首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical technique of time-longitude analysis has been developed by studying the fine structure of temporal variations in total solar irradiance (TSI). This analysis produces maps of large-scale thermal inhomogeneities on the Sun and reveals corresponding patterns of radiative excess and deficit relative to the unperturbed solar photosphere. These patterns are organized in two-and four-sector structures and exhibit the effects of both activity complexes and the active longitudes. Large-scale patterns with radiative excess show a facular macrostructure caused by the relaxation of large-scale thermo-magnetic perturbations and/or energy output due to very large-scale solar convection. These thermal patterns are related to long-lived magnetic fields that are characterized by rigid rotation. The patterns with radiative excess tend to concentrate around the active longitudes and are centered at 103° and 277° in the Carrington system when averaged over the time-longitude distribution of thermal inhomogeneities during activity cycles 21–23.  相似文献   

2.
Deflection of coronal mass ejection in the interplanetary medium   总被引:5,自引:0,他引:5  
Wang  Yuming  Shen  Chenglong  Wang  S.  Ye  Pinzhong 《Solar physics》2004,222(2):329-343
A solar coronal mass ejection (CME) is a large-scale eruption of plasma and magnetic fields from the Sun. It is believed to be the main source of strong interplanetary disturbances that may cause intense geomagnetic storms. However, not all front-side halo CMEs can encounter the Earth and produce geomagnetic storms. The longitude distribution of the Earth-encountered front-side halo CMEs (EFHCMEs) has not only an east–west (E–W) asymmetry  (Wang et al., 2002), but also depends on the EFHCMEs' transit speeds from the Sun to 1 AU. The faster the EFHCMEs are, the more westward does their distribution shift, and as a whole, the distribution shifts to the west. Combining the observational results and a simple kinetic analysis, we believe that such E–W asymmetry appearing in the source longitude distribution is due to the deflection of CMEs' propagation in the interplanetary medium. Under the effect of the Parker spiral magnetic field, a fast CME will be blocked by the background solar wind ahead and deflected to the east, whereas a slow CME will be pushed by the following background solar wind and deflected to the west. The deflection angle may be estimated according to the CMEs' transit speed by using a kinetic model. It is shown that slow CMEs can be deflected more easily than fast ones. This is consistent with the observational results obtained by Zhang et al. (2003), that all four Earth-encountered limb CMEs originated from the east. On the other hand, since the most of the EFHCMEs are fast events, the range of the longitude distribution given by the theoretical model is E40°,W70°, which is well consistent with the observational results (E40°,W75°).  相似文献   

3.
Mordvinov  A.V.  Plyusnina  L.A. 《Solar physics》2000,197(1):1-9
Time–frequency variability of the solar mean magnetic field (SMMF) was studied, based on a continuous wavelet analysis. The rotational modulation of the SMMF dominates the wavelet spectrum at 27–30 and 13.5-day time scales. The rotational variation, in turn, is amplitude-modulated by the quasi-biennial periodicity in the SMMF. This is caused by magnetic field eruptions. Rigidly rotating modes appear in the time–longitude distribution of the large-scale magnetic field that is plotted from a deconvolution of the SMMF time series with a Carrington period. These rotational modes coexist and transform into one another over an 11-yr cycle. The modes with periods of 27.8–28.0 days dominate the phase of activity rise, whereas the 27-day rotational mode dominates the declining phase of the 11-yr cycle. The rotational modes with periods of 29–30 days occurred episodically. Most of the features in the time–longitude distribution of the SMMF are identifiable with those in similar diagrams of the solar background magnetic fields. They represent a combined effect of the background magnetic fields from both hemispheres. Eruptions of magnetic fields lead to dramatic changes in the picture of solar rotation and correlate well with the polarity asymmetry in the SMMF signal. The polarity asymmetry in the SMMF time series exhibits both long-term changes and a 22-yr cyclic behaviour, depending on the reversals of the global magnetic field in cycles 20–23.  相似文献   

4.
Variations in total solar irradiance (TSI) correlate well with changes in projected area of photospheric magnetic flux tubes associated with dark sunspots and bright faculae in active regions and network. This correlation does not, however, rule out possible TSI contributions from photospheric brightness inhomogeneities located outside flux tubes and spatially correlated with them. Previous reconstructions of TSI report agreement with radiometry that seems to rule out significant “extra-flux-tube” contributions. We show that these reconstructions are more sensitive to the facular contrasts used than has been generally recognized. Measurements with the Solar Bolometric Imager (SBI) provide the first reliable support for the relatively high, wide-band, disk-center contrasts required to produce 10% rms agreement. Longer term bolometric imaging will be required to determine whether the small but systematic TSI residuals we see here are caused by remaining errors in spot and facular areas and contrasts or by extra-flux-tube brightness structures such as bright rings around sunspots or “convective stirring” around active regions.  相似文献   

5.
Mordvinov  A.V.  Salakhutdinova  I.I.  Plyusnina  L.A.  Makarenko  N.G.  Karimova  L.M. 《Solar physics》2002,211(1-2):241-253
We investigate the topological properties and evolution of background magnetic fields on synoptic maps from Wilcox Solar Observatory using mathematical morphology methods in terms of the Minkowski functionals. The total length of the neutral line, the total areas occupied by positive and negative polarities, and the Euler characteristics of background magnetic fields vary over an eleven-year cycle. Changes in the length of the neutral line that separates the polarities of the background magnetic field correlate well with flare activity. A time–longitude analysis of solar flare activity revealed a complicated organization and rotation of the entire flare ensemble. On the time–longitude diagram, flare activity is organized into the patterns which follow the rearrangements in background magnetic field and exhibit coexisting and alternating modes of rigid rotation. The character of rotation of the entire flare ensemble is similar to the rotation of background magnetic fields. The emergence of background magnetic fields and changes in their topology and rotation are often accompanied by enhancements in flare activity. A comparative analysis of the topological changes in background magnetic fields and flare activity reveals their causal relation.  相似文献   

6.
Eselevich  V.G.  Eselevich  M.V. 《Solar physics》1999,188(2):299-313
It is shown that within R>3–4 Rfrom the solar center the coronal streamer belt consists in a sequence of radial brightness rays. A minimum angular size of the individual ray d2.0°–2.5°, which is about the same in the directions normal to and along the streamer-belt, is independent of the distance from the Sun at R=4–6 R. The lifetime of the rays can exceed 10 days. From time to time, inhomogeneities of material inside the rays begin to move in the antisunward direction. Plots of increase in their velocity with the distance from the Sun are similar to those obtained by Sheeley et al. (1997) for inhomogeneities that are carried by a quasi-stationary solar wind in streamers. It is concluded that the phenomena discussed in this paper and by Sheeley et al. (1997) share a common origin. It is suggested that a different origin of solar wind flows in streamers and in coronal holes may be associated with a different character of flows in microtubes of the magnetic field comprising a total solar wind flow. These tubes are observed as brightness rays in streamer belts and plumes in coronal holes.  相似文献   

7.
Using data from the Greenwich catalog, we determined the nonuniformity of the longitudinal distribution of sunspot groups as a function of the rotation period taken for the longitude determination. We estimated the statistical significance of the active longitudes found. A fairly high significance was achieved only for sunspot groups of the Northern Hemisphere and odd activity cycles and only for a synodic rotation period close to 28 days. In this case, one interval of active longitudes was found. The active longitudes are assumed to be associated with the fossil magnetic field frozen in the uniformly rotating radiative zone of the Sun.  相似文献   

8.
Longitudinal distributions of the photospheric magnetic field studied on the basis of National Solar Observatory (Kitt Peak) data (1976 – 2003) displayed two opposite patterns during different parts of the 11-year solar cycle. Helio-longitudinal distributions differed for the ascending phase and the maximum of the solar cycle on the one hand and for the descending phase and the minimum on the other, depicting maxima around two diametrically opposite Carrington longitudes (180° and 0°/360°). Thus the maximum of the distribution shifted its position by 180° with the transition from one characteristic period to the other. Two characteristic periods correspond to different situations occurring in the 22-year magnetic cycle of the Sun, in the course of which both global magnetic field and the magnetic field of the leading sunspot in a group change their sign. During the ascending phase and the maximum (active longitude 180°) polarities of the global magnetic field and those of the leading sunspots coincide, whereas for the descending phase and the minimum (active longitude 0°/360°) the polarities are opposite. Thus the observed change of active longitudes may be connected with the polarity changes of Sun’s magnetic field in the course of 22-year magnetic cycle.  相似文献   

9.
Erofeev  D.V. 《Solar physics》1999,186(1-2):431-447
Large-scale distribution of the sunspot activity of the Sun has been analyzed by using a technique worked out previously (Erofeev, 1997) to study long-lived, non-axisymmetric magnetic structures with different periods of rotation. Results of the analysis have been compared with those obtained by analyzing both the solar large-scale magnetic field and large-scale magnetic field simulated by means of the well-known flux transport equation using the sunspot groups as a sole source of new magnetic flux in the photosphere. A 21-year period (1964–1985) has been examined.The rotation spectra calculated for the total time interval of two 11-year cycles indicate that sunspot activity consists of a series of discrete components (modes) with different periods of rotation. The largest-scale component of the sunspot activity reveals modes with 27-day and 28-day periods of rotation situated, correspondingly, in the northern and southern hemispheres of the Sun, and two modes with rotation periods of about 29.7 days situated in both hemispheres. Such a modal structure of the sunspot activity agrees well with that of the large-scale solar magnetic field. Moreover, the magnetic field distribution simulated with the flux transport equation also reveals the same modal structure. However, such an agreement between the large-scale solar magnetic field and both the sunspot activity and simulated magnetic field is unstable in time; so, it is absent in the northern hemisphere of the Sun during solar cycle No. 20. Thus the sources of magnetic flux responsible for formation of the large-scale, rigidly rotating magnetic patterns appear to be closely connected, but are not identical with the discrete modes of the sunspot activity.  相似文献   

10.
Poleward migration of the magnetic neutral line on the Sun has been calculated for the periods 1945–1950 and 1955–1981 using synoptic charts based on H observations. Epochs of sign reversal of the solar magnetic field at latitudes 50° to 90° have been determined for these periods. During the cycles 19 and 20 a threefold sign reversal took place in the northern hemisphere. During all the above cycles both the solar poles were of one polarity for a period ranging from 0.5 to 1 year. The poleward drift velocity of the magnetic neutral line varies from 6 to 29 m s–1 and seems to depend on the strength of the cycle.  相似文献   

11.
Verma  V.K. 《Solar physics》2000,194(1):87-101
The paper presents the results of a study of the distribution and asymmetry of solar active prominences (SAP) for the period 1957–1998 (solar cycles 19–23). The east-west (E-W) distribution study shows that the frequency of SAP events in the 81–90° slice (in longitude) near the east and west limbs is up to 10 times greater than in the 1–10° slice near the central meridian of the Sun. The north-south (N-S) latitudinal distribution shows that the SAP events are most prolific in the 11–20° slice in the northern and southern hemispheres. Further, the E-W asymmetry of SAP events is not significant. The N-S asymmetry of SAP events is significant and it has no relation with the solar maximum year or solar minimum year during solar cycles. Further, the present study also shows that the N-S asymmetry for cycles 19–23 follows and confirms the trend of N-S asymmetry cycles as reported by Verma (1992).  相似文献   

12.
The analysis of 315 hard X-ray bursts (HXR) producing solar flares observed by Hinotori satellite shows that the HXR bursts occur most prominently at 110°, 140°, 290°, and 320° longitude, respectively. These longitudes are not only prolific in producing flares in number but also in producing flares with large photon counts.  相似文献   

13.
The center-to-limb variation of the excess intensity in faculae was obtained for 266 active regions with an accuracy of 10–3. For this observation full-disk images were obtained with a rotating one-dimensional diode array whose rotation axis was set at the disk center, at the wavelength of 5450 Å with a bandpass of 400 Å. From the center-to-limb variation of excess intensity of active regions the excess effective temperature was found to be 6.4 K on the average where the mean longitudinal magnetic field is 65 G as measured by 5233 Å line. In other words the ratio of the excess radiative flux to the total flux was 0.44% on the average for the present measurements of low spatial resolution of 20.The average excess intensity for 60 active regions near the disk center was found to be 4 × 10–4 of the quiet Sun intensity. This very low excess brightness averaged over the whole active region, in contrast to the reported high excess brightness of facular points (diameter 0.2) of 0.4, leads to a hypothesis that the background in between facular points in the active region is darker than the true quiet photosphere by 1%. It is further surmised that the inferred darkness of intra facular points is due to partial compensation for excess total irradiance of facular points. This interpretation is also consistent with previous observations of the contrast of facular points near the limb.  相似文献   

14.
The relationships between disappearing solar filaments and geomagnetic activity are examined using data obtained between 1974 and 1980. The average level of geomagnetic activity is found to increase after the disappearance of large filaments. The magnitudes of the geomagnetic disturbances depend upon the sizes and, to a lesser extent, upon the darkness of the filaments. The delays between filament disappearances and resulting geomagnetic disturbances are typically 3–6 days, corresponding to Sun-Earth velocities 580–290 km s–1. These are consistent with the observed velocities of those coronal mass ejections that are associated with disappearing filaments.The average delay is: (a) shorter for large and dark filaments than for small and faint filaments respectively; (b) shorter during solar maximum than during solar minimum; (c) dependent in a complex way upon the longitudes of the filaments. Disturbances associated with filaments with longitudes 50 ° have delays 10 days.Quieter than average geomagnetic conditions sometimes occur for several days prior to the geomagnetic disturbances that follow disappearing filaments.  相似文献   

15.
This paper presents the average three-dimensional configuration of solar flare- or disappearing filament-associated interplanetary disturbances on the basis of IPS (interplanetary scintillation) and spacecraft observations in 1978–1981. The angular distribution of the propagation speed at 1 AU is largely isotropic over the range of 110° in solar longitude centered at the normal of the solar source. In the latitudinal direction, the characteristic angular extent is about 60°. Thus the three-dimensional shape of an interplanetary disturbance can be approximated by a half of an ellipsoid having an axial ratio of about 1.8.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

16.
The analysis of the daily measurements of the coronal green line intensity, which have been extensively tested for homogeneity and freedom of trends observed at the Pic-du-Midi observatory during the period 1944–1974, has revealed some characteristic asymmetric variations. A north-south asymmetry of the green line intensity is the main feature of the period 1949–1971 while a south-north one is obvious within 1972–1974 and the minor statistical significance span 1944–1948. On the other hand a significant W-E asymmetry has been confirmed in the whole period 1944–1974. It is noteworthy that the period 1949–1971, where the N-S asymmetry takes place consists a 22-yr solar cycle which starts from the epoch of the solar magnetic field inversion of the solar cycle No. 18 and terminates in the relevant epoch of the cycle No. 20.The combination of N-S and S-N asymmetry with a W-E one makes the NW solar-quarter to appear as the most active of all in the 22-yr cycle 1949–1971, while in the periods 1944–1948 and 1972–1974 the SW quarter is the most active. Finally, from the polar distribution of the green line intensity has been derived that the maximum values of the asymmetries occur in heliocentric sectors ± 10°–20° far from the solar equator on both sides of the central meridian.Physical mechanisms which could contribute to the creation of both N-S and E-W asymmetries of the solar activity and the green line intensity as an accompanied event, like different starting time of an 11-yr solar cycle in the two solar hemispheres, the motion of the Sun towards the Apex, and short-lived active solar longitudes formed by temporal clustering of solar active centers, have been discussed.  相似文献   

17.
Ruzmaikin  A. 《Solar physics》1998,181(1):1-12
We report observations of the large-scale spatial dependence of the Sun's luminosity variations over the period 1993–1995. The measurements were made using a new scanning disk solar photometer at Big Bear Solar Observatory, specially designed to measure large-scale brightness variations at the 10–4 level. Since the level of solar activity was very low for the entire observation period, the data show little solar cycle variation. However, the residual brightness signal I/I (after subtracting the mean, first, and second harmonics) does show a strong dependence on heliocentric angle, peaking near the limb. This is as one would expect if the residual brightness signal (including the excess brightness coming from the active latitudes) were primarily facular in origin. Additional data over the next few years, covering the period from solar minimum to maximum, should unambiguously reveal the large-scale spatial structure of the solar cycle luminosity variations.  相似文献   

18.
太阳剩余磁场是指形成于太阳主序星阶段之前,深藏在太阳辐射核内部的原始磁场。由于太阳内部高电导率和准静态等因素,其剩余磁场耗散相当缓慢,而得以保留至今。太阳剩余磁场的存在不仅能够解释太阳活动的很多不对称性现象,如南北不对称性、活动经度与活动穴、低纬度冕洞和Maunder极小期等,还能通过改变自激发发电机模型的边值条件而影响整个太阳表面磁场的分布与演化。从观测结果和理论模型两方面评述了太阳剩余磁场的研究成果及最新进展,并简单讨论了进一步努力的方向。  相似文献   

19.
We survey 14 super-active regions (SARs) in the 22nd cycle and 15 SARs in the 23rd cycle. Each produced major flares and major solar storms. Among them, the 25 most violent super active regions (VSARs) are selected based on five parameters: the largest area of sunspots, X-ray flare index (XRI), 10.7 cm radio flux, proton flux and geomagnetic A p index. In order to understand the VSARs, we have investigated a few key magnetic properties of those regions, i.e., net magnetic flux, tilt angle and force-free parameter best. The following results are found: (1) Most VSARs (84%) in our samples have net magnetic flux greater than 1021 Mx, implying that those are seriously unbalanced flux regions. Unbalanced flux active regions probably provide a nest to relate the small-scale to the large-scale magnetic field. (2) Most of the VSARs (68%) are of abnormal magnetic structure, violating the Hale–Nicholson Law. For most of the normal VSARs, the tilt angles are larger than 40°. 84% of the VSARs follow the hemispheric helicity rule. Generally, they have large magnetic twist and writhe helicity. (3) We also enlarge our samples to study the locations of VSARs by adding the top 10 of the major flares, proton events and severe magnetic storms from 1976 to 2001. It is found that 77% in our 30 samples of VSARs were preferentially located in 4 longitude bands, i.e., l c=80°±15° l c=170°±15° l c=260°±15° and l c=350°±15°. The interval of those longitude bands is roughly 90°. From the above results, we suggest that there probably is a special magnetic environment in the sub-photosphere of the four longitude bands where it is preferred to produce abnormal and complex active regions which easily produce major flares and major solar storms. Area, magnetic class, net magnetic flux, Carrington longitude and tilt angle of an active region may serve to predict likelihood of the active region producing hazarded space weather.  相似文献   

20.
Obridko  V.N.  Shelting  B.D. 《Solar physics》1999,187(1):185-205
The structure and variations of open field regions (OFRs) are analyzed against the solar cycle for the time interval of 1970–1996. The cycle of the large-scale magnetic field (LSMF) begins in the vicinity of maximum Wolf numbers, i.e. during the polar field reversal. At the beginning of the LSMF cycle, the polar and mid-latitude magnetic field systems are connected by a narrow bridge, but later they evolve independently. The polar field at the latitudes above 60° has a completely open configuration and fills the whole area of the polar caps near the cycle minimum of local fields. At this time, essentially all of the open solar flux is from the polar caps. The mid-latitude open field regions (OFRs) occur at a latitude of 30–40° away from solar minimum and drift slowly towards the equator to form a typical 'butterfly diagram' at the periphery of the local field zone. This supports the concept of a single complex – 'large-scale magnetic field – active region – coronal hole'. The rotation characteristics of OFRs have been analyzed to reveal a near solid-body rotation, much more rigid than in the case of sunspots. The rotation characteristics are shown to depend on the phase of the solar cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号