首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clay mineralogy studies of ore rocks versus barren rocks in the Grants mineral belt, New Mexico, show that some combination of chlorite (rosette form), illite, mixed-layer illite-montmorillonite, (±Mg-montmorillonite) are penecontemporaneous with uranium minerals in trend ore; these same clay minerals plus kaolinite are related to the roll-type ore near the main redox front of the Grants mineral belt. Clay minerals from barren rocks are characterized by a greater abundance of Na-montmorillonite, kaolinite, and face-to-edge form chlorite. Chlorites from ore zones contain much more vanadium than do chlorites from barren rocks. Trend orr probably formed from southeasterly flowing waters following paleochannels in the Late Jurassic. These deposits are found almost entirely in reduced rocks, and organic carbon may have been an important reductant to remove U-V-U-V-Se-Mo from solution as carbonate from ore zones contains some organic carbon based on stable isotope studies. Uplift, remobilization, and reprecipitation of some of the trend ore resulted in the formation of redistributed ore, some of which possesses a roll-type geometry. Mineralization for the roll-type ore was apparently controlled by sulfide-sulfate equilibria at or near the main redox front in the Grants mineral belt. Trend and roll-type ore possess different assemblages of clay minerals and different trace element abundances. Laramide-age faults cut both trend ore and some roll-type ores. Stack ore is found in Laramide-age fault zones. Limited oxygen isotopic data from clay minerals collected from two mines at Ambrosia Lake in reduced rocks indicate probable preservation of ancient, formational waters and show no evidence of infiltration by young meteoric waters. This information, plus the pre-Laramide-age faults, suggest, but do not unequivocally prove, that the main redox front has been relatively stable since its formation, probably some time in the Cretaceous. Younger encroachment of the redox front in post-Laramide time is proposed by others, however, and the problem is unresolved. Uranium for the deposits was most likely carried in solution as an oxyion, probably as (UO2(CO3)2·2H2O2– or (UO2(HPO4)2)2–, although organic transport cannot be entirely ruled out. Oxyions of vanadium, selenium, molybdenum and possible arsenic and antimony, are interpreted from Eh-pH diagrams to have been segregated and transported with U6+ soluble species and precipitated when a chemically reducing environment was reached. The rare-earth elements are also enriched in ore zones, but is it not clear if they were transported with the U-V-Se-Mo-(As)-(Sb) suite or derived from a more local source.  相似文献   

2.
Accretionary orogens throughout space and time represent extremely fertile settings for the formation and preservation of a wide variety of mineral deposit types. These range from those within active magmatic arcs, either in continental margin or intra-oceanic settings, to those that develop in a variety of arc-flanking environments, such as fore-arcs and back-arcs during deformation and exhumation of the continental margin. Deposit types also include those that form in more distal, far back-arc and foreland basin settings. The metallogenic signature and endowment of individual accretionary orogens are, at a fundamental level, controlled by the nature, composition and age of the sub-continental lithosphere, and a complex interplay between formational processes and preservational forces in an evolving Earth. Some deposit types, such as orogenic gold and volcanic massive sulfide (VMS) deposits, have temporal patterns that mimic the major accretionary and crustal growth events in Earth history, whereas others, such as porphyry Cu–Au–Mo and epithermal Au–Ag deposits, have largely preservational patterns. The presence at c. 3.4 Ga of (rare) orogenic gold deposits, whose formation necessitates some form of subduction–accretion, provides strong evidence that accretionary processes operated then at the margins of continental nuclei, while the widespread distribution of orogenic gold and VMS deposits at c. 2.7–2.6 Ga reflects the global distribution of accretionary orogens by this time.  相似文献   

3.
The economic importance of the Cretaceous sequence of the Benue Valley is highlighted. The linear sedimentary basin or trough, as sometimes described, is underlain essentially by marine Cretaceous rocks, starting from the Middle Albian, and ranging to the Maastrichtian. There is, so far, no evidence of the occurrence of younger rocks in the Upper and Middle Benue area, though in the Lower Benue and the Niger Delta regions, Palaeocene to Recent formations overlie the older formations.The depositional processes and the tectonics associated with this period caused the emplacement of an accumulation of a number of important minerals of sedimentary and igneous origins, including lead-zinc, barytes, limestone and coal. There are indications of the possible occurrence of evaporites as evidenced by brine-springs associated with collapse features and fracture systems related to diapiric dome structures. The use of the minerals in the Nigerian economy is discussed. There are also favourable prospects for uranium and hydrocarbons. The immediate future will usher in a period of intensive exploration work aimed at evaluating these resources.  相似文献   

4.
The northern Norrbotten area in northern Sweden, is an important mining district and hosts several deposits of Fe-oxide Cu-Au-type. One of the best examples of spatially, and possibly genetically, related apatite–iron and copper–gold deposits in the region is at Tjårrojåkka, 50 km WSW of Kiruna. The deposits are hosted by strongly sheared and metamorphosed intermediate volcanic rocks and dolerites and show a structural control. The Tjårrojåkka iron deposit is a typical apatite–iron ore of Kiruna-type and the Tjårrojåkka copper occurrence shows the same characteristics as most other epigenetic deposits in Norrbotten. The host rock has been affected by strong albite and K-feldspar alteration related to mineralisation, resulting in an enrichment of Na, K, and Ba. Fe and V were depleted in the altered zones and added in mineralised samples. REE were enriched in the system, with the greatest addition related to mineralisation. Y was also mobile associated with albite alteration and copper mineralisation. The Tjårrojåkka iron and copper deposits show comparable hydrothermal alteration minerals and paragenesis, which might be a product of common host rock and similarities in ore fluid composition, or overprinting by successive alteration stages. Mineralogy and mineral chemistry of the alteration minerals (apatite, scapolite, feldspars, amphiboles, and biotite) indicate a higher salinity and Ba/K ratio in the fluid related to the alterations in the apatite–iron occurrence than in the copper deposit, where the minerals are enriched in F and S. The presence of hematite, barite, and in SO4 in scapolite suggests more oxidising-rich conditions during the emplacement of the Tjårrojåkka-Cu deposit. From existing data it might be suggested that one evolving system created the two occurrences, with the copper mineralisation representing a slightly later product.  相似文献   

5.
The nature and extent of deformation associated with 1.4 Ga tectonism in the south-western USA are poorly understood. Two models have been proposed. Both agree that Proterozoic crustal accretion occurred at 1.65 Ga and that the rocks remained at mid-crustal conditions ( c . 12 km depth) until 1.4 Ga. However, one model suggests that 1.4 Ga deformation was regionally extensive, the other that it was localized around 1.4 Ga plutons. Following 1.4 Ga tectonism, the crust cooled below 300 °C. Detailed studies of quartz mylonite microfabrics in samples both adjacent to and removed from 1.4 Ga plutons in the Manzano Mountains, central New Mexico, are used to discriminate between these models of mid-Proterozoic thermotectonic history. In this area, as in much of northern New Mexico, the metamorphic conditions prior to emplacement of 1.4 Ga plutons were 500 °C and 4 kbar. The quartz mylonite microfabrics include ribbon grains, recrystallized grains with serrated boundaries, and strong c-axis crystallographic preferred orientations, which indicate no post-deformational modification. All of these microfabrics are consistent with deformation at upper greenschist/lower amphibolite facies conditions, and could have formed during either 1.65 or 1.4 Ga tectonism. Microfabrics formed during 1.65 Ga tectonism, however, should have been substantially modified by annealing recrystallization during residency in the middle crust and/or thermal/mechanical effects associated with 1.4 Ga tectonism. The observed microstructures are consistent with regional deformation associated with metamorphism at 1.4 Ga. The effects of deformation at 1.4 Ga in New Mexico are therefore more widespread than previously thought.  相似文献   

6.
Abstract Portions of three Proterozoic tectonostratigraphic sequences are exposed in the Cimarron Mountains of New Mexico. The Cimarron River tectonic unit has affinities to a convergent margin plutonic/volcanic complex. Igneous hornblende from a quartz diorite stock records an emplacement pressure of 2–2.6 kbar. Rocks within this unit were subsequently deformed during a greenschist facies regional metamorphism at 4–5 kbar and 330 ± 50° C. The Tolby Meadow tectonic unit consists of quartzite and schist. Mineral assemblages are indicative of regional metamorphism at pressures near 4 kbar and temperatures of 520 ± 20° C. A low-angle ductile shear zone separates this succession from gneisses of the structurally underlying Eagle Nest tectonic unit. Gneissic granite yields hornblende pressures of 6–8 kbar. Pelitic gneiss records regional metamorphic conditions of 6–7 kbar and 705 ± 15° C, overprinted by retrogression at 4 kbar and 530 ± 10° C. Comparison of metamorphic and retrograde conditions indicates a P–T path dominated by decompression and cooling. The low-angle ductile shear zone represents an extensional structure which was active during metamorphism. This extension juxtaposed the Tolby Meadow and Eagle Nest units at 4 kbar and 520° C. Both units were later overprinted by folding and low-grade metamorphism, and then were emplaced against the Cimarron River tectonic unit by right-slip movement along the steeply dipping Fowler Pass shear zone. An argon isotope-correlation age obtained from igneous hornblende dates plutonism in the Cimarron River unit at 1678 Ma. Muscovite associated with the greenschist facies metamorphic overprint yields a 40 Ar/39 Ar plateau age of 1350 Ma. By contrast, rocks within the Tolby Meadow and Eagle Nest units yield significantly younger argon cooling ages. Hornblende isotope-correlation ages of 1394–1398 Ma are interpreted to date cooling during middle Proterozoic extension. Muscovite plateau ages of 1267–1257 Ma appear to date cooling from the low-grade metamorphic overprint. The latest ductile movement along the Fowler Pass shear zone post-dated these cooling ages. Argon released from muscovites of the Eagle Nest/Tolby Meadow composite unit, at low experimental temperatures, yields apparent ages of c. 1100 Ma. Similar ages are not obtained north-east of the Fowler Pass shear zone, suggesting movement more recently than 1100 Ma.  相似文献   

7.
Changchengite occurs in chromite orebodies in dunite and in platinum placer deposits in chromite orebodies nearby. The mineral occurs as massive aggregates or veinlets on margins of iridisite (IrS2) and replaces it. Opaque. Lustre metallic. Colour steel-black. Streak black. Hm = 3.7. VHN20= 165 kg/ mm2. Isotropic. Cleavage none. Density 11.96 g/ cm3. Seven electron microprobe analyses give the following mean chemical results (wt. %): S 7.2, Cu 0.3, Te 0.4, Ir 41.2, Pt 2.8 and Bi 47.3 with total 99.1. The simplified formula is IrBiS. The strongest X-ray powder diffraction lines (hkl, d, I) are 210, 2.75 (70); 211, 2.51 (60); 311, 1.860 (100); 440. 1.090 (50) and 600, 1.027 (50). The X-ray powder diffraction pattern is similar to that of mayingite. After the diffraction data are indexed the mineral is determined to be cubic. The space group is P213 with a = 0.6164(4) nm, V = 0.2342 nm3 and Z = 4.  相似文献   

8.
The mineralized sublayer at the base of the Sudbury Igneous Complex (SIC) consists of two variants, the noritic contact sublayer and radial and concentric quartz dioritic offset dykes. Both are characterized by the presence of significant quantities of Ni–Cu–PGE sulphides and by a prominent population of recrystallized diabasic-textured and melanocratic to ultramafic fragments. The two variants of the sublayer contain compositionally distinct inclusion populations and inclusion-bearing matrices. Contact sublayer and offset dykes hosted by north range granitoid footwall can be distinguished from those hosted by south range basaltic and metasedimentary footwall environments. The compositional variation in SIC rocks can be described in terms of contributions from exposed crustal rocks and differentiation of the resultant melt(s).

The basaltic inclusion population is characterized by hornfels recrystallization of the plagioclase, and is geochemically and isotopically identified with Huronian basalts which comprise the south range footwall, with (Ce/Yb)N ratios of around 2.5 and Nd1850 between −2 to −5. The melanocratic inclusions in the sublayer are typically coarse-grained and undeformed, with incompatible element contents and radiogenic isotopic compositions intermediate between those of the basaltic inclusions and those of the melt sheet, which has (Ce/Yb)N ratios of around 10 and Nd1850 around −9. Calculated crystallization models are consistent with derivation of the ultramafic inclusions by crystallization from a magma produced by mixing of molten basaltic footwall with basal melt sheet. It is proposed that the sublayer appeared as the marginal facies of a meteorite impact melt sheet as a result of footwall melting following the impact. This basal layer was progressively enriched in sulphides and mafic cumulates from above through differentiation during cooling. Offset dykes were emplaced and the magmas effectively removed from the system. Subsequently, continued evolution of the marginal facies produced the more mafic inclusions in the contact sublayer. No extracrustal (e.g., mantle) component is envisioned in this model to explain the silicate compositional distributions in the SIC, and mafic crustal rocks in the target zone are implicated as the metal source for the SIC deposits.  相似文献   


9.
The eastern Yilgarn Craton (EYC) is one of the world's premier gold provinces subject to over a century of mineral exploration. Prolonged interest in the terrane has led to the assembly of multiple world-class data sets suitable for testing district scale targeting methodologies. District scale targeting is concerned with identifying a mineral camp ∼60 km × 60 km in size within a prospective region or province ∼1000 km × 1000 km in size. Exploration at the district scale necessitates the development of predictive exploration models, which can be applied to large regions. Recent advances in the study of the geodynamic evolution and 3D architecture of the EYC, together with an understanding of their interrelationship with the orogenic gold mineral system, has resulted in identification of critical mineralisation processes responsible for the region's rich gold endowment. Here we describe and map these critical processes, using them as a basis for district scale targeting. We relate gold mineralisation to three temporally constrained geodynamic periods, integrated with regional hydrothermal alteration. Unlike many targeting methodologies, this methodology does not incorporate the location of known gold deposits in the analysis, yet it predicted 75% of known gold mineralisation in 5% of the area. The methodology allows critical mineralisation processes to be identified and mapped through time and space. These critical processes are mostly generic and can be applied to other granite–greenstone orogenic gold regions, such as the Abitibi in Canada. An important outcome of this work for the EYC is the identification of a number of new target areas, not known currently for significant gold mineralisation, in what is otherwise thought to represent a mature terrane for gold exploration.  相似文献   

10.

灰池子复式岩体是东秦岭构造带中规模最大的I型花岗岩,围绕该岩体发育大量赋存稀有金属和铀矿化的花岗伟晶岩脉,二者具有密切的时空联系。然而,灰池子岩体岩浆演化过程尚不清楚,与花岗伟晶岩的成因联系也还存在争论。本研究对灰池子岩体和其东南方向出露的黑云母正长花岗岩中黑云母和长石进行了原位成分分析,结合全岩成分讨论了岩体岩浆演化过程及其与花岗伟晶岩之间的关系。灰池子岩体黑云母二长花岗岩、黑云母花岗闪长岩和英云闪长岩形成压力相似且黑云母离子替代方式相同,说明它们具有演化关系,但氧逸度和SiO2含量依次升高,温度及FeOT和MgO含量依次降低,因此黑云母二长花岗岩演化程度最低。此外,从英云闪长岩到黑云母花岗闪长岩中黑云母与碱性长石Rb、Cs含量逐渐升高而Ba含量逐渐降低,说明后者分异程度高于前者。灰池子岩体为低-中分异花岗岩,稀有金属含量较低且在岩浆演化过程中变化不大,可能不具备成为东秦岭稀有金属矿化伟晶岩母岩的条件。另一方面,黑云母正长花岗岩中黑云母离子替代方式不同于灰池子岩体,其形成温度和压力高于灰池子岩体但SiO2含量低于灰池子岩体,说明二者不存在演化关系。赋存铀矿化的黑云母花岗伟晶岩与黑云母正长花岗岩黑云母离子替代方式相同,而且黑云母花岗伟晶岩具有较高氧逸度和较低形成温度,可能是黑云母正长花岗岩分异晚期的产物。

  相似文献   

11.
The intraplate Ancestral Rocky Mountains of western North America extend from British Columbia, Canada, to Chihuahua, Mexico, and formed during Early Carboniferous through Early Permian time in response to continent–continent collision of Laurentia with Gondwana—the conjoined masses of Africa and South America, including Yucatán and Florida. Uplifts and flanking basins also formed within the Laurentian Midcontinent. On the Gondwanan continent, well inboard from the marginal fold belts, a counterpart structural array developed during the same period. Intraplate deformation began when full collisional plate coupling had been achieved along the continental margin; the intervening ocean had been closed and subduction had ceased—that is, the distinction between upper versus lower plates became moot. Ancestral Rockies deformation was not accompanied by volcanism. Basement shear zones that formed during Mesoproterozoic rifting of Laurentia were reactivated and exerted significant control on the locations, orientations, and modes of displacement on late Paleozoic faults.Ancestral Rocky Mountain uplifts extend as far south as Chihuahua and west Texas (28° to 33°N, 102° to 109°W) and include the Florida-Moyotes, Placer de Guadalupe–Carrizalillo, Ojinaga–Tascotal and Hueco Mountain blocks, as well as the Diablo and Central Basin Platforms. All are cored with Laurentian Proterozoic crystalline basement rocks and host correlative Paleozoic stratigraphic successions. Pre-late Paleozoic deformational, thermal, and metamorphic histories are similar as well. Southern Ancestral Rocky Mountain structures terminate along a line that trends approximately N 40°E (present coordinates), a common orientation for Mesoproterozoic extensional structures throughout southern to central North America.Continuing Tien Shan intraplate deformation (Central Asia) has created an analogous array of uplifts and basins in response to the collision of India with Eurasia, beginning in late Miocene time when full coupling of the colliding plates had occurred. As in the Laurentia–Gondwana case, structures of similar magnitude and spacing to those in Eurasia have developed in the Indian plate. Within the present orogen two ancient suture zones have been reactivated—the early Paleozoic Terskey zone and the late Paleozoic Turkestan suture between the Siberian and East Gondwanan cratons. Inverted Proterozoic to early Paleozoic rift structures and passive-margin deposits are exposed north of the Terskey zone. In the Alay and Tarim complexes, Vendian to mid-Carboniferous passive-margin strata and the subjacent Proterozoic crystalline basement have been uplifted. Data on Tien Shan uplifts, basins, structural arrays, and deformation rates guide paleotectonic interpretations of ancient intraplate mountain belts. Similarly, exhumed deep crustal shear zones in the Ancestral Rockies offer insight into partitioning and reorientation of strain during contemporary intraplate deformation.  相似文献   

12.
An existing lithogeochemical data file of more than 800 samples covering about 250 km2 of the east Amisk area was searched for potential pathfinder elements and rock types related to the known mineralization of the area (early Proterozoic Cu deposits of massive sulfide type). The data were studied in the form of summary statistics and chemically defined subfiles. Enhancement and depletion haloes and spatial relationships of rock types to known ore deposits were sought. Regional pathfinder haloes common to other studies or surveys of massive sulfide deposits (e.g., Na depletion) are not evident; however, the presence of depletion haloes of the immobile elements (i.e., Ti, Nb, Sr, Y, Zr) on a regional scale is demonstrated. It is concluded that the east Amisk area lithogeochemical data are different because of (a) the scale of the initial survey and (b) the environment of formation (and possibly age) of the volcanic host rocks.  相似文献   

13.
Different types of free water have been analysed for their deuterium and chemical composition in order to evaluate their source, mixing phenomena, and the underground dynamics. All types of ground water (mineral, geothermal and wellhead water) display δD values (− 82.6‰ to − 72.6‰) similar to surface waters from the studied area (− 77.1‰ to − 73.6‰). The global salt content varies from 1102 to 8707 mg/l for the groundwater, and from 46 to 392 mg/l for the surface water. From the co-variation between the δD values and the chemical composition of the waters, as well as from the seasonal variation of these two parameters, it is evident that the free water from Tuşnad Băi are meteoric in origin. The mineralization of the mineral water took place by means of an intense underground circulation, probably in the fault system developed within the Neogene magmatites.  相似文献   

14.
Structural mapping integrated with interpretation and forward modelling of aeromagnetic data form complimentary and powerful tools for regional structural analysis because both techniques focus on architecture and overprinting relationships. This approach is used to constrain the geometry and evolution of the sparsely exposed Mount Woods Inlier in the northern Gawler Craton. The Mount Woods Inlier records a history of poly-phase deformation, high-temperature metamorphism, and syn- and post-orogenic magmatism between ca. 1736 and 1584 Ma. The earliest deformation involved isoclinal folding, and the development of bedding parallel and axial planar gneissic foliation (S1). This was accompanied by high-temperature, upper amphibolite to granulite facies metamorphism at ca. 1736 Ma. During subsequent north–south shortening (D2), open to isoclinal south–southeast-oriented F2 folds developed as the Palaeoproterozoic successions of the inlier were thrust over the Archaean nuclei of the Gawler Craton. The syn-D2 Engenina Adamellite was emplaced at ca. 1692 Ma. The post-D2 history involved shear zone development and localised folding, exhumation of metamorphic rocks, and deposition of clastic sediments prior to the emplacement of the ca. 1584 Ma Granite Balta Suite. The Mount Woods Inlier is interpreted as the northern continuation of the Kimban Orogen.  相似文献   

15.
Deposition of quartz–molybdenite–pyrite–topaz–muscovite–fluorite and subsequent hübnerite and sulfide–fluorite–rhodochrosite mineralization at the Sweet Home Mine occurred coeval with the final stage of magmatic activity and ore formation at the nearby world-class Climax molybdenum deposit about 26 to 25 m.y. ago. The mineralization occurred at depths of about 3,000 m and is related to at least two major fluid systems: (1) one dominated by magmatic fluids, and (2) another dominated by meteoric water. The sulfur isotopic composition of pyrite, strontium isotopes and REY distribution in fluorite suggest that the early-stage quartz–molybdenite–pyrite–topaz–muscovite–fluorite mineral assemblage was deposited from magmatic fluids under a fluctuating pressure regime at temperatures of about 400°C as indicated by CO2-bearing, moderately saline (7.5–12.5 wt.% NaCl equiv.) fluid inclusions. LA-ICPMS analyses of fluid inclusions in quartz demonstrate that fluids from the Sweet Home Mine are enriched in incompatible elements but have considerably lower metal contents than those reported from porphyry–Cu–Au–Mo or Climax-type deposits. The ore-forming fluid exsolved from a highly differentiated magma possibly related to the deep-seated Alma Batholith or distal porphyry stock(s). Sulfide mineralization, marking the periphery of Climax-type porphyry systems, with fluorite and rhodochrosite as gangue minerals was deposited under a hydrostatic pressure regime from low-salinity ± CO2-bearing fluids with low metal content at temperatures below 400°C. The sulfide mineralization is characterized by mostly negative δ34S values for sphalerite, galena, chalcopyrite, and tetrahedrite, highly variable δ18O values for rhodochrosite, and low REE contents in fluorite. The Pb isotopic composition of galena as well as the highly variable 87Sr/86Sr ratios of fluorite, rhodochrosite, and apatite indicates that at least part of the Pb and Sr originated from a much more radiogenic source than Climax-type granites. It is suggested that the sulfide mineralization at the Sweet Home Mine formed from magmatic fluids that mixed with variable amounts of externally derived fluids. The migration of the latter fluids, that were major components during late-stage mineralization at the Sweet Home Mine, was probably driven by a buried magmatic intrusion.  相似文献   

16.
Abstract: The southern part of the Da Hinggan Mountains is the only tin-polymetallic concentration area in northern China. Based on ore-forming element assemblages, three metallogenic series, the Sn(W), paragenetic Sn–polymetallic, and poly-metallic series, are recognized. The Sn(W) series, consisting of greisen, skarn and vein types, is associated with ilmenite–series, potassic feldspar (Kf)–granites. The polymetallic Pb–Zn–Cu series with porphyry, skarn and vein types, is related to magnetite–series, granodiorite – monzonite. On the contrary, the paragenetic Sn-polymetallic series mineralization is associated with the coexisting igneous activities of Kf-granite and granodiorite–monzonite, and it is suggested that the paragenetic Sn-polymetallic series is caused by the superimposed mineralization with tin from ilmenite-series magma and polymetallic elements from magnetite-series magma–hydrothermal system. All the three series possess similar metallogenic age, concentrating on J3–K1 (130–150 Ma). The melting of high maturity and tin-rich Xilinhot Proterozoic complex (micro–massif) during Mesozoic period, could generate the ilmenite–series, tin-bearing felsic magma, and cause the tin mineralization in the southern part of the Da Hinggan Mountains.  相似文献   

17.
The metaturbidites of the Palaeoproterozoic Jormua–Outokumpu thrust belt in eastern Finland enclose m- to km-scale ultramafic massifs that are distributed over an area of more than 5000 km2. These bodies, which almost entirely consist of highly depleted mantle peridotites (now metaserpentinites and metaperidotites), are intimately associated with massive to semimassive, polymetallic Cu–Co–Zn–Ni–Ag–Au sulphide deposits that sustained mining in the region between 1913 and 1988. Currently, one deposit (Kylylahti) is proceeding into a definitive feasibility study emphasising the renewed economic interest for Outokumpu-type deposits.The origin of these Outokumpu-type Cu–Co–Zn–Ni–Ag–Au deposits is now re-interpreted to be polygenetic. First, their formation requires deposition of a Cu-rich proto-ore within peridotitic sea floor at  1950 Ma. Close modern analogues to the proto-ore setting include, for example, the Logatchev and Rainbow fields at the Mid-Atlantic Ridge, where venting of high-T–low-pH hydrothermal fluid resulted in accumulations of Cu–Zn–Co–Ag–Au sulphides on serpentinised ultramafic seafloor. Second, the Ni-rich composition of Outokumpu sulphide ores calls for a separate source for nickel: Some 40 Ma after the deposition of the Cu-rich proto-ore – concomitant with the obduction of the ultramafic massifs – disseminated Ni sulphides formed through chemical interaction between obducting peridotite massifs and adjacent black schists. This process was related to listwaenite–birbirite type carbonate–silica alteration at margins of the ultramafic massifs. Due to this alteration, silicate nickel was released from the primary Fe–Mg silicates and redeposited as Ni sulphides in the alteration fringes of the massifs.We propose that syntectonic mixing of these two “end-member” sulphides, i.e., the primary Cu-rich proto-ore and the secondary Ni-sulphide disseminations, resulted in the uncommon metal combination of the Outokumpu-type sulphides. Late tectonic solid-state re-mobilisation, related to the duplexing of the ore by isoclinal folding, upgraded the sulphides into economic deposits.  相似文献   

18.
Coal beds of the Upper Cretaceous Fruitland Formation in the San Juan Basin of northwestern New Mexico and southwestern Colorado have significant liquid hydrocarbon generation potential as indicated by typical Rock-Eval Hydrogen Indexes in the range of 200–400 mg hydrocarbon/g organic carbon (type II and III organic matter). Small, non-commercial quantities of oil have been produced from the coal beds at several locations. The oils are characterized by high pristane/phytane (ca 4) and pristane/n-C17 ratios (ca 1.2), abundant C21+ alkanes in the C10+ fraction with a slight predominance of odd carbon-numbered n-alkanes, abundant branched-chain alkanes in the C15+ region, and a predominance of methylcyclohexane in the C4----C10 fraction. The oils are indigenous to the Fruitland Formation coals and probably migrated at thermal maturities corresponding to vitrinite reflectance values in the range 0.7–0.8%. Although the oils found to date are not present in commercial amounts, these findings illustrate the potential of some coals to generate and expel oil under conditions of moderate thermal heating.  相似文献   

19.
Recent studies in northern Switzerland have shown that epicontinental areas thought to have been tectonically stable during the Mesozoic were not necessarily as rigid as presumed. By comparing Oxfordian facies boundaries and depocenters in their palinspastic position with known faults in the basement, a direct relationship between the two can be demonstrated. Previously, the lack of obvious synsedimentary tectonic features has lulled scientists into believing that the realm of the Swiss Jura was tectonically stable during the Mesozoic. However, it can be shown that facies and sedimentary structures are largely influenced by tectonics. Subsurface data provide evidence for the presence of Paleozoic troughs in the basement which, apparently, were prone to reactivation during the Pan-European stress-field reorganization taking place in the Late Jurassic. This led to differential subsidence along pre-existing lineaments within the study area, which can be recognized in the distribution of Oxfordian epicontinental basins and their coeval shallow-water counterparts. Eustatic sea-level fluctuations played an important role in the development of shallow-water facies patterns, but a subordinate role in the control of accommodation space in basins.

While tectonic activity is often recorded in the sedimentary record in the form of platform break-ups and associated sedimentary debris, more subtle indicators may be overlooked or even misinterpreted. Sedimentary structures and isopach maps, as well as subsurface data in the study area suggest that subtle synsedimentary tectonic movements led to the formation of two shallow, diachronous epicontinental basins during the Late Jurassic. It becomes possible to recognize and differentiate the combined effects of local and regional tectonism, eustasy and sedimentation.  相似文献   


20.
This study covers cosmic spherules derived from the Mesoproterozoic Dahongyu Formation in the Ming Tombs area, Beijing. The cosmic spherules include iron oxide cosmic spherules, carbonaceous chondrites, and atomic iron “steely bead”-shaped cosmic spherules. The mineral assemblage of silicon carbide, forsterite, zircon, and glass spherules and fragments were picked from melt-silicified carbonate of the Mesoproterozoic Dahongyu Formation (ca. 1625 Ma). Cosmic spherule assemblages are solely discovered from sedimentary rocks in China. Platinum group elements (PGE) were determined for the first time in cosmic spherules and associated minerals. PGE comparative observation between meteorite and cosmic spherules is presented in this study. It is recognized that an extraterrestrial meteorite impact event might have occurred in the Dahongyu Stage. The main evidence is a large number of iron cosmic spherules in silicified oncolitic limestone, and associated cosmic silicon carbide, glass spherules, and fragments, as well as the presence of forsterite. The impact-volcanic crater is characteristic of a big black shale block dropped into the bended silicified limestone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号