首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Environmental isotopes (particularly δ18O, δ2H, and δ13C values, 87Sr/86Sr ratios, and a14C) constrain geochemical processes, recharge distribution and rates, and inter-aquifer mixing in the Riverine Province of the southern Murray Basin. Due to methanogenesis and the variable δ13C values of matrix calcite, δ13C values are highly variable and it is difficult to correct 14C ages using δ13C values alone. In catchments where δ13C values, 87Sr/86Sr ratios, and major ion geochemistry yield similar a14C corrections, ∼15% of the C is derived from the aquifer matrix in the silicate-dominated aquifers, and this value may be used to correct ages in other catchments. Most groundwater has a14C above background (∼2 pMC) implying that residence times are <30 ka. Catchments containing saline groundwater generally record older 14C ages compared to catchments that contain lower salinity groundwater, which is consistent with evapotranspiration being the major hydrogeochemical process. However, some low salinity groundwater in the west of the Riverine Province has residence times of >30 ka probably resulting from episodic recharge during infrequent high rainfall episodes. Mixing between shallower and deeper groundwater results in 14C ages being poorly correlated with distance from the basin margins in many catchments; however, groundwater flow in palaeovalleys where the deeper Calivil–Renmark Formation is coarser grained and has high hydraulic conductivities is considerably more simple with little inter-aquifer mixing. Despite the range of ages, δ18O and δ2H values of groundwater in the Riverine Province do not preserve a record of changing climate; this is probably due to the absence of extreme climatic variations, such as glaciations, and the fact that the area is not significantly impacted by monsoonal systems.  相似文献   

3.
利用稳定同位素识别黑河流域地上水的补给来源   总被引:7,自引:0,他引:7  
本文利用稳定同位素(2H和18O)及水化学方法识别黑河流域地下水的补给来源,估算黑河水与地下水的转化数量.研究结果表明,黑河流域地下水的主要补给来自山区出山河流,山前戈壁带是地下水快速补给区,中下游盆地地下水补给来源为引河灌溉和河流侧渗.黑河干流出山河水在张掖以上河段约4.4×108 m3/a渗漏补给地下水,约占出山迳流量的27%.张掖一正义峡河段道地下水向河道平均排泄量为11.4×108 m3/a,占该段河流迳流量的69%.研究成果不仅对黑河流域地下水的开发管理有着重要意义,对我国西北类似的内陆盆地地下水的开发管理有着借鉴意义.  相似文献   

4.
The Latrobe aquifer in the Gippsland Basin in southeastern Australia is a prime example for emerging resource conflicts in Australian sedimentary basins. The Latrobe Group forms a major freshwater aquifer in the onshore Gippsland Basin, and is an important reservoir for oil and gas in both onshore and offshore parts of the basin. The Latrobe Group and overlying formations contain substantial coal resources that are being mined in the onshore part of the basin. These may have coal-seam-gas potential and, in addition, the basin is considered prospective for its geothermal energy and CO2 storage potential. The impacts of groundwater extraction related to coal-mine dewatering, public water supply, and petroleum production on the flow of variable-density formation water has been assessed using freshwater hydraulic heads and impelling force vectors. Groundwater flows from the northern and western edges towards the central part of the basin. Groundwater discharge occurs mainly offshore along the southern margin. Post-stress hydraulic heads show significant declines near the petroleum fields and in the coal mining areas. A hydrodynamic model of the Latrobe aquifer was used to simulate groundwater recovery in the Latrobe aquifer from different scenarios of cessation of groundwater and other fluid extractions.  相似文献   

5.
Fort Morgan Peninsula is an attached portion of a dynamic barrier complex in the northern Gulf of Mexico and is a large tourist area that brings in a significant amount of revenue for Alabama. Many of the hotels and tourist attractions depend on the groundwater as their water supply. The over-withdrawal of groundwater and saltwater intrustion will have a negative impact on the ecology, tourism and economy if groundwater resources are not properly monitored and managed. In this study a calibrated groundwater flow model was used to analyze the sustainability of groundwater resources at Fort Morgan Peninsula. Detailed flow budgets were prepared to check the various components of inflow and outflow under different water use and climatic conditions. The results indicated the locations where groundwater was over-pumped and subjected to saltwater intrusion, or will be subjected to saltwater intrusion under a range of projected water use and climatic conditions.  相似文献   

6.
In this paper, numerical simulations of regional-scale groundwater flow of North Bengal Plain have been carried out with special emphasis on the arsenic (As)-rich alluvium filled gap between the Rajmahal hills on the west and the Garo hills on the east. The proposed concern of this modelling arose from development that has led to large water table declines in the urban area of English Bazar block, Malda district, West Bengal and possible transport of As in the near future from the adjacent As-polluted aquifer. Groundwater occurs under unconfined condition in a thick zone of saturation within the Quaternary alluvial sediments. Modelling indicates that current pumping has significantly changed the groundwater flowpaths from pre-development condition. At the present pumping rate, the pumping wells of the urban area may remain uncontaminated till the next 25 yrs, considering only pure advection of water but some water from the As-polluted zone may enter wells by 50 yrs. But geochemical and other processes such as adsorption, precipitation, redox reaction and microbial activity may significantly retard the predicted rate by advective transport. In the rural areas, majority of the water pumped from the aquifer is for irrigation, which is continuously re-applied on the surface. The near-vertical nature of the flowpaths indicates that, where As is present or released at shallow depths, it will continue to occur in pumping wells. Modelling also indicates that placing all the pumping wells at depths below 100 m may not provide As-free water permanently.  相似文献   

7.
This study aims to characterise the hydrogeology and hydrochemistry of the Parmelia aquifer and to understand controls on recent water-level changes as these are needed to underpin a quantitative analysis of recharge. The Parmelia aquifer, a layered sequence of sand, silt and discontinuous lenses of clay, receives diffuse rainfall recharge on its outcrop and groundwater recharge occurs across the Dandaragan Plateau at different rates. Water levels have risen steadily over the last three decades between 10 and 55 cm/y in response to the replacement of native vegetation with pasture and annual crops. The mean aquifer properties from sediment analyses indicate a very wide range of porosity (8.9 – 49.5 %) with an arithmetic mean of 26% and consequently a very broad range of specific yield (0.0004 – 0.4) with an arithmetic mean of 0.14. Groundwater in the Parmelia aquifer has an underlying meteoric origin with compositional changes due to reactions with silicate minerals and leaching of chloride that has concentrated in the soil by evapotranspiration. The hydrochemistry sampled at different depths and locations in the aquifer indicates that the groundwater is not well mixed, and variations arise due to relatively recent recharge that has undergone evaporation in some areas.  相似文献   

8.
Hydrochemical and environmental isotope methods were used to characterize the groundwater quality in ten wells belonging to the Euphrates alluvial aquifer in Syria, with the aim to assess the origin and dynamic of groundwater salinization in this system. The Euphrates River (ER) water along its entire course in Syria is rather fresh (TDS < 0.5 g/L), and thus, it is suitable for drinking and irrigation purposes. Groundwater salinity progressively increases from north to south, changing from almost freshwater (TDS < 0.6 g/L), with a Ca–Mg and HCO3 type near the Syrian–Turkish border to brackish water (1 < TDS < 3 g/L), with a Ca–Mg or Na–Ca–Mg and SO4–HCO3 type in the vicinity of Al-Raqqa, and hence it can safely be used for irrigation. Downstream Deir-Ezzor the groundwater quality becomes fairly saline to very saline (3 < TDS < 29 g/L), with a Na–Cl type, and therefore it has an absolute hazard (SAR > 5) for irrigation uses. This pattern of chemical evolution, which is also clearly reflected in the variations of groundwater ionic ratios, completely agrees with the thermodynamic simulation results obtained by an experimental evaporation essay of a water sample taken from the ER near Deir-Ezzor. Stable isotopes permit the distinction between three main evaporation processes: under high, intermediate and low humidity conditions. Radioisotopes (3H and 14C) indicate the recent age and renewability of groundwater in this aquifer and confirm that its origin is entirely belonged to the ER water, either by direct bilateral interconnection or by vertical infiltration of the irrigation water totally taken from the ER. Relationships between major ions and δ18O values of the groundwater allow to differentiate between two main enrichment processes: either evaporation only or evaporation plus dissolution, that can explain altogether the development of groundwater salinity in such a dry area.  相似文献   

9.
The Albian aquifer of the Paris Basin (France) has been exploited since 1841 and shows drastic drawdown. A three-dimensional (3D) groundwater flow model is used to study the hydrodynamic response of the multi-layered aquifers to pumping activity in the Albian, at basin scale over 167 years. This 3D flow model uses geometry and hydrodynamic parameter distributions that are inherited from a genetic approach through basin modelling, the basin model creating a geometric pattern of hydrodynamic properties constrained by geological history. The paper aims to promote the use of the basin model approach (long time scale, 248 Ma) for the study of deep-aquifer response to anthropogenic perturbation (short time scale, 167 years) in situations for which hydrodynamic data are scarce but geological data are numerous. The results show that parameter distribution is insufficient to reproduce the Albian aquifer behaviour, notably highlighting a different meaning of the specific storage coefficient between basin modelling and groundwater-flow modelling. Dividing the storage coefficient by 100 and including available transmissivity data significantly improved the model/data comparison. The potential impact on a deep aquitard is then discussed. This study sheds light on the advantages and limitations of the basin model approach for groundwater-flow modelling in 3D.  相似文献   

10.
Solutes in saline groundwater (total dissolved solids up to 37 000 mg/L) in the Lake Cooper region in the southern margin of the Riverine Province of the Murray Basin are derived by evapotranspiration of rainfall with minor silicate, carbonate and halite dissolution. The distribution of hydraulic heads, salinity, percentage modern carbon (pmc) contents, and Cl/Br ratios imply that the groundwater system is complex with vertical flow superimposed on lateral flow away from the basin margins. Similarities in major ion composition, stable (O, H, and C) isotope, and 87Sr/86Sr ratios between groundwater from the shallower Shepparton Formation and the deeper Calivil – Renmark aquifer also imply that these aquifers are hydraulically interconnected. Groundwater in the deeper Calivil – Renmark aquifer in the Lake Cooper region has residence times of up to 25 000 years, implying that pre-land-clearing recharge rates were <1 mm/y. As in other regions of the Murray Basin, the low recharge rates account for the occurrence of high-salinity groundwater. Shallow (<20 m) groundwater yields exclusively modern 14C ages and shows a greater influence of evaporation over transpiration. Both these observations reflect the rise of the regional water-table following land clearing over the last 200 years and a subsequent increase in recharge to 10 – 20 mm/y. The rise of the regional water-table also has increased vertical and horizontal hydraulic gradients that may ultimately lead to the export of salt from the Lake Cooper embayment into the adjacent fresher groundwater resources.  相似文献   

11.
12.
The geochemical processes controlling chemical composition of groundwater are studied using hydrochemical and isotopic data in Abdan-Dayer coastal plain, south of Iran. The salinity of groundwater in the coastal plain ranges from 1,000, a fresh end-member, to more than 50,000 μS cm?1, a saline end-member. Groundwater salinity increases from the recharge area toward areas with a shallow water table close to the Persian Gulf coast due to direct evaporation and sea water intrusion as confirmed by mixing binary diagrams, stable isotope content, and Br?/Cl? ratio. Groundwater flow pattern in the study area has been modified due to over-pumping of groundwater in recent years which resulted in further saline water migration toward fresh water and their mixing. The maximum mixing ratio is estimated about 15% in different parts of the study area according to chloride concentration.  相似文献   

13.
14.
Hydrogeochemistry and environmental isotope data were utilized to understand origin, geochemical evolution, hydraulic interconnection, and renewability of groundwater in Qingshuihe Basin, northwestern China. There are four types of groundwater: (1) shallow groundwater in the mountain front pluvial fans, originating from recent recharge by precipitation, (2) deep paleo-groundwater of the lower alluvial plains, which was formed long ago, (3) shallow groundwater in the lower alluvial plains, which has undergone evaporation during the recharge process, and (4) mixed groundwater (shallow and deep groundwater in the plain). The main water types are Na–HCO3, which dominates type (1), and Na–SO4, which dominates types (2) and (3). Geochemical evolution in the upper pluvial fans is mainly the result of CO2 gas dissolution, silicates weathering and cation exchange; in the lower alluvial plains, it is related to mineral dissolution. The evaporative enrichment only produces significant salinity increases in the shallow groundwater of the lower alluvial plains. Shallow groundwater age in the upper plain is 10 years or so, showing a strong renewability. Deep groundwater ages in the lower plain are more than 200 years, showing poor renewability. In the exploitation areas, the renewability of groundwater evidently increases and the circulation period is 70–100 years.  相似文献   

15.
The Narava basin in Visakhapatnam district situated on the east coast is a productive agricultural area, and is also one of the fastest growing urban areas in India. The agricultural and urban-industrialization activities have a lot of impact on this coastal aquifer water quality. The hydrochemistry of the groundwater was analyzed in the basin area with reference to drinking and agricultural purposes. The area is underlain by Precambrian rocks like khondalites, charnockites and migmatites. The water samples were collected from shallow wells for the year 2008. Physical and chemical parameters of groundwater such as pH, total alkalinity (TA), electrical conductivity (EC), total dissolved solids (TDS), total hardness (TH), Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ?, F? were determined. The analytical results revealed that the most of the groundwater found to be in polluted category. Geographical information system (GIS) was utilized to generate different spatial distribution maps of various chemical constituents in the study area. The analytical data were used to compute certain parameters such as salinity hazard, percent sodium (Na%), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), Kelley??s ratio (KR) and corrosivity ratio (CR) to determine the quality of water for agricultural purposes. The abundance of the major ions in the basin area was found to be in the following sequence: Na+?>?Ca2+?>?Mg2+?>?K+:Cl??>?HCO3 ??>?SO4 2??>?NO3 ??>?F?. According to Gibbs?? diagram most of the samples fall under rock dominance. As per Wilcox and USSL classification most of the groundwater samples are suitable for irrigation except few samples which are unsuitable due to the presence of high salinity and high sodium hazard. From the obtained data, it can be concluded that the water quality profile was good and useful for normal irrigation agriculture.  相似文献   

16.
This study Investigates a tracing method using dissolved noble gases to survey the groundwater flow in a large groundwater basin. The tracing method is based on measuring the concentrations of noble gases and the ratio of helium isotopes in groundwater samples. Since it is very difficult to detect trace amounts of noble gases and helium with high accuracy in a 15-ml groundwater sample, dissolved gases were extracted and purified, then a high-resolution mass spectrometer was used for measurement and comparison with standard samples. We used this method with samples from a confined aquifer formed by the deposition of pyroclastic flow in the Kumamoto Plain on the west side of Mt. Aso in central Kyushu, Japan. The groundwater basin under the plain is divided into four small basins, based on the helium concentrations and isotope ratios, with two major groundwater flows. One flow is buried by the Aso pyroclastic flow along the old Kase River; the other is along the Tsuboi River Valley. These two groundwater flows were identified from the different helium isotope-ratios. The helium component from the deep mantle is mixed into the groundwater under the Kumamoto Plain. Finally, data on the concentrations and ratios of3He to4He in groundwater samples were used to determine the location of faults in the volcanic aquifer.  相似文献   

17.
A study has been conducted in the heavily populated coastal areas of the Puri district (Odisha, India) with the aim to: (1) identify the factors that influence the major ion composition and concentrations of trace elements in groundwater; (2) determine the spatial distribution of the water-quality parameters and how they vary on a seasonal basis. To do this, groundwater samples were collected from 60 shallow tube wells located along the Puri coast during the pre-monsoon and post-monsoon seasons. Based on their TDS content, 52% of the collected groundwater samples were identified as being brackish-to-saline and unsuitable for drinking purposes in both the pre- and post-monsoon seasons. Significant concentrations of trace elements including Ba, Br, F, Fe, Mn, and Sr were detected in most of the samples. Iron concentrations were found to be higher than the WHO drinking water guideline value (0.3 mg/l) in 92% of the samples irrespective of seasons. Elevated Mn concentrations were observed in 37% and 40% of samples during the pre-monsoon and post-monsoon seasons, respectively. In addition, fluoride concentrations in excess of the WHO limit (1.5 mg/l) were found in 15% of samples during the pre-monsoon and 23% of samples during the post-monsoon season. The concentrations of major and trace elements show wide spatial and minor temporal variations. Large spatial and limited temporal variations in Cl and Na concentrations along with considerable Br and Sr concentrations in groundwater suggest that saltwater intrusion is the dominant process controlling groundwater quality in the study area, although other processes including ion exchange, the precipitation and dissolution of minerals, microbial activity, and the weathering of aquifer material also play roles to some extent in determining the spatial and seasonal distribution of the major and trace elements in coastal groundwater. Grouping of various water-quality parameters related to these processes by principal component analysis and their linking to one cluster in the hierarchical cluster analysis further supports the view that these processes control the groundwater chemistry in the coastal aquifer.  相似文献   

18.
The daily groundwater level (GWL) response in the Permo-Triassic Sandstone aquifers in the Eden Valley, England (UK), has been studied using the seasonal trend decomposition by LOESS (STL) technique. The hydrographs from 18 boreholes in the Permo-Triassic Sandstone were decomposed into three components: seasonality, general trend and remainder. The decomposition was analysed first visually, then using tools involving a variance ratio, time-series hierarchical clustering and correlation analysis. Differences and similarities in decomposition pattern were explained using the physical and hydrogeological information associated with each borehole. The Penrith Sandstone exhibits vertical and horizontal heterogeneity, whereas the more homogeneous St Bees Sandstone groundwater hydrographs characterize a well-identified seasonality; however, exceptions can be identified. A stronger trend component is obtained in the silicified parts of the northern Penrith Sandstone, while the southern Penrith, containing Brockram (breccias) Formation, shows a greater relative variability of the seasonal component. Other boreholes drilled as shallow/deep pairs show differences in responses, revealing the potential vertical heterogeneities within the Penrith Sandstone. The differences in bedrock characteristics between and within the Penrith and St Bees Sandstone formations appear to influence the GWL response. The de-seasonalized and de-trended GWL time series were then used to characterize the response, for example in terms of memory effect (autocorrelation analysis). By applying the STL method, it is possible to analyse GWL hydrographs leading to better conceptual understanding of the groundwater flow. Thus, variation in groundwater response can be used to gain insight into the aquifer physical properties and understand differences in groundwater behaviour.  相似文献   

19.
The chloride mass balance (CMB) and water-table fluctuation (WTF) analysis methods were used to estimate recharge rates in the Uley South Basin, South Australia. Groundwater hydrochemistry and isotope data were used to infer the nature of recharge pathways and evapotranspiration processes. These data indicate that some combination of two plausible processes is occurring: (1) complete evaporation of rainfall occurs, and the precipitated salts are washed down and redissolved when recharge occurs, and (2) transpiration dominates over evaporation. It is surmised that sinkholes predominantly serve to by-pass the shallow soil zone and redistribute infiltration into the deeper unsaturated zone, rather than transferring rainfall directly to the water table. Chlorofluorocarbon measurements were used in approximating recharge origins to account for coastal proximity effects in the CMB method and pumping seasonality was accounted for in the WTF-based recharge estimates. Best estimates of spatially and temporally averaged recharge rates for the basin are 52?C63 and 47?C129?mm/year from the CMB and WTF analyses, respectively. Adaptations of both the CMB and WTF analyses to account for nuances of the system were necessary, demonstrating the need for careful application of these methods.  相似文献   

20.
Groundwater recharge estimation has become a priority issue for humid and arid regions, especially in regions like Saudi Arabia, where the precipitation varies over space and time as a result of topography and seasonality. Wadi Tharad is a typical arid area in western Saudi Arabia. Within its drainage area of 400 km2, the groundwater system shows a graded hydrochemical zonation from the hydrocarbonate in the upper reach to the chloride zone in the lower reach. The saturation index (SI) varies depending on the concentrations of carbonate minerals; the mean for calcite and dolomite is about in equilibrium (e.g., zero value). As halite and gypsum indices are negative, it is undersaturated. Isotopic compositions of H and O in the groundwater show that the groundwater recharge resources are mainly from meteoric water. The chloride-mass balance method was refined to estimate the amount of recharge, which is probably 11% of the effective annual rainfall. These results can be used to improve the accuracy of future groundwater management and development schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号