and Antarctic Research Institute carried out a huge volume of measurements of physicomechanic properties of level, rafted and hummocked ice, and morphometric characteristics of ice piling, hummocks, and stamukhas); specialists from the State Oceanographic Institute organized a ship expedition on studying sea ground exaration formed due to impacts of ice formations (hummocks and stamukhas) using hydro-radar and echo-sounder surveys as well as a complex hydrometeorological and hydrochemical expedition with five autonomous buoy stations mounted in two months. From the moment of ice formation to the end of the expedition activity, an operational space monitoring of the northwestern Caspian Sea was carried out at the Planeta Research Center for Space Hydrometeorology. Based on the NOAA, TERRA, and AQUA satellite data, corrected and geographically fixed satellite images of the area of activity were issued with a periodicity of 6 times per day; index maps on the ice situation (twice a week) and ice situation forecasts (lead-time of 1–7 days). Besides, long-term series of satellite data on the northwestern Caspian Sea are collected and processed: their results are used for estimating seasonal and interannual variability of the drift ice and fast ice. Specialists of the Hydrometeorological Research Center of the Russian Federation completed the work on processing and analysis of library materials, research/technical reports, handbooks, expedition observational data, and on hydrodynamic and probability modeling of long-term series of hydrological, meteorological, and partly ice data. In particular, basic characteristics of the hydrological regime (sea level, currents, and waving) are calculated for the place of the oil platform location and along the pipeline routing. Tentative local specifications on the hydrometeorological regime in the Filanovskii field are worked out based on the results of the work performed.  相似文献   

14.
The autumn and early winter atmospheric response to the record-low Arctic sea ice extent at the end of summer 2007 is examined in ensemble hindcasts with prescribed sea ice extent, made with the European Centre for Medium-Range Weather Forecasts state-of-the-art coupled ocean–atmosphere seasonal forecast model. Robust, warm anomalies over the Pacific and Siberian sectors of the Arctic, as high as 10°C at the surface, are found in October and November. A regime change occurs by December, characterized by weaker temperatures anomalies extending through the troposphere. Geopotential anomalies extend from the surface up to the stratosphere, associated to deeper Aleutian and Icelandic Lows. While the upper-level jet is weakened and shifted southward over the continents, it is intensified over both oceanic sectors, especially over the Pacific Ocean. On the American and Eurasian continents, intensified surface Highs are associated with anomalous advection of cold (warm) polar air on their eastern (western) sides, bringing cooler temperatures along the Pacific coast of Asia and Northeastern North America. Transient eddy activity is reduced over Eurasia, intensified over the entrance and exit regions of the Pacific and Atlantic storm tracks, in broad qualitative agreement with the upper-level wind anomalies. Potential predictability calculations indicate a strong influence of sea ice upon surface temperatures over the Arctic in autumn, but also along the Pacific coast of Asia in December. When the observed sea ice extent from 2007 is prescribed throughout the autumn, a higher correlation of surface temperatures with meteorological re-analyses is found at high latitudes from October until mid-November. This further emphasises the relevance of sea ice for seasonal forecasting in the Arctic region, in the autumn.  相似文献   

15.
Summary The Adélie Land coastal section of East Antarctica is known for strong katabatic winds. Although the primary forcing of these persistent drainage flows has been attributed to the radiative cooling of the sloping ice topography, effects of ambient horizontal pressure gradients can play a central role in shaping the Antarctic surface wind regime as well. Oberrvations of the katabatic wind at the near-coastal Adélie Land station D-10 have been sorted into strong and weak wind classes. Concurrent radiosonde ascents at nearby Dumont D'Urville have been used to depict the timeaveraged large scale conditions accompanying the katabatic wind classes. Results suggest that strong katabatic wind cases are associated with low pressure over the coastal margin and easterly upper level motions. Numerical simulations have been conducted to examine the effect of prescribed large scale forcing on the evolution of the katabatic wind. The model runs indicate that the ambient environment plays a key role in the development and intensity of the katabatic wind regime.With 7 Figures  相似文献   

16.
渤海的海冰数值预报   总被引:33,自引:0,他引:33  
白珊  吴辉碇 《气象学报》1998,56(2):139-153
根据渤海气候和冰情特点,在已有海冰模式研究基础上,提出模拟海冰增长、消融和漂移的动力-热力学模式。模式冰厚分布由开阔水、平整冰和堆积冰三要素表示。该模式已与数值天气预报模式、大气边界层模式、潮流模式联结,并于1990年到1996年在国家海洋环境预报中心进行渤海和北黄海冰情预报。其数值预报产品包括冰厚、密度集、冰速、冰外缘线、冰脊参数、局地冰厚以及接近石油平台的冰漂移轨迹等,传送到国家海洋预报台和渤海石油公司等有关用户。为了客观评价模式和检验预报结果,在逐日预报后进行统计检验。本文概述渤海冰情、卫星遥感应用、冰模式及其预报结果和检验。  相似文献   

17.
1 INTRODUCTIONIn order to gain further insight into the nature of decadal- scale climate variability at highlatitudes( e.g.,Mysak et al.,1 990 ;Deser and black- mon,1 993) ,there have been a number ofrecent model studies of sea ice- thermohaline circulation interactions which exhibitoscillationson this timescale( Yang and Neelin,1 993;Zhang et al.,1 995 ;Yang and Huang,1 996 ) .Acommon feature of these studies is that the ocean models are integrated using mixedboundary conditions( MBC…  相似文献   

18.
 The effect of a snow cover on sea ice accretion and ablation is estimated based on the ‘zero-layer’ version sea ice model of Semtner, and is examined using a coupled atmosphere-sea ice model including feedbacks and ice dynamics effects. When snow is disregarded in the coupled model the averaged Antarctic sea ice becomes thicker. When only half of the snowfall predicted by the atmospheric model is allowed to land on the ice surface sea ice gets thicker in most of the Weddell and Ross Seas but thinner in East Antarctic in winter, with the average slightly thicker. When twice as much snowfall as predicted by the atmospheric model is assumed to land on the ice surface sea ice also gets much thicker due to the large increase of snow-ice formation. These results indicate the importance of the correct simulation of the snow cover over sea ice and snow-ice formation in the Antarctic. Our results also illustrate the complex feedback effects of the snow cover in global climate models. In this study we have also tested the use of a mean value of 0.16 Wm-1 K-1 instead of 0.31 for the thermal conductivity of snow in the coupled model, based on the most recent observations in the eastern Antarctic and Bellingshausen and Amundsen Seas, and have found that the sea ice distribution changes greatly, with the ice becoming much thinner by about 0.2 m in the Antarctic and about 0.4 m in the Arctic on average. This implies that the magnitude of the thermal conductivity of snow is of considerable importance for the simulation of the sea ice distribution. An appropriate value of the thermal conductivity of snow is as crucial as the depth of the snow layer and the snowfall rate in a sea ice model. The coupled climate models require accurate values of the effective thermal conductivity of snow from observations for validating the simulated sea ice distribution under the present climate conditions. Received: 20 November 1997/Accepted: 27 July 1998  相似文献   

19.
海冰是气候系统中的重要成员,而海冰模式是描述海冰物理过程、模拟和预报海冰演变的有力工具。根据国外发表的文献,对海冰模式从动力学、热力学和厚度分布三个方面的研究进行了回顾,对海冰模拟的研究具有一定的借鉴作用。  相似文献   

20.
C.L. Tang  T. Yao 《大气与海洋》2013,51(2):270-296
Abstract

A coupled ice‐ocean dynamical model is applied to the simulation of sea‐ice motion and distribution off Newfoundland during the Labrador Ice Margin Experiment (LIMEX), March 1987. In the model, the ice is coupled to a barotropic ocean through an Ekman layer that deepens with increasing wind speed. A 6‐hourly gridded wind dataset was used as input to drive the ice and the ocean. The results show that ice velocities with ice‐ocean coupling are appreciably higher than those without coupling because of the generation of wind‐driven coastal currents. This suggests that coupled ice‐ocean dynamics should always be considered in short‐term sea‐ice models. The model gives reasonable agreement with the observed ice edge except in the southern boundary where ice‐melt has a strong influence on the ice‐edge position. Ocean currents, sea level and ice velocities computed from the model are in qualitative agreement with limited current‐meter, tide‐gauge, and ice drifter trajectory data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号