首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burial diagenesis of chalk is a combination of mechanical compaction and chemical recrystallization as well as cementation. We have predicted the characteristic trends in specific surface resulting from these processes. The specific surface is normally measured by nitrogen adsorption but is here measured by image analysis of scanning electron micrographs. This method concentrates on the micritic matrix alone. Deep-sea sediments are ideally suited to the study of burial diagenesis because they accumulate in a relatively conservative tectonic setting. We used material from the Ontong Java Plateau in the Pacific, where a > 1 km thick package of chalk facies sediments accumulated from the Cretaceous to the present. In the upper 200–300 m the sediment is unconsolidated carbonate ooze, throughout this depth interval compaction is the principal porosity reducing agent, but recrystallization has an equal or larger influence on the textural development. In the chalk interval below, compaction is not the only porosity reducing agent but it has a larger influence on texture than concurrent recrystallization. Below 850 m grain-bridging cementation becomes important resulting in a lithified limestone below 1100 m. This interpretation is based on specific surface data alone, and modifies current diagenetic models.  相似文献   

2.
In the hypersaline Techirghiol Lake adjacent to the Black Sea, sporadically formed lithified blocks and grapestone are found which are the result of cementation of carbonate sediments with aragonite and possibly kutnahorite (manganesian calcite). The lithified blocks are characterized by a central cavity bordered by a lithified envelope. The formation of the carbonate cement is due to subaquatic bacterial processes of calcium sulfate reduction and the synthesis of calcium carbonate at the expense of gypsum concretions derived from Pleistocene red clays cropping out along the shore of the lake. These lithified blocks have geological significance as they may be usable as criteria for the recognition of sediments deposited in the past near to the shores of hypersaline lakes.  相似文献   

3.
Manganese porewater and solid phase data are considered from two different Atlantic carbonate sediments, both with good geochemical characterisation. The first case is a continuously accumulated alternating pelagic marl/carbonate ooze, where there is a correlation in post-oxic conditions between Mn(II) porewater levels and an acetate leachable Mn fraction of the sediment. This leachable Mn appears to have an association with calcite and, in this example, the leached residue Mn content approximates to that of shale.In the second case, a very recent, compositionally homogeneous calcareous turbidite is underlain by Mn oxyhydroxide at the former sediment surface which is now acting as a source of Mn(II) by reduction. Sorption of Mn by the turbidite sediment and shale-like leached residue Mn levels in anoxic conditions are again observed as Mn(II) diffuses towards present oxic conditions, although no unique equilibrium is achieved. Similar older buried turbidites have concentration decreases in solid-phase Mn content preserved from bottom to top as relict evidence that this process has occurred. In these turbidites 54–64% of the total Mn is leachable by the acetate method and therefore presumed to be sorbed by calcite. The oldest example has persisted for 125 kyr.It is suggested that the slow breakdown of metastable Mn oxyhydroxide and Sorption of Mn(II) to calcite surfaces are important controls on the behaviour of Mn in pelagic carbonates in mildly reducing conditions. Where accumulation fluctuations occur, these processes act together with accumulation to limit overall Mn migration and to prevent the large Mn enrichments seen near the sediment surface in more reducing environments.  相似文献   

4.
Anatomy of a modern open-ocean carbonate slope: northern Little Bahama Bank   总被引:1,自引:0,他引:1  
The open-ocean carbonate slope north of Little Bahama Bank consists of a relatively steep (4°) upper slope between water depths of 200 and 900 m, and a more gentle (1–2°) lower slope between depths of 900 and 1300+ m. The upper slope is dissected by numerous, small, submarine canyons (50–150 m in relief) that act as a line source for the downslope transport of coarse-grained carbonate debris. The lower slope is devoid of any well-defined canyons but does contain numerous, small (1–5 m) hummocks of uncertain origin and numerous, larger (5–40 m), patchily distributed, ahermatypic coral mounds. Sediments along the upper slope have prograded seaward during the Cenozoic as a slope-front-fill seismic facies of fine-grained peri-platform ooze. Surface sediments show lateral gradation of both grain size and carbonate mineralogy, with the fine fraction derived largely from the adjacent shallow-water platform. Near-surface sedimentary facies along the upper slope display a gradual downslope decrease in the degree of submarine cementation from well-lithified hardgrounds to patchily cemented nodular ooze to unlithified peri-platform ooze, controlled by lateral variations in diagenetic potential and/or winnowing by bottom currents. Submarine cementation stabilizes the upper part of the slope, allowing upbuilding of the platform margin, and controls the distribution of submarine slides, as well as the headward extent of submarine canyons. Where unlithified, sediments are heavily bioturbated and are locally undergoing dolomitization. Upper slope sediments are also ‘conditioned’eustatically, resulting in vertical, cyclic sequences of diagenetically unstable (aragonite and magnesian calcite-rich) and stable (calcite-rich) carbonates that may explain the well-bedded nature of ancient peri-platform ooze sequences. Lower slope sediments have prograded seaward during the Cenozoic as a chaotic-fill seismic facies of coarse-grained carbonate turbidites and debris flow deposits with subordinate amounts of peri-platform ooze. Coarse clasts are ‘internally’derived from fine-grained upper slope sediments via incipient cementation, submarine sliding and the generation of sediment gravity flows. Gravity flows bypass the upper slope via a multitude of canyons and are deposited along the lower slope as a wedge-shaped apron of debris, parallel to the adjacent shelf edge, consisting of a complex spatial arrangement of localized turbidites and debris flow deposits. A proximal apron facies of thick, mud-supported debris flow deposits plus thick, coarse-grained, Ta turbidites, grades seaward into a distal apron facies of thinner, grain-supported debris flow deposits and thinner, finer grained Ta-b turbidites with increasing proportions of peri-platform ooze. Both the geomorphology and sedimentary facies relationships of the carbonate apron north of Little Bahama Bank differ significantly from the classic submarine fan model. As such, a carbonate apron model offers an alternative to the fan model for palaeoenvironmental analysis of ancient, open-ocean carbonate slope sequences.  相似文献   

5.
Sedimentary rocks of the Solomon Islands-Bougainville Arc are described in terms of nine widespread facies. Four facies associations are recognised by grouping facies which developed in broadly similar sedimentary environments.A marine pelagic association of Early Cretaceous to Miocene rocks comprises three facies. Facies Al: Early Cretaceous siliceous mudstone, found only on Malaita, is interpreted as deep marine siliceous ooze. Facies A2: Early Cretaceous to Eocene limestone with chert, overlies the siliceous mudstone facies, and is widespread in the central and eastern Solomons. It represents lithified calcareous ooze. Facies A3: Oligocene to Miocene calcisiltite with thin tuffaceous beds, overlies Facies A2 in most areas, and also occurs in the western Solomons. This represents similar, but less lithified calcareous ooze, and the deposits of periodic andesitic volcanism.An open marine detrital association of Oligocene to Recent age occurs throughout the Solomons. This comprises two facies. Facies B1 is variably calcareous siltstone, of hemipelagic origin; and Facies B2 consists of volcanogenic clastic deposits, laid down from submarine mass flows.A third association, of shallow marine carbonates, ranges in age from Late Oligocene to Recent. Facies C1 is biohermal limestone, and Facies C2 is biostromal calcarenite.The fourth association comprises areally restricted Pliocene to Recent paralic detrital deposits. Facies D1 includes nearshore clastic sediments, and Facies D2 comprises alluvial sands and gravels.Pre-Oligocene pelagic sediments were deposited contemporaneously with, and subsequent to, the extrusion of oceanic tholeiite. Island arc volcanism commenced along the length of the Solomons during the Oligocene, and greatly influenced sedimentation. Thick volcaniclastic sequences were deposited from submarine mass flows, and shallow marine carbonates accumulated locally. Fine grained graded tuffaceous beds within the marine pelagic association are interpreted as products of this volcanism, suggesting that the Santa Isabel-Malaita-Ulawa area, where these beds are prevalent, was relatively close to the main Solomons chain at this time. A subduction zone may have dipped towards the northeast beneath this volcanic chain. Pliocene to Pleistocene calcalkaline volcanism and tectonism resulted in the emergence of all large islands and led to deposition of clastic and carbonate facies in paralic, shallow and deep marine environments.  相似文献   

6.
Carbonate environments inhabit the realm of the surface, intermediate and deep currents of the ocean circulation where they produce and continuously deliver material which is potentially deposited into contourite drifts. In the tropical realm, fine‐grained particles produced in shallow water and transported off‐bank by tidal, wind‐driven, and cascading density currents are a major source for transport and deposition by currents. Sediment production is especially high during interglacial times when sea level is high and is greatly reduced during glacial times of sea‐level lowstands. Reduced sedimentation on carbonate contourite drifts leads to early marine cementation and hardened surfaces, which are often reworked when current strength increases. As a result, reworked lithoclasts are a common component in carbonate drifts. In areas of temperate and cool water carbonates, currents are able to flow across carbonate producing areas and incorporate sediment directly to the current. The entrained skeletal carbonate particles have variable bulk density and shapes that lower the prediction of transport rates in energy‐based transport models, as well as prediction of current velocity based on grain size. All types of contourite drifts known in clastic environments are found in carbonate environments, but three additional drift types occur in carbonates because of local sources and current flow diversion in the complicated topography inherent to carbonate systems. The periplatform drift is a carbonate‐specific plastered drift that is nearly exclusively made of periplatform ooze. Its geometry is built by the interaction of along‐slope currents and downslope currents, which deliver sediment from the adjacent shallow‐water carbonate realm to the contour current via a line source. Because the periplatform drift is plastered on the slopes of the platforms it is also subject to mass gravity flow and large slope failures. At platform edges, a special type of patch drift develops. These hemiconal platform‐edge drifts also contain exclusively periplatform ooze but their geometry is controlled by the current around the corner of the platform. At the north‐western end of Little and Great Bahama Bank are platform‐edge drifts that are over 100 km long and up to 600 m thick. A special type of channel‐related drift forms when passages between carbonate buildups or channels within a platform open into deeper water. A current flowing in these channels will entrain material shed from the sediment producing areas. At the channel mouth, the sediment‐charged current deposits its sediment load into the deeper basin. With continuous flow, a submarine delta drift is built that progrades into the deep water. The strongly focused current forming the delta drift, is able to rework coarse skeletal grains and clasts, making this type of carbonate drift the coarsest drift type.  相似文献   

7.
Carbonate nodules and slabs in late Holocene shelly terrigenous deposits of the modern Fraser River delta (~49°N) are formed close to the seafloor by precipitation from saline pore waters of mainly fibrous to bladed crystals of high-Mg (~ 10–20 mol% MgCO3) calcite cement as coalescing isopachous crusts on grains. Previous reports that the cement is low-Mg calcite are not supported by this study. Highly negative δ13C values of ? 7 to ? 59‰ for the cements indicate that the bulk of their carbonate carbon was derived from the microbiological degradation of organic matter in the deltaic deposits during shallow burial. In particular, the production of biogenic methane (CH4) by anaerobic bacterial fermentation, its upward migration, chemical or biological oxidation to CO2 and neutralization in the near-surface sediment, and diffusion to microenvironments relatively enriched in organic components, are a possible set of conditions influencing the process and sites of carbonate cementation. Methane-derived Mg-calcite appears also to be the major submarine cement in several other modern occurrences of lithified shallow-water terrigenous sands and muds at non-tropical latitudes.  相似文献   

8.
The Basin Lakes are two adjacent maar lakes located in the centre of the Western Volcanic Plains District of Victoria, Australia. Both lakes are saline and alkaline; West Basin Lake is meromictic whereas East Basin is a warm monomictic lake. The carbonate mineral suite of the modern offshore bottom sediments of these Basins consists mainly of dolomite and calcite, with smaller amounts of hydromagnesite and magnesite in West Basin and monohydrocalcite in East Basin. The dolomite, hydromagnesite, magnesite, and monohydrocalcite are endogenic in origin, being derived by primary inorganic precipitation within the water columns of the lakes or at the sediment-water interface. The calcite is biologically precipitated as ostracod valves. In addition to the carbonates in the modern offshore (deep-water) sediments, the lakes also contain a girdle of nearshore carbonate hardgrounds. Both beachrock and microbialites (algal boundstones) are present. These modern lithified carbonate units exhibit a wide range of depositional and diagenetic fabrics, morphologies and compositions. In West Basin, the hardgrounds are composed mainly of dolomite, hydromagnesite, and magnesite, whereas dolomite and monohydrocalcite dominate the East Basin sediments. Aragonite, high-Mg calcite, kutnahorite, siderite, and protohydromagnesite also occur in these lithified carbonate units. Stratigraphic variations in the carbonate mineralogy of the Holocene sediment record in the lakes were used to help decipher the palaeochemistry and palaeohydrology of the Basins. These changes, in conjunction with fluctuations in organic remains and fossil content, indicate a pattern of lake level histories similar to that deciphered from other maar lakes in western Victoria.  相似文献   

9.
Cold water coral covered carbonate mounds at the south‐west margin of the Rockall Trough form ridges several kilometres long and up to 380 m high. Piston cores obtained at three mound crests reveal the complex internal structure of the mound build up, with alternating unlithified coral‐dominated intervals and lithified intervals. The most recent lithified interval is covered by corals embedded in a fine‐grained matrix, comprising ca 11 000 years of continuous mound evolution. Before this time 230Th/U dating shows the presence of several hiatuses in mound build‐up. Aragonitic coral material is absent or only present as mouldic porosity in the lithified intervals and coccoliths display widespread overgrowth. Downcore X‐ray fluorescence scanning, computer tomography scan images and petrographic observations indicate different degrees of diagenetic alteration. The upper boundary of the most recent lithified interval shows some erosional features, but petrographic observations indicate that initial lithification of the sediments is not related to this erosive event or to long‐term non‐sedimentation, but to earlier sub‐surface diagenesis. Organic matter oxidation and the subsequent lowering of the saturation state of the carbonate system drives dissolution of the unstable aragonitic coral skeletons. Depending on the openness of the system, this can lead to precipitation of a more stable low‐magnesium carbonate. A model is presented describing the sedimentary and diagenetic processes leading to the formation of lithified intervals.  相似文献   

10.
Geomorphic features such as drifts, sediment waves and channels have been documented in the Upper Cretaceous of north‐west Europe. These features are interpreted to result from bottom currents and have been used to refine chalk depositional models and quantify palaeocirculation patterns. Chalk was first deposited as calcareous nannofossil ooze and geomorphic features are the result of sediment reworking after deposition. There is limited knowledge on the processes that govern nannofossil ooze mobility, thus forcing uncertainty onto numerical models based on sedimentological observations. This article provides an extensive view of the erosional and depositional behaviour of calcareous nannofossil ooze based on experimental work using annular flumes. A fundamental observation of this study is the significant decrease of nannofossil ooze mobility with decreasing bed porosity. Erosion characteristics, labelled as erosion types, vary with total bed porosity (φ) and applied shear stress (τ0). High‐porosity ooze (φ >80%) is characterized by constant erosion rates (Em). At φ <77%, however, erosion characteristics showed greater variance. Surface erosion was typically followed by transitional erosion (with asymptotically decreasing Em), and stages of erosion with constant, and exponential erosion rates. The estimated erosion thresholds (τc) vary from ca 0·05 to 0·08 Pa for the onset of surface erosion and up to ca 0·19 Pa for the onset of constant erosion (φ of 60 to 85%). Variability of deposition thresholds (τcd) from ca 0·04 to 0·13 Pa reflects the influence of variable suspended sediment concentration and τ0 on settling particle size due to the identified potential for chalk ooze aggregation and flocculation. Additionally, deposition thresholds seem to be affected by the size of eroded aggregates whose size correlates with bed porosity. Lastly, slow sediment transport without resuspension occurred in high‐porosity ooze as surface creep, forming low‐relief sedimentary features resembling ripples. This process represents a previously undescribed mode of fine‐grained nannofossil ooze transport.  相似文献   

11.
Comparative volcanological, mineralogical, petrological, and geochemical studies of blocks of Triassic submarine basalt occurrences hosted by the Jurassic mélange have been carried out. The studied localities are located in displaced parts of the Dinarides in NE-Hungary (Darnó Unit), in the Dinarides (Kalnik Mts., Croatia and Vare?-Smreka, Bosnia and Herzegovina), and in the Hellenides (Stragopetra, Greece). The common characteristic of the studied occurrences is the well observable result of the lava–water-saturated sediment mingling, i.e., the presence of the so-called carbonate peperitic facies. Mixing of the basaltic lava with pelagic lime mud (representing the unconsolidated stage of the red, micritic limestone), as well as fluid inclusion and chlorite thermometry data support that the carbonate peperite was formed above CCD and at the Bosnian locality, a shallower water, about 1.4?km depth is proven. The igneous rocks show mainly within-plate basalt geochemical characteristics; MORB signatures are not common. Low temperature (<200°C) hydrothermal alteration is characteristic to the pillow basalt blocks with peperitic facies. The similarities in the volcanological, geochemical, and textural characteristics observed at the different localities support a strong genetic connection among them. The results of this study suggest to the advanced rifting stage origin of the Triassic basaltic suits and their distinction from the true oceanic basalt pillow units of the Dinarides can be based on the occurrences of the peperite facies.  相似文献   

12.
The microboring activity of endolithic cyanobacteria plays a major role in the formation of the dominant lithified laminae in modern marine stromatolites in the Exuma Cays, Bahamas. These stromatolites are composed primarily of fine-grained carbonate sand that is trapped and bound by the filamentous cyanobacteria Schizothrix sp.. Periodic introduction of coccoid endolithic cyanobacteria Solentia sp. during hiatuses in stromatolite growth associated with very low rates of sedimentation results in the formation of lithified horizons, 200–1000 μm thick. These layers consist of micritized grains that are welded together at point contacts. The micritization is caused by extensive microboring and carbonate precipitation within boreholes concurrent with endolithic activity. Grain welding occurs when boreholes cross from one grain to another at point contacts. Thus, microboring destroys original grain textures but, at the same time, plays a constructional role in stromatolite growth by forming lithified layers of welded grains. These lateral bands of fused carbonate grains help to stabilize and preserve the stromatolite deposits.  相似文献   

13.
Deep Sea Drilling Hole 245 (31°32′S, 52° 18′E) in the southwest Indian Ocean shows pronounced linear concentration-depth gradients in interstitial dissolved Ca, Mg and Sr. Electrical conductivity tests enable us to make the estimate of a constant diffusion coefficient with depth of about 2 × 10?6 cm2/sec. The shapes of the concentration-depth gradients suggest that the major reaction sites in this hole are situated in the basal sediments and/or underlying basalts. It is proposed that observed interstitial water concentration changes in Ca and Mg are related to alteration of basaltic material, whereas those in Sr are due to calcium carbonate recrystallization processes. Support for the basaltic material alteration hypothesis comes from petrochemical and mineralogical data. Geochemical data also indicate that the high contents in Fe and Mn of the basal sediments can be related to low temperature alteration of basaltic glass and not necessarily to ‘hydrothermal’ activity.  相似文献   

14.
Matrix micrites are a commonly used carbonate archive for the reconstruction of past environmental parameters, but one that is submitted to known limitations. Main reasons for the often ambiguous value of many micrite-based isotope data sets are the unknown origin of the micrite components and their poorly resolved diagenetic history. Here we present carbon and oxygen-isotope data retrieved from Oxfordian to Tithonian Ammonitico Rosso nodular micrites sampled from three sections in the Betic Cordillera (Southern Spain). All three sections were correlated and sampled using a rigorous biostratigraphic framework. A noteworthy feature is that analyzed matrix micrites are more conservative in terms of their isotopic composition than other carbonate materials commonly considered to resist diagenetic alteration under favourable circumstances. Remarkably, this refers not only to δ13C ratios, which reflect the typical Late Jurassic global trend, but also to δ18O ratios that range around 0.3‰. The 18O-enriched oxygen-isotope ratios are considered to represent diagenetic stabilization of carbonate ooze under the influence of marine porewaters within the sediment–water interphase (i.e., the immature sedimentary section, usually submitted to biogenic activity). This interpretation agrees with the very early lithification of micrite nodules with cements precipitated from marine porewaters, enriched by the dissolution of aragonite skeletals (i.e., ammonite shells). According to the model proposed, low sedimentation rates as well as rapid early marine differential cementation, under the influence of currents and seawater pumping, affected the sediment–water interphase of epioceanic swells where deposition resulted in early lithified Ammonitico Rosso facies. The data obtained show that special care must be taken to prevent oversimplified interpretations of carbonate archives, particularly in the context of epioceanic settings.  相似文献   

15.
SUMMARY
Along the eastern coast of the Gez Gölö, a salt lake formerly belonging to the larger "Paleo-Tuz Gölö" in central Anatolia, about 6.5 m of lake sediments of probably Pleistocene age were studied.
The sediment series consists of fine-grained unconsolidated dolomite muds representing the basin sedimentation of the old lake.
Nine lithified beds (oomicrites, intramicrites, intraoomicrites, intrabiomi-crites and dololutites with smaller amounts of allochems) are intercalated. These beds were deposited in very shallow water in the littoral zone of the paleo-lake. There is direct evidence that the beds were occasionally exposed to the air after deposition. This led to desiccation (with mud cracks, breaking up of intraclasts) and subaerial cementation due to the influx of fresh water (rain water, springs).
These now lithified carbonate sedimentary rocks were submerged and subsequently covered with mud. During this sub-aquatic phase the rock beds as well as the unconsolidated muds were dolomitized by an extremely high Mg/Caratio of the lake water which in the present Tuz Gölü amounts to about 150! It cannot be excluded, however, that dolomitization already took place or was initiated during the subaerial phase ("supratidal dolomite").  相似文献   

16.
Ferromanganese microcrusts were found in oxic sediments that are undisturbed between 60 and 480 cm bsf. Rhythmic alternations of muddy calcareous ooze and foraminiferal-nannofossil ooze make up the sediment sequence, which extends to 270 ka at 480 cm bsf where a hiatus of at least 1.3 Myr occurs. The bottom of the core is Pliocene. The occurrence of ferromanganese microcrusts mainly formed on foraminifera tests larger than 200 μm can be correlated with glacial stages 4, 6 and 8 and indicates enhanced metal fluxes. They do not form at the expense of carbonate material but derive their metals from the water column by hydrogenetic precipitation. Manganese was supplied as Mn2+ mainly from the oxygen minimum zone (OMZ), where it is transported via detrital material and brought into solution by weakly reducing conditions promoted by the oxidation of organic matter. An enhanced detrital flux during glacials may also cause increased Mn availability in the OMZ during these periods. Mixing of oxygen-rich intermediate water with OMZ water during the glacial intervals caused Mn2+ oxidation in the water column underneath the OMZ.  相似文献   

17.
The regolith of the Apollo 16 lunar landing site is composed mainly of feldspathic lithologies but mafic lithologies are also present. A large proportion of the mafic material occurs as glass. We determined the major element composition of 280 mafic glasses (>10 wt% FeO) from six different Apollo 16 soil samples. A small proportion (5%) of the glasses are of volcanic origin with picritic compositions. Most, however, are of impact origin. Approximately half of the mafic impact glasses are of basaltic composition and half are of noritic composition with high concentrations of incompatible elements. A small fraction have compositions consistent with impact mixtures of mare material and material of the feldspathic highlands. On the basis of major-element chemistry, we identified six mafic glass groups: VLT picritic glass, low-Ti basaltic glass, high-Ti basaltic glass, high-Al basaltic glass, KREEPy glass, and basaltic-andesite glass. These glass groups encompass 60% of the total mafic glasses studied. Trace-element analyses by secondary ion mass spectroscopy for representative examples of each glass group (31 total analyses) support the major-element classifications and groupings. The lack of basaltic glass in Apollo 16 ancient regolith breccias, which provide snapshots of the Apollo 16 soil just after the infall of Imbrium ejecta, leads us to infer that most (if not all) of the basaltic glass was emplaced as ejecta from small- or moderate-sized impacts into the maria surrounding the Apollo 16 site after the Imbrium impact. The high-Ti basaltic glasses likely represent a new type of basalt from Mare Tranquillitatis, whereas the low-Ti and high-Al basaltic glasses possibly represent the composition of the basalts in Mare Nectaris. Both the low-Ti and high-Al basaltic glasses are enriched in light-REEs, which hints at the presence of a KREEP-bearing source region beneath Mare Nectaris. The basaltic andesite glasses have compositions that are siliceous, ferroan, alkali-rich, and moderately titaniferous; they are unlike any previously recognized lunar lithology or glass group. Their likely provenance is within the Procellarum KREEP Terrane, but they are not found within the Apollo 16 ancient regolith breccias and therefore were likely deposited at the Apollo 16 site post-Imbrium. The basaltic-andesite glasses are the most ferroan variety of KREEP yet discovered.  相似文献   

18.
The Cindery Tuff is an unusual tephra fall deposit that contains evidence for the mixing of basaltic and rhyolitic liquids prior to eruption. It contains clear rhyolitic glass shards together with brown basaltic glass spheres and a broadly bimodal phenocryst assemblage. Brown glasses are ferrobasaltic in composition and are similar to the voluminous Pliocene tholeiites of the surrounding west-central Afar volcanic field; both are enriched in the light rare earth and incompatible elements and possess higher 87Sr/86Sr and lower 143Nd/144Nd than MORB. Rhyolitic glasses are subalkaline and, compared to the basaltic glasses, are strongly depleted in the compatible elements and enriched in the incompatible elements. Both glass types have similar incompatible element and isotopic ratios, and with the rhyolite glass showing a 2-fold parallel enrichment in rare earth element abundances over the basaltic glass. These observations suggest that the two glasses are genetically related.Rare glasses with intermediate compositions occur as phenocryst melt inclusions, as mantles on phenocrysts and as free pumice clasts. Their major element contents do not point to an origin by simple hybrid mixing of the basaltic and rhyolitic melts. Rather, major element mixing calculations indicate formation of the intermediate and rhyolite melts by fractionation of the observed phenocryst assemblage, using a starting composition of the observed basaltic glass. Model calculations from trace element data, though lacking from the intermediate glasses, support fractional crystallization. The bimodal mineral assemblage argues against an immiscible liquid origin for the contrasting glass compositions.  相似文献   

19.
The paper describes the results of study of the Silurian clayey–carbonate rocks ranging from the Telychian Stage (Llandovery) to the Gorstian Stage (Ludlow) recovered by the Borehole Davtyuny 3k in northwestern Belarus. Rocks of the Sheinwoodian Stage demonstrate a positive excursion of δ13C with amplitude of 4.7‰, marking the Ireviken biotic event recorded in the global chemostratigraphic curve. Values of δ18O for the carbonate material in the studied section (25.5–29.2‰ SMOW) are close to those for Silurian rocks from the Baltic region, Scandinavia, Ukraine, Poland, and Canada. The whole section contains postsedimentary gypsum as nodules and the infilling of fissures and fenestrae. Values of δ34S in gypsum (21.3–26.7‰ CDT) are close to those for the Silurian rocks on the Phanerozoic isotope plot. The formation of gypsum was related to a partial development of the supralittoral environment over the sublittoral and littoral clayey–carbonate substrate. The seawater accumulated in lowlands of the supralittoral plain after storms was intensely concentrated during arid conditions and accumulated in the clayey–carbonate sediment. The subsequent underground evaporation promoted the formation of gypsum as nodules in the unlithified sediments and the infilling of fissures and fenestrae in the lithified rocks.  相似文献   

20.
Trace element concentrations of altered basaltic glass shards (layer silicates) and zeolites in volcaniclastic sediments drilled in the volcanic apron northeast of Gran Canaria during Ocean Drilling Program (ODP) leg 157 document variable element mobilities during low-temperature alteration processes in a marine environment. Clay minerals (saponite, montmorillonite, smectite) replacing volcanic glass particles are enriched in transition metals and rare earth elements (REE). The degree of retention of REE within the alteration products of the basaltic glass is correlated with the field strength of the cations. The high field-strength elements are preferentially retained or enriched in the alteration products by sorption through clay minerals. Most trace elements are enriched in a boundary layer close to the interface mineral-altered glass. This boundary layer has a key function for the physico-chemical conditions of the subsequent alteration process by providing a large reactive surface and by lowering the fluid permeability. The release of most elements is buffered by incorporation into secondary precipitates (sodium-rich zeolites, phillipsite, Fe- and Mn-oxides) as shown by calculated distribution coefficients between altered glasses and authigenic minerals. Chemical fluxes change from an open to a closed system behavior during prograde low-temperature alteration of volcaniclastic sediments with no significant trace metal flux from the sediment to the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号