首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the A-train constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10?16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.  相似文献   

2.

A new closure and a modified detrainment for the simplified Arakawa–Schubert (SAS) cumulus parameterization scheme are proposed. In the modified convective scheme which is named as King Abdulaziz University (KAU) scheme, the closure depends on both the buoyancy force and the environment mean relative humidity. A lateral entrainment rate varying with environment relative humidity is proposed and tends to suppress convection in a dry atmosphere. The detrainment rate also varies with environment relative humidity. The KAU scheme has been tested in a single column model (SCM) and implemented in a coupled global climate model (CGCM). Increased coupling between environment and clouds in the KAU scheme results in improved sensitivity of the depth and strength of convection to environmental humidity compared to the original SAS scheme. The new scheme improves precipitation simulation with better representations of moisture and temperature especially during suppressed convection periods. The KAU scheme implemented in the Seoul National University (SNU) CGCM shows improved precipitation over the tropics. The simulated precipitation pattern over the Arabian Peninsula and Northeast African region is also improved.

  相似文献   

3.
Aerosol effects on warm (liquid-phase) cumulus cloud systems may have a strong radiative influence via suppression of precipitation in convective systems. A consequence of this suppression of precipitation is increased liquid water available for large-scale stratiform clouds, through detrainment, that in turn affect their precipitation efficiency. The nature of this influence on radiation, however, is dependent on both the treatment of convective condensate and the aerosol distribution. Here, we examine these issues with two climate models—CSIRO and GISS, which treat detrained condensate differently. Aerosol–cloud interactions in warm stratiform and cumulus clouds (via cloud droplet formation and autoconversion) are treated similarly in both models. The influence of aerosol–cumulus cloud interactions on precipitation and radiation are examined via simulations with present-day and pre-industrial aerosol emissions. Sensitivity tests are also conducted to examine changes to climate due to changes in cumulus cloud droplet number (N c); the main connection between aerosols and cumulus cloud microphysics. Results indicate that the CSIRO GCM is quite sensitive to changes in aerosol concentrations such that an increase in aerosols increases N c, cloud cover, total liquid water path (LWP) and reduces total precipitation and net cloud radiative forcings. On the other hand, the radiative fluxes in the GISS GCM appear to have minimal changes despite an increase in aerosols and N c. These differences between the two models—reduced total LWP in the GISS GCM for increased aerosols, opposite to that seen in CSIRO—appear to be more sensitive to the detrainment of convective condensate, rather than to changes in N c. If aerosols suppress convective precipitation as noted in some observationally based studies (but not currently treated in most climate models), the consequence of this change in LWP suggests that: (1) the aerosol indirect effect (calculated as changes to net cloud radiative forcing from anthropogenic aerosols) may be higher than previously calculated or (2) lower than previously calculated. Observational constrains on these results are difficult to obtain and hence, until realistic cumulus-scale updrafts are implemented in models, the logic of detraining non-precipitating condensate at appropriate levels based on updrafts and its effects on radiation, will remain an uncertainty.  相似文献   

4.
Tongwen Wu 《Climate Dynamics》2012,38(3-4):725-744
A simple mass-flux cumulus parameterization scheme suitable for large-scale atmospheric models is presented. The scheme is based on a bulk-cloud approach and has the following properties: (1) Deep convection is launched at the level of maximum moist static energy above the top of the boundary layer. It is triggered if there is positive convective available potential energy (CAPE) and relative humidity of the air at the lifting level of convection cloud is greater than 75%; (2) Convective updrafts for mass, dry static energy, moisture, cloud liquid water and momentum are parameterized by a one-dimensional entrainment/detrainment bulk-cloud model. The lateral entrainment of the environmental air into the unstable ascending parcel before it rises to the lifting condensation level is considered. The entrainment/detrainment amount for the updraft cloud parcel is separately determined according to the increase/decrease of updraft parcel mass with altitude, and the mass change for the adiabatic ascent cloud parcel with altitude is derived from a total energy conservation equation of the whole adiabatic system in which involves the updraft cloud parcel and the environment; (3) The convective downdraft is assumed saturated and originated from the level of minimum environmental saturated equivalent potential temperature within the updraft cloud; (4) The mass flux at the base of convective cloud is determined by a closure scheme suggested by Zhang (J Geophys Res 107(D14), doi:10.1029/2001JD001005, 2002) in which the increase/decrease of CAPE due to changes of the thermodynamic states in the free troposphere resulting from convection approximately balances the decrease/increase resulting from large-scale processes. Evaluation of the proposed convection scheme is performed by using a single column model (SCM) forced by the Atmospheric Radiation Measurement Program’s (ARM) summer 1995 and 1997 Intensive Observing Period (IOP) observations, and field observations from the Global Atmospheric Research Program’s Atlantic Tropical Experiment (GATE) and the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The SCM can generally capture the convective events and produce a realistic timing of most events of intense precipitation although there are some biases in the strength of simulated precipitation.  相似文献   

5.
刘一鸣  丁一汇 《气象学报》2001,59(2):129-142
作者在“修正的质量通量积云对流方案及其模拟试验研究I方案介绍及对1991年洪涝过程的模拟”论文中提出的质量通量方案成功地植入区域气候模式RegCM2的基础上,对比分析质量通量方案MFS,Kuo方案和Grell方案对积云对流活动的模拟,结果表明质量通量方案较好地模拟了积云对流活动过程。针对质量通量方案中的一些参数,如云水向雨水的转换率、混合卷入率、混合卷出率和下沉气流的强度等进行了一系列的敏感性试验,试验结果表明积云对流活动对这些参数比较敏感,因此提高这些参数的准确性是改进积云对流参数化方案的重要内容之一。  相似文献   

6.
基于CloudSat卫星资料分析青藏高原东部夏季云的垂直结构   总被引:4,自引:1,他引:4  
张晓  段克勤  石培宏 《大气科学》2015,39(6):1073-1080
本文利用CloudSat卫星资料,对青藏高原东部2006~2010年6~8月云垂直结构的空间分布进行分析,结果表明:(1)夏季青藏高原东部云发展可达到平流层,且高原东部云在5km以下以水云存在,5~10km以液相和固相共存的混态存在,在垂直高度10km以上以冰云存在。由于CloudSat卫星资料云相的反演问题,可能会造成水云和混态云的发展上限偏低,冰云的发展下限抬升。(2)研究区整层水汽输送和云水平均路径空间分布存在一定的差异性,云水含量纬向分布表现为在26.5°~30.5°N附近存在一个明显的峰值区,经向分布表现为95°E以西云水含量低于以东。(3)研究区以单云层为主,尤其在青藏高原主体。单云层平均云层厚度4182 m,云顶高度、云厚限于水汽的输送,表现为由南向北波动下降。多层云发生频率在27°N以北明显减少,说明强烈的对流运动更容易激发多层云的产生。  相似文献   

7.
By comparison of simulated cumulus convection processes in RegCM2,using the Kuo scheme,the Grell scheme and the mass flux scheme (MFS),it is found that the MFS can simulate the cumulus heating and moistening very well.A series of sensitivity tests show that the parameters for specifying the conversion coefficient from cloud droplets to raindrops,the turbulent entrainment and detrainment rates in updrafts anddowndrafts,and the intensity of the downdrafts have different degrees of influence upon the cumulus convection.Therefore.it is quite important for cumulus parameterization scheme to define these parameters as accurately as possible.  相似文献   

8.
A convection scheme for climate model is developed based on Tiedtke’s (Mon Weather Rev 117:1779–1800, 1989) bulk mass flux framework and is evaluated with observational data and cloud resolving model simulation data. The main differences between the present parameterization and Tiedtke’s parameterization are the convection trigger, fractional entrainment and detrainment rate formulations, and closure method. Convection is triggered if the vertical velocity of a rising parcel is positive at the level at which the parcel is saturated. The fractional entrainment rate depends on the vertical velocity and buoyancy of the parcel as well as the environmental relative humidity. For the fractional detrainment rate, a linear decrease in the updraft mass flux above maximum buoyancy level is assumed. In the closure method, the cloud base mass flux is determined by considering both cloud layer instability and subcloud layer turbulent kinetic energy as controlling factors in the strength of the convection. The convection scheme is examined in a single column framework as well as using a general circulation model. The present bulk mass flux (BMF) scheme is compared with a simplified Relaxed Arakawa-Schubert (RAS) scheme. In contrast to the RAS, which specifies the cloud top, cloud top height in BMF depends on environmental properties, by considering the conditions of both the parcel and its environment in a fractional entrainment and detrainment rate formulations. As a result, BMF shows improved sensitivity in depth and strength of convection on environmental humidity compared to RAS, by strengthening coupling between cloud and environment. When the mid to lower troposphere is dry, the cloud resolving model and BMF produce cloud top around the dry layer and moisten the layer. In the framework of general circulation model, enhanced coupling between convection and environmental humidity in BMF results in improved representation of eastward propagating intraseasonal variability in the tropics—the Madden-Julian oscillation.  相似文献   

9.
By comparison of simulated cumulus convection processes in RegCM2,using the Kuo scheme,the Grell scheme and the mass flux scheme (MFS),it is found that the MFS can simulate thecumulus heating and moistening very well.A series of sensitivity tests show that the parametersfor specifying the conversion coefficient from cloud droplets to raindrops,the turbulententrainment and detrainment rates in updrafts anddowndrafts,and the intensity of thedowndraftshave different degrees of influence upon the cumulus convection.Therefore.it is quite importantfor cumulus parameterization scheme to define these parameters as accurately as possible.  相似文献   

10.
Cloud distribution characteristics over the Tibetan Plateau in the summer monsoon period simulated by the Australian Community Climate and Earth System Simulator(ACCESS) model are evaluated using COSP [the CFMIP(Cloud Feedback Model Intercomparison Project) Observation Simulator Package]. The results show that the ACCESS model simulates less cumulus cloud at atmospheric middle levels when compared with observations from CALIPSO and CloudSat, but more ice cloud at high levels and drizzle drops at low levels. The model also has seasonal biases after the onset of the summer monsoon in May. While observations show that the prevalent high cloud at 9–10 km in spring shifts downward to 7–9 km,the modeled maximum cloud fractions move upward to 12–15 km. The reason for this model deficiency is investigated by comparing model dynamical and thermodynamical fields with those of ERA-Interim. It is found that the lifting effect of the Tibetan Plateau in the ACCESS model is stronger than in ERA-Interim, which means that the vertical velocity in the ACCESS model is stronger and more water vapor is transported to the upper levels of the atmosphere, resulting in more high-level ice clouds and less middle-level cumulus cloud over the Tibetan Plateau. The modeled radiation fields and precipitation are also evaluated against the relevant satellite observations.  相似文献   

11.
For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy Diffusivity\Mass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCS\ARM) and conserve a realistic evolution of stratocumulus (EUROCS\FIRE).  相似文献   

12.
The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud mod-el were compared with the aircraft cloud physical observations collected during the summer monsoon seasons of 1973,1974,1976 and 1981 in the Deccan Plateau region.The model predicted profiles of cloud liquid water content (LWC) are in agreement with the observed profiles. There is reasonable agreement between the model predicted cloud vertical thickness and observed rainfall.The observed cloud-drop spectra were found to be narrow and the concentration of drops with diameter >20μm is either low or absent on many occasions. In such clouds the rain-formation cannot take place under natural atmos-pheric conditions due to the absence of collision-coalescence process. A comparison of the model predicted and ob-served rainfall suggested that the precipitation efficiency in cumulus clouds of small vertical thickness could be as low as 20 per cent.The clouds forming in the Deccan Plateau region during the summer monsoon are, by and large, cumulus and strato-cumulus type. The vertical thickness of the cumulus clouds is in the range of 1.0-2.0 km. The LWC is found to be more in the region between 1.6-1.9 km A. S. L., which corresponds to the level at almost 3 / 4 th of the total verti-cal thickness of the cloud and thereafter the LWC sharply decreased. Nearly 98 per cent of the tops of the low clouds in the region are below freezing level and the most frequent range of occurrence of these cloud-tops is in the range of 2.0-3.0 km A. S. L.. The dominant physical mechanism of rain-formation in these summer monsoon clouds it the col-lision-coalescence process.  相似文献   

13.
利用CloudSat/CALIPSO卫星资料,本文揭示了东亚三个代表性区域的云微物理属性,为评估和改进模式云微物理过程提供重要的观测基础.研究的云微物理量包括云水/冰质量,数浓度和有效半径.研究表明:暖云中云水质量和数浓度随高度增加而减小,有效半径处于8-14μm范围.对于冰云,云冰质量和有效半径随高度增加而减小,而数浓度在垂直方向上变化不大.此外,云微物理属性在不同云型之间存在显著差异:积云的云水质量和数浓度最大,而卷云的云水质量和数浓度最小.从三个区域的对比结果来看,相比于华东和西北太平洋地区,青藏高原地区暖云的云水质量和数浓度较小,而冰云的则较大.  相似文献   

14.
A conditional sampling based on the combination of a passive tracer emitted at the surface and thermodynamic variables is proposed to characterise organized structures in large-eddy simulations of cloud-free and cloudy boundary layers. The sampling is evaluated against more traditional sampling of dry thermals or clouds. It enables the characterization of convective updrafts from the surface to the top of the boundary layer (or the top of cumulus clouds), describing in particular the transition from the sub-cloud to the cloud layer, and retrieves plume characteristics, entrainment and detrainment rates, variances and fluxes. This sampling is used to analyze the contribution of boundary-layer thermals to vertical fluxes and variances.  相似文献   

15.
冯业荣  王作述 《大气科学》1995,19(5):597-605
本文利用积云群整体诊断模式,对一次梅雨静止锋暴雨过程的积云对流活动进行研究,计算了质量通量、云内温度、比湿、液态水等积云属性,讨论了云中凝结蒸发过程以及对流能量输送特征。结果表明,梅雨积云质量通量比热带扰动大,但积云的发展高度不及热带深厚对流;积云群的降水效率约为50%;潜热在对流能量铅直输送中占显著地位,其量值远大于热带扰动中的对流活动。  相似文献   

16.
A boundary-layer model, which incorporates an eddy diffusivity for turbulent transports, is presented. It is shown that this model can predict the appropriate behaviour for mixed layers produced by surface shear, free convection and mechanical mixing. The model is used to consider the development of cumulus clouds, which are shown generally to be convectively unstable at cloud top. Thus the entrainment of dry air leads to a very low cloud-water content in cumulus cloud.  相似文献   

17.
In this paper, we study a persistent heavy precipitation process caused by a special retracing plateau vortex in the eastern Tibetan Plateau during 21–26 July 2010 using tropical rainfall measuring mission (TRMM) data. Results show that during the whole heavy rainfall process, the precipitation rate of convective cloud is steady for all four phases of the plateau vortex movement. Compared with the convective precipitation clouds, the stratiform precipitation clouds have a higher fraction of area, a comparable ratio of contribution to the total precipitation, and a much lower precipitation rate. Precipitation increases substantially after the vortex moves out of the Tibetan Plateau, and Sichuan Province has the most extensive precipitation, which occurs when the vortex turns back westward. A number of strong convective precipitation cloud centers appear at 3–5 km. With strong upward motion, the highest rain top can reach up to 15 km. In various phases of the vortex evolution, there is always more precipitable ice than precipitable water, cloud ice water and cloud liquid water. The precipitating cloud particles increase significantly in the middle and lower troposphere when the vortex moves eastward, and cloud ice particles increase quickly at 6–8 km when the vortex retraces westward. The center of the latent heat release is always prior to the center of the vortex, and the vortex moves along the latent heat release areas. Moreover, high latent heat is released at 5–8 km with maximum at 7 km. Also, the latent heat release is more significant when the vortex moves out of the Tibetan Plateau than over the Tibetan Plateau.  相似文献   

18.
 Experiments using a GCM with two different vertical resolutions show differences in the amount of variability in the tropical upper tropospheric zonal wind component associated with the Madden-Julian Oscillation (MJO). The GCM with lower vertical resolution shows very little variability in this quantity whereas when the vertical resolution is doubled in the free troposphere, the GCM produces variability which is of the same strength as observations. However, the eastward propagation of an enhanced convective region from the Indian Ocean into the west Pacific is not well represented in either simulation of this atmospheric GCM. A water-covered or “aqua-planet” version of the same GCM is used to investigate the behaviour of tropical convection when the vertical resolution is doubled. When the vertical resolution is increased, the spectrum of tropical cloud types changes from a bimodal distribution with peaks representing shallow cumulus and deep cumulonimbus clouds to a trimodal distribution with a third peak in mid-troposphere near the melting level. Associated with periods when these mid-level congestus clouds are dominant, the detrainment from these clouds significantly moistens the mid-troposphere. The appearance of these congestus clouds is shown to be partly due to improved resolution of the freezing level and the convective processes occurring at this level. However, due to the way in which convective detrainment is parametrized in this model, the vertical profile becomes rather noisy and this too contributes to the change in the nature of the convective clouds. The resulting cloud distribution more closely resembles observations, particularly during the suppressed phase of the MJO when cumulus congestus is the dominant cloud type. Received: 17 April 2000 / Accepted: 30 November 2000  相似文献   

19.
The grid-point atmospheric model of IAP LASG (GAMIL) was developed in and has been evaluated since early 2004. Although the model shows its ability in simulating the global climate, it suffers from some problems in simulating precipitation in the tropics. These biases seem to result mainly from the treatment of the subgrid scale convection, which is parameterized with Tiedtke's massflux scheme (or the Zhang-McFarlane scheme, as an option) in the model. In order to reduce the systematic biases, several modifications were made to the Tiedtke scheme used in GAMIL, including (1) an increase in lateral convective entrainment/detrainment rate for shallow convection, (2) inclusion of a relative humidity threshold for the triggering of deep convection, and (3) a reduced efficiency for the conversion of cloud water to rainwater in the convection scheme.
Two experiments, one with the original Tiedtke scheme used in GAMIL and the other with the modified scheme, were conducted to evaluate the performance of the modified scheme in this study. The results show that both the climatological mean state, such as precipitation, temperature and specific humidity, and interannual variability in the model simulation are improved with the use of this modified scheme. Results from several additional experiments show that the improvements in the model performance in different regions mainly result from either the introduction of the relative humidity threshold for triggering of the deep convection or the suppressed shallow convection due to enhanced lateral convective entrainment/detrainment rates.  相似文献   

20.
利用NCEP FNL再分析资料为初始场,通过WRF中尺度数值模式(V3.9.1版本)对2015年8月26~27日青藏高原那曲地区一次对流云降水过程进行了模拟,分析了不同积云对流参数化方案和云微物理参数化方案组合对本次降水过程中降水量、环流场、雷达反射率以及云微物理特征模拟效果的影响。结果表明:WRF模式能较好地模拟出本次降水的时空变化特征,但不同参数化方案组合各有优势,总体而言,Grell-Devenyi+SUBYLIN和Grell-Freitas+SUBYLIN组合模拟性能最优。本次对流云降水以冰相过程为主,雪粒子贡献最大,暖云粒子对降水的影响并不明显。从云微物理过程的时间演变可看出,性能最好的SUBYLIN方案能合理模拟降水过程中雪粒子与冰晶粒子间的转换过程,雪粒子可在凝结过程中释放潜热促使对流运动发展,也可通过融化过程促进降水发生,对流层高层冰晶粒子凝华产生的潜热释放亦为深对流的发展创造了有利条件。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号