首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A wide-angle airborne laser ranging system (WA-ALRS) is developed at the Institut Géographique National (IGN), France, with the aim of providing a new geodesy technique devoted to large (100 km2) networks with a high density (1 km−2) of benchmarks. The main objective is to achieve a 1-mm accuracy in relative vertical coordinates from aircraft measurements lasting a few hours. This paper reviews the methodology and analyzes the first experimental data achieved from a specific ground-based experiment. The accuracy in relative coordinate estimates is studied with the help of numerical simulations. It is shown that strong accuracy limitations arise with a small laser beam divergence combined with short range measurements when relatively few simultaneous range data are produced. The accuracy is of a few cm in transverse coordinates and a few mm in radial coordinates. The results from ground-based experimental data are fairly compatible with these predictions. The use of a model for systematic errors in the vehicle trajectory is shown to be necessary to achieve such a high accuracy. This work yields the first complete validation of modelization and methodology of this technique. An accuracy better than 1 mm and a few mm in vertical and horizontal coordinates, respectively, is predicted for aircraft experiments. Received: 19 June 1997 / Accepted: 17 February 1998  相似文献   

2.
The monitoring of terrestrial carbon dynamics is important in studies related with global climate change. This paper presents results of the inter-annual variability of Net Primary Productivity (NPP) from 1981 to 2000 derived using observations from NOAA-AVHRR data using Global Production Efficiency Model (GloPEM). The GloPEM model is based on physiological principles and uses the production efficiency concept, in which the canopy absorption of photosynthetically active radiation (APAR) is used with a conversion “efficiency” to estimate Gross Primary Production (GPP). NPP derived from GloPEM model over India showed maximum NPP about 3,000 gCm−2year−1 in west Bengal and lowest up to 500 gCm−2year−1 in Rajasthan. The India averaged NPP varied from 1,084.7 gCm−2year−1 to 1,390.8 gCm−2year−1 in the corresponding years of 1983 and 1998 respectively. The regression analysis of the 20 year NPP variability showed significant increase in NPP over India (r = 0.7, F = 17.53, p < 0.001). The mean rate of increase was observed as 10.43 gCm−2year−1. Carbon fixation ability of terrestrial ecosystem of India is increasing with rate of 34.3 TgC annually (t = 4.18, p < 0.001). The estimated net carbon fixation over Indian landmass ranged from 3.56 PgC (in 1983) to 4.57 PgC (in 1998). Grid level temporal correlation analysis showed that agricultural regions are the source of increase in terrestrial NPP of India. Parts of forest regions (Himalayan in Nepal, north east India) are relatively less influenced over the study period and showed lower or negative correlation (trend). Finding of the study would provide valuable input in understanding the global change associated with vegetation activities as a sink for atmospheric carbon dioxide.  相似文献   

3.
Temporal correlation in network real-time kinematic (RTK) data exists due to unmodeled multipath and atmospheric errors, in combination with slowly changing satellite constellation. If this correlation is neglected, the estimated uncertainty of the coordinates might be too optimistic. In this study, we compute temporal correlation lengths for network RTK positioning, i.e., the appropriate time separation between the measurements. This leads to more realistic coordinate uncertainty estimates, and an appropriate surveying strategy to control the measurements can be designed. Two methods to estimate temporal correlation lengths are suggested. Several monitor stations that utilize correction data from two SWEPOSTM Network RTK services, a standard service and a project-adapted service with the mean distance between the reference stations of approximately 70 and 10–20 km, are evaluated. The correlation lengths for the standard service are estimated as 17 min for the horizontal component and 36–37 min for the vertical component. The corresponding estimates for the project-adapted service are 13–17 and 13–16 min, respectively. According to the F test, the proposed composite first-order Gauss–Markov autocovariance function shows a significantly better least-squared fit to data compared to the commonly used one-component first-order Gauss–Markov model. A second suggested method is proposed that has the potential of providing robust correlation lengths without the need to fit a model to the computed autocovariance function.  相似文献   

4.
 Global positioning system (GPS) carrier phase measurements are used in all precise static relative positioning applications. The GPS carrier phase measurements are generally processed using the least-squares method, for which both functional and stochastic models need to be carefully defined. Whilst the functional model for precise GPS positioning is well documented in the literature, realistic stochastic modelling for the GPS carrier phase measurements is still both a controversial topic and a difficult task to accomplish in practice. The common practice of assuming that the raw GPS measurements are statistically independent in space and time, and have the same accuracy, is certainly not realistic. Any mis-specification in the stochastic model will inevitably lead to unreliable positioning results. A stochastic assessment procedure has been developed to take into account the heteroscedastic, space- and time-correlated error structure of the GPS measurements. Test results indicate that the reliability of the estimated positioning results is improved by applying the developed stochastic assessment procedure. In addition, the quality of ambiguity resolution can be more realistically evaluated. Received: 13 February 2001 / Accepted: 3 September 2001  相似文献   

5.
The Burhi Dining river flows in a meandering course for about 220 km through alluvial plains of Assam including a short rocky and hilly tract in between. Sequential changes in the position of banklines of the river due to consistent bank erosion have been studied from Survey of India topographic maps of 1934 and 1972, and digital satellite data of 2001 and 2004 using GIS. Two broad kinds of changes have been observed, e.g. alteration of direction of flow due to neck cut-off and progressive gradual change of the meander bends that accounts for translational, lateral, rotational, extensional and other types of movement of the meander bends. Study of bankline shift due to the bank erosion has been carried out for the periods 1934–1972, 1972–2001, 2001–2004 and 1934–2004 at 13 segments spaced at 5′ longitude interval (average 15 km) as the river course trends nearly east to west. The amounts of the bank area lost due to erosion and gained due to sediment deposition are estimated separately. The total area eroded in both banks during 1934–1972 was more (26.796 km2) as compared to sediment deposition (19.273 km2), whereas total sediment deposition was more (34.61 km2) during 1972-2001 as compared to erosion (23.152 km2). Erosion was again more in 2001–2004 (7.568 km2) as compared to sediment deposition (2.493 km2). During the entire period (1934–2004) of study the overall erosion on the both banks was 31.169 km2 and overall sediment deposition was 30.101 km2. The highest annual rates of bank erosion as well as bank building of the river are 21055.47 m2/km in 2001–2004 and 9665.81 m2/km in 1972-2001, respectively. Similarly the highest average annual rates of erosion as well as sediment deposition in both banks are observed during 2001–2004 and 1972–2001, respectively. The hard rocks of the hilly tract situated in between result in development of entrenched meandering and this tract has suffered minimum bank erosion.  相似文献   

6.
Fast transform from geocentric to geodetic coordinates   总被引:3,自引:0,他引:3  
 A new iterative procedure to transform geocentric rectangular coordinates to geodetic coordinates is derived. The procedure solves a modification of Borkowski's quartic equation by the Newton method from a set of stable starters. The new method runs a little faster than the single application of Bowring's formula, which has been known as the most efficient procedure. The new method is sufficiently precise because the resulting relative error is less than 10−15, and this method is stable in the sense that the iteration converges for all coordinates including the near-geocenter region where Bowring's iterative method diverges and the near-polar axis region where Borkowski's non-iterative method suffers a loss of precision. Received: 13 November 1998 / Accepted: 27 August 1999  相似文献   

7.
O. Bock  C. Thom 《Journal of Geodesy》2002,76(6-7):323-333
 A wide-angle airborne laser ranging system has been developed for the determination of relative heights of ground-based benchmarks in regional-scale networks (typically 100 laser reflectors spread over 100 km2). A first prototype demonstrated a 1–2 mm accuracy in radial distance measurement in a ground-based experiment in 1995. The first aircraft experiment was conducted in 1998, over a small area (1 km2) equipped with a network of 64 benchmarks. The instrument was modified before that experiment, in order to minimize echo superimposition due to the high density of benchmarks. New data processing algorithms have been developed, for the deconvolution of strongly overlapped echoes and a high a priori uncertainty in the aircraft flight path, and for the estimation of benchmark coordinates. A special methodology has been developed for the parameterization of these algorithms and of outlier detection tests. From a total of 2×104 pseudo-range measurements, that have been acquired from two flights composed of 30 legs each, only 3×103 remain after outlier detection. A positioning accuracy of 1.5 cm in the vertical coordinate (2.1 cm in the difference between the two flights) has been achieved. It is shown that the errors are normally distributed, with a nearly zero mean, and are consistent with the a posteriori uncertainty. It is also shown that the accuracy is limited mainly by the sensitivity of the photodetector used for this experiment (due to reduced response time). Another limiting factor is the effect of aircraft attitude changes during the measurements, which produces additional uncertainties in absolute distance measurements. It is planned to test new photodetectors with high internal gains. These should provide, in future experiments with smaller benchmark density, an improvement in signal-to-noise ratio of a factor of 5–10, leading to sub-centimeter vertical positioning accuracy. Received: 19 June 2001 / Accepted: 3 January 2002  相似文献   

8.
大光斑激光雷达数据已广泛应用于森林冠层高度提取,但通常仅限于地形坡度小于20°的平缓地区。在地形坡度大于20°的陡峭山区,地形引起的波形展宽使得地面回波和植被回波信息混合在一起,给森林冠层高度提取带来巨大挑战。本文利用激光雷达回波模型和地形信息,提出了一种模型辅助的坡地森林冠层高度反演算法。该方法以激光雷达回波信号截止点为参考,定义了波形高度指数H50和H75,使用激光雷达回波模型与已知地形信息模拟裸地的激光雷达回波,将裸地回波信号截止点与森林激光雷达回波信号截止点对齐,利用裸地回波计算常用的波形相对高度指数RH50和RH75,对森林冠层高度进行反演。并与高斯波形分解法和波形参数法的反演结果进行了比较。研究结果表明:(1)利用所提取的波形指数RH50和RH75对胸高断面积加权平均高(Lorey’s height)进行了估算,在坡度小于20°时,高斯波形分解法、波形参数法和模型辅助法的估算结果与实测值线性拟合的相关系数(R2)分别为0.70,0.78和0.98,对应的均方根误差(RMSE)分别为2.90 m,2.48 m和0.60 m,模型辅助法略优于其他两种方法;(2)在坡度大于20°时,高斯波形分解法、波形参数法和模型辅助法的R2分别为0.14,0.28和0.97,相应的RMSE分别为4.93 m,4.53 m和0.81 m,模型辅助法明显优于其他两种方法;(3)在0°—40°时,模型辅助法对Lorey’s height估算结果与实测值的R2为0.97,RMSE为0.80 m。本研究提出的模型辅助法具有更好的地形适应性,在0°—40°的坡度范围内具备对坡地森林冠层高度反演的潜力。  相似文献   

9.
 Ten days of GPS data from 1998 were processed to determine how the accuracy of a derived three-dimensional relative position vector between GPS antennas depends on the chord distance (denoted L) between these antennas and on the duration of the GPS observing session (denoted T). It was found that the dependence of accuracy on L is negligibly small when (a) using the `final' GPS satellite orbits disseminated by the International GPS Service, (b) fixing integer ambiguities, (c) estimating appropriate neutral-atmosphere-delay parameters, (d) 26 km ≤ L ≤ 300 km, and (e) 4 h ≤T ≤ 24 h. Under these same conditions, the standard error for the relative position in the north–south dimension (denoted S n and expressed in mm) is adequately approximated by the equation S n =k n /T  0.5 with k n =9.5 ± 2.1 mm · h0.5 and T expressed in hours. Similarly, the standard errors for the relative position in the east–west and in the up-down dimensions are adequately approximated by the equations S e =k e /T  0.5 and S u =k u /T  0.5, respectively, with k e =9.9 ± 3.1 mm · h0.5 and k u =36.5 ± 9.1 mm · h0.5. Received: 5 February 2001 / Accepted: 14 May 2001  相似文献   

10.
Assessment of groundwater potential zones using GIS technique   总被引:1,自引:0,他引:1  
A case study was conducted to find out the groundwater potential zones in Kattakulathur block, Tamil Nadu, India with an aerial extent of 360.60 km2. The thematic maps such as geology, geomorphology, soil hydrological group, land use / land cover and drainage map were prepared for the study area. The Digital Elevation Model (DEM) has been generated from the 10 m interval contour lines (which is derived from SOI, Toposheet 1:25000 scale) and obtained the slope (%) of the study area. The groundwater potential zones were obtained by overlaying all the thematic maps in terms of weighted overlay methods using the spatial analysis tool in ArcGIS 9.2. During weighted overlay analysis, the ranking has been given for each individual parameter of each thematic map and weights were assigned according to the influence such as soil −25%, geomorphology − 25%, land use/land cover −25%, slope − 15%, lineament − 5% and drainage / streams − 5% and find out the potential zones in terms of good, moderate and poor zones with the area of 49.70 km2, 261.61 km2 and 46.04 km2 respectively. The potential zone wise study area was overlaid with village boundary map and the village wise groundwater potential zones with three categories such as good, moderate and poor zones were obtained. This GIS based output result was validated by conducting field survey by randomly selecting wells in different villages using GPS instruments. The coordinates of each well location were obtained by GPS and plotted in the GIS platform and it was clearly shown that the well coordinates were exactly seated with the classified zones.  相似文献   

11.
An intrresting variation on the familiar method of determining the earth's equatorial radius ae, from a knowledge of the earth's equatorial gravity is suggested. The value of equatorial radius thus found is 6378,142±5 meters. The associated parameters are GM=3.986005±.000004 × 1020 cm3 sec-−2 which excludes the relative mass of atmosphere ≅10−6 ξ GM, the equatorial gravity γe 978,030.9 milligals (constrained in this solution by the Potsdam Correction of 13.67 milligals as the Potsdam Correction is more directly, orless indirectly, measurable than the equatorial gravity) and an ellipsoidal flattening of f=1/298.255.  相似文献   

12.
A 2×2 arc-minute resolution geoid model, CARIB97, has been computed covering the Caribbean Sea. The geoid undulations refer to the GRS-80 ellipsoid, centered at the ITRF94 (1996.0) origin. The geoid level is defined by adopting the gravity potential on the geoid as W 0=62 636 856.88 m2/s2 and a gravity-mass constant of GM=3.986 004 418×1014 m3/s2. The geoid model was computed by applying high-frequency corrections to the Earth Gravity Model 1996 global geopotential model in a remove-compute-restore procedure. The permanent tide system of CARIB97 is non-tidal. Comparison of CARIB97 geoid heights to 31 GPS/tidal (ITRF94/local) benchmarks shows an average offset (hHN) of 51 cm, with an Root Mean Square (RMS) of 62 cm about the average. This represents an improvement over the use of a global geoid model for the region. However, because the measured orthometric heights (H) refer to many differing tidal datums, these comparisons are biased by localized permanent ocean dynamic topography (PODT). Therefore, we interpret the 51 cm as partially an estimate of the average PODT in the vicinity of the 31 island benchmarks. On an island-by-island basis, CARIB97 now offers the ability to analyze local datum problems which were previously unrecognized due to a lack of high-resolution geoid information in the area. Received: 2 January 1998 / Accepted: 18 August 1998  相似文献   

13.
The TOPEX/Poseidon (T/P) satellite alti- meter mission marked a new era in determining the geopotential constant W 0. On the basis of T/P data during 1993–2003 (cycles 11–414), long-term variations in W 0 have been investigated. The rounded value W 0 = 62636856.0 ± 0.5) m 2 s −2 has already been adopted by the International Astronomical Union for the definition of the constant L G = W 0/c 2 = 6.969290134 × 10−10 (where c is the speed of light), which is required for the realization of the relativistic atomic time scale. The constant L G , based on the above value of W 0, is also included in the 2003 International Earth Rotation and Reference Frames Service conventions. It has also been suggested that W 0 is used to specify a global vertical reference system (GVRS). W 0 ensures the consistency with the International Terrestrial Reference System, i.e. after adopting W 0, along with the geocentric gravitational constant (GM), the Earth’s rotational velocity (ω) and the second zonal geopotential coefficient (J 2) as primary constants (parameters), then the ellipsoidal parameters (a,α) can be computed and adopted as derived parameters. The scale of the International Terrestrial Reference Frame 2000 (ITRF2000) has also been specified with the use of W 0 to be consistent with the geocentric coordinate time. As an example of using W 0 for a GVRS realization, the geopotential difference between the adopted W 0 and the geopotential at the Rimouski tide-gauge point, specifying the North American Vertical Datum 1988 (NAVD88), has been estimated.  相似文献   

14.
Antenna phase center calibration for precise positioning of LEO satellites   总被引:6,自引:3,他引:3  
Phase center variations of the receiver and transmitter antenna constitute a remaining uncertainty in the high precision orbit determination (POD) of low Earth orbit (LEO) satellites using GPS measurements. Triggered by the adoption of absolute phase patterns in the IGS processing standards, a calibration of the Sensor Systems S67-1575-14 antenna with GFZ choke ring has been conducted that serves as POD antenna on various geodetic satellites such as CHAMP, GRACE and TerraSAR-X. Nominal phase patterns have been obtained with a robotic measurement system in a field campaign and the results were used to assess the impact of receiver antenna phase patterns on the achievable positioning accuracy. Along with this, phase center distortions in the actual spacecraft environment were characterized based on POD carrier phase residuals for the GRACE and TerraSAR-X missions. It is shown that the combined ground and in-flight calibration can improve the carrier phase modeling accuracy to a level of 4 mm which is close to the pure receiver noise. A 3.5 cm (3D rms) consistency of kinematic and reduced dynamic orbit determination solutions is achieved for TerraSAR-X, which presumably reflects the limitations of presently available GPS ephemeris products. The reduced dynamic solutions themselves match the observations of high grade satellite laser ranging stations to 1.5 cm but are potentially affected by cross-track biases at the cm-level. With respect to the GPS based relative navigation of TerraSAR-X/TanDEM-X formation, the in-flight calibration of the antenna phase patterns is considered essential for an accurate modeling of differential carrier phase measurements and a mm level baseline reconstruction.
Oliver MontenbruckEmail:
  相似文献   

15.
Ionospheric scintillations are caused by time- varying electron density irregularities in the ionosphere, occurring more often at equatorial and high latitudes. This paper focuses exclusively on experiments undertaken in Europe, at geographic latitudes between ~50°N and ~80°N, where a network of GPS receivers capable of monitoring Total Electron Content and ionospheric scintillation parameters was deployed. The widely used ionospheric scintillation indices S4 and sj{\sigma_{\varphi}} represent a practical measure of the intensity of amplitude and phase scintillation affecting GNSS receivers. However, they do not provide sufficient information regarding the actual tracking errors that degrade GNSS receiver performance. Suitable receiver tracking models, sensitive to ionospheric scintillation, allow the computation of the variance of the output error of the receiver PLL (Phase Locked Loop) and DLL (Delay Locked Loop), which expresses the quality of the range measurements used by the receiver to calculate user position. The ability of such models of incorporating phase and amplitude scintillation effects into the variance of these tracking errors underpins our proposed method of applying relative weights to measurements from different satellites. That gives the least squares stochastic model used for position computation a more realistic representation, vis-a-vis the otherwise ‘equal weights’ model. For pseudorange processing, relative weights were com- puted, so that a ‘scintillation-mitigated’ solution could be performed and compared to the (non-mitigated) ‘equal weights’ solution. An improvement between 17 and 38% in height accuracy was achieved when an epoch by epoch differential solution was computed over baselines ranging from 1 to 750 km. The method was then compared with alternative approaches that can be used to improve the least squares stochastic model such as weighting according to satellite elevation angle and by the inverse of the square of the standard deviation of the code/carrier divergence (sigma CCDiv). The influence of multipath effects on the proposed mitigation approach is also discussed. With the use of high rate scintillation data in addition to the scintillation indices a carrier phase based mitigated solution was also implemented and compared with the conventional solution. During a period of occurrence of high phase scintillation it was observed that problems related to ambiguity resolution can be reduced by the use of the proposed mitigated solution.  相似文献   

16.
Optical remote sensing data have been extensively used to derive biophysical properties that relate forest type and composition. However, stand density, stand height and stand volume cannot be estimated directly from optical remote sensing data owing to poor sensitivity between these parameters and spectral reflectance. The ability of microwave energy to penetrate within forest vegetation makes it possible to extract information on both the crown and trunk components from radar data. The type of polarization employed determines the radar response to the various shapes and orientations of the scattering mechanisms within the canopy or trunk. This study mainly presents experimental results obtained with airborne E-SAR using polarimetric C and L bands over the tropical dry deciduous forest of Chandrapur Forest Division, Maharashtra. A detailed documentation of the relationship between SAR C & L bands backscattering and forest stand variables has been provided in the present study through linear correlation. Linear correlation of the single channel SAR derived estimates with the field measured means show a good correlation between L HV backscattering coefficient with stand volume (r2 = 0.71) and L HH backscattering coefficient with stand density (r2 = 0.75). The results imply that SAR data has significant potential for stand menstruation in operational forestry.  相似文献   

17.
The GEOID96 high-resolution geoid height model for the United States   总被引:4,自引:0,他引:4  
The 2 arc-minute × 2 arc-minute geoid model (GEOID96) for the United States supports the conversion between North American Datum 1983 (NAD 83) ellipsoid heights and North American Vertical Datum 1988 (NAVD 88) Helmert heights. GEOID96 includes information from global positioning system (GPS) height measurements at optically leveled benchmarks. A separate geocentric gravimetric geoid, G96SSS, was first calculated, then datum transformations and least-squares collocation were used to convert from G96SSS to GEOID96. Fits of 2951 GPS/level (ITRF94/NAVD 88) benchmarks to G96SSS show a 15.1-cm root mean square (RMS) around a tilted plane (0.06 ppm, 178 azimuth), with a mean value of −31.4 cm (15.6-cm RMS without plane). This mean represents a bias in NAVD 88 from global mean sea level, remaining nearly constant when computed from subsets of benchmarks. Fits of 2951 GPS/level (NAD 83/NAVD 88) benchmarks to GEOID96 show a 5.5-cm RMS (no tilts, zero average), due primarily to GPS error. The correlated error was 2.5 cm, decorrelating at 40 km, and is due to gravity, geoid and GPS errors. Differences between GEOID96 and GEOID93 range from −122 to +374 cm due primarily to the non-geocentricity of NAD 83. Received: 28 July 1997 / Accepted: 2 September 1998  相似文献   

18.
In October 1978, the third of a series of prototype navigational satellites of an entirely new design was successfully launched. By the end of the first phase (1979) there will be six of these “NAVSTAR” satellites. They constitute one piece of a major development thrust to deploy a revolutionary navigation system called the Global Positioning System (GPS), or NAVSTAR. This system, being developed by the Air Force for the joint use of al components of the Department of Defense, has been under development since 1972. The purpose of this article is to describe the system, indicate the requirements which have caused the Department of Defense to spend many millions of dollars on the development, outline how the geodetic community can potentially use it, present the test results that have been accumulated to date and finally, indicate what future plans lie in store for this new system.  相似文献   

19.
An inverse Poisson integral technique has been used to determine a gravity field on the geoid which, when continued by analytic free space methods to the topographic surface, agrees with the observed field. The computation is performed in three stages, each stage refining the previous solution using data at progressively increasing resolution (1o×1o, 5′×5′, 5/8′×5/8′) from a decreasing area of integration. Reduction corrections are computed at 5/8′×5/8′ granularity by differencing the geoidal and surface values, smoothed by low-pass filtering and sub-sampled at 5′ intervals. This paper discusses 1o×1o averages of the reduction corrections thus obtained for 172 1o×1o squares in western North America. The 1o×1o mean reduction corrections are predominantly positive, varying from −3 to +15mgal, with values in excess of 5mgal for 26 squares. Their mean andrms values are +2.4 and 3.6mgal respectively and they correlate well with the mean terrain corrections as predicted byPellinen in 1962. The mean andrms contributions from the three stages of computation are: 1o×1o stage +0.15 and 0.7mgal; 5′×5′ stage +1.0 and 1.6mgal; and 5/8′×5/8′ stage +1.3 and 1.8mgal. These results reflect a tendency for the contributions to become larger and more systematically positive as the wavelengths involved become shorter. The results are discussed in terms of two mechanisms; the first is a tendency for the absolute values of both positive and negative anomalies to become larger when continued downwards and, the second, a non-linear rectification, due to the correlation between gravity anomaly and topographic height, which results in the values continued to a level surface being systematically more positive than those on the topography.  相似文献   

20.
A field experiment was conducted on wheat crop during rabi seasons of 1995–96, 1996–97 and 1997–98 to study the spectral response of wheat crop (between 490 to 1080 nm) under water and nutrient stress condition. An indigenously developed ground truth radiometer having narrow band in visible and near infrared region (490 – 1080 nm) was used. Vegetation indices derived using different band combinations and related to crop growth parameters. The near infrared spectral region of 710 – 1025 nm was found most important for monitoring stress condition. Relationship has been developed between crop growth parameters and vegetation indices. Leaf Area Index (LAI) and chlorophyll could be predicted by knowing different reflectance ratios at milking stage of crop with R2 value of 0.78 and 0.89, respectively. Dry biomass (DBM), Plant Water Content (PWC) and grain yield are also significantly related with reflectance ratios at flowering stage of crop with R2 value of 0.90, 0.98 and 0.74, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号