首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intermittent production of the renewable energy imposes the necessity to temporarily store it. Large amounts of exceeding electricity can be stored in geological strata in the form of hydrogen. The conversion of hydrogen to electricity and vice versa can be performed in electrolyzers and fuel elements by chemical methods. The nowadays technical solution accepted by the European industry consists of injecting small concentrations of hydrogen in the existing storages of natural gas. The progressive development of this technology will finally lead to the creation of underground storages of pure hydrogen. Due to the low viscosity and low density of hydrogen, it is expected that the problem of an unstable displacement, including viscous fingering and gravity overriding, will be more pronounced. Additionally, the injection of hydrogen in geological strata could encounter chemical reactivity induced by various species of microorganisms that consume hydrogen for their metabolism. One of the products of such reactions is methane, produced from Sabatier reaction between H2 and CO2. Other hydrogenotrophic reactions could be caused by acetogenic archaea, sulfate-reducing bacteria and iron-reducing bacteria. In the present paper, a mathematical model is presented which is capable to reflect the coupled hydrodynamic and bio-chemical processes in UHS. The model has been numerically implemented by using the open source code DuMuX developed by the University of Stuttgart. The obtained bio-chemical version of DuMuX was used to model the evolution of a hypothetical underground storage of hydrogen. We have revealed that the behavior of an underground hydrogen storage is different than that of a natural gas storage. Both, the hydrodynamic and the bio-chemical effects, contribute to the different characteristics.  相似文献   

2.
良好的密闭性能是盐穴储气库安全运营的基本前提,但地质赋存条件复杂、建库实践不足、理论体系不完备等均会导致盐腔遭遇各类泄漏风险。根据国内外的工程实践及事故统计,再结合盐穴储库特有的工程地质条件和运行工况,总结出三大泄漏因素(地质因素、工程因素、人为失误)和4种泄漏类型。地下盐穴储气库潜在的泄漏类型有夹层密闭性不足引起的气体近水平漏失、盖层被突破失效致使气体上窜、井筒完整性不足致使气体逃逸、夹层与断层连通致使气体流向断层。最终,依据各自的泄漏特征提出了相应的预防处置措施,以防止气体泄漏事故的发生和大范围的蔓延。由于我国盐穴储库的发展暂时处于上升期,研究结果对深部盐穴储气库的安全建设具有一定的借鉴和指导意义。  相似文献   

3.
层状盐岩中储备库油气渗漏风险的故障树分析   总被引:1,自引:0,他引:1  
油气渗漏是盐岩地下储备库事故的重要类型之一,具有突发性强、损失难以估计的特点。针对国内层状盐岩中储备库运营过程中的油气渗漏风险进行分析,揭示了油气渗漏事故的发生机制并建立了相应的故障树模型。通过对该模型的分析,找出了事故发生的各基本致因事件和故障模式,并得出适用于典型层状盐岩储备库油气渗漏事故的发生概率公式。分析结果表明,国内层状盐岩中储备库发生油气渗漏事故的可能故障模式有28种,且发生条件易于满足而难于防范,因此事故发生的可能性较大;按照各基本事件结构重要度的计算结果,盐岩强度低、盐岩蠕变过量、附近有断层、地震、造腔参数控制不当、非均匀地应力、人为操作失误等是层状盐岩中储备库油气渗漏事故的主要致因事件,并据此提出有效措施防止事故发生;通过专家调查法和故障树法的综合分析得出,金坛盐矿5口老腔储库在近10年的运营期内发生油气渗漏事故的概率为0.703%,属于偶发性事故。  相似文献   

4.
The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 μg/L. Concentrations of individual compounds ranged from about 18 to <0.01 μg/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002.  相似文献   

5.
我国盐穴地下储气库一般建设于富含泥质夹层的湖相沉积盐岩中,由于泥质夹层的孔隙率和渗透率均大于盐岩,因此其渗透性能对储气库的密闭性起控制作用。夹层的沉积特性一般沿水平展布,据此建立多夹层盐穴储气库渗漏分析理论模型。依据某储气库泥岩夹层的孔渗测试数据,并结合实际运行参数进行天然气渗漏计算。再利用以上研究成果分析气体渗漏范围和泄漏量的影响因素及变化规律,并对储气库选址及设计中的几个关键参数展开适用性评价,如储库离盐矿边界及断层的安全距离、相邻储气库安全矿柱宽度等。研究表明:泥质夹层孔隙压力的变化趋势表现为沿径向先急剧降低,而后趋于稳定;某时刻气体渗流范围和泄漏量由夹层渗透参数、渗透介质以及初始孔隙压力共同决定;渗流的影响范围随着时间的增加而逐渐增大,最终也趋于稳定。研究结果可为多夹层盐穴储气库选址、设计及密封性评价提供理论和技术支撑。  相似文献   

6.
为保障国家调峰保供需求,目前相国寺地下储气库(以下简称储气库)提出并正在进行扩压增量工程,为有效指导储气库运行上限压力优化,同时确保储气库长期安全运行,亟需对相国寺储气库开展地质体完整性评估。综合地质、地震、测井、动态监测资料以及各类室内岩芯实验数据,建立相国寺储气库三维静态及四维地质力学模型,分析了储气库地质体地质力学特征,分别对不同气藏孔隙压力特征下的盖层、底托层、断层稳定性进行应力应变模拟及评估。结果表明:梁山组盖层以及韩家店组底托层在储气库运行过程中产生的地层形变量小;5条控藏断层在储气库前期运行及现今注采条件下没有断层活化风险;模拟储气库注入压力高于原始气藏压力6 MPa时,储气库地质体完整性存在失稳风险。研究成果精细定量化评估了储气库在动态应力场影响下的运行安全,对优化储气库运行方案具有重要的指导意义。  相似文献   

7.
8.
Low‐pressure crystal‐liquid equilibria in pelitic compositions are important in the formation of low‐pressure, high‐temperature migmatites and in the crystallization of peraluminous leucogranites and S‐type granites and their volcanic equivalents. This paper provides data from vapour‐present melting of cordierite‐bearing pelitic assemblages and augments published data from vapour‐present and vapour‐absent melting of peraluminous compositions, much of which is at higher pressures. Starting material for the experiments was a pelitic rock from Morton Pass, Wyoming, with the major assemblage quartz‐K feldspar‐biotite‐cordierite, approximately in the system KFMASH. A greater range in starting materials was obtained by addition of quartz and sillimanite to aliquots of this rock. Sixty‐one experiments were carried out in cold‐seal apparatus at pressures of 1–3.5 kbar (particularly 2 kbar) and temperatures from 700 to 840 °C, with and without the addition of water. In the vapour‐present liquidus relations at 2 kbar near the beginning of melting, the sequence of reactions with increasing temperature is: Qtz + Kfs + Crd + Sil + Spl + V = L; Qtz + Kfs + Crd + Spl + Ilm + V = Bt + L; and Qtz + Bt + V = Crd + Opx + Ilm + L. Vapour‐absent melting starts at about 800 °C with a reaction of the form Qtz + Bt = Kfs + Crd + Opx + Ilm + L. Between approximately 1–3 kbar the congruent melting reaction is biotite‐absent, and biotite is produced by incongruent melting, in contrast to higher‐pressure equilibria. Low pressure melts from pelitic compositions are dominated by Qtz‐Kfs‐Crd. Glasses at 820–840 °C have calculated modes of approximately Qtz42Kfs46Crd12. Granites or granitic leucosomes with more than 10–15% cordierite should be suspected of containing residual cordierite. The low‐pressure glasses are quite similar to the higher‐pressure glasses from the literature. However, XMg increases from about 0.1–0.3 with increasing pressure from 1 to 10 kbar, and the low‐temperature low‐pressure glasses are the most Fe‐rich of all the experimental glasses from pelitic compositions.  相似文献   

9.
This study evaluates sediment runoff from gas well development sites in Denton County, Texas. The magnitude of sediment runoff was investigated by intercepting sediment in traps and weirs at the periphery of each gas well site and by measuring the growth of debris lobes that formed down slope from two sites. Four debris lobes formed at one gas well site and one formed at a second site. Debris lobes ranged in size from 30 to 306 square meters. Sediment from one site entered local creek channels, either as a component of storm water runoff or, in one case, as a debris lobe that flowed into a channel. The study findings suggest that sediment movement is significantly diminished once areas disturbed by gas well construction become naturally re-vegetated. Based on estimates of debris lobe volumes, sediment loading rates of about 54 metric tonnes per hectare per year were calculated for one site. It is concluded that gas well development sites in areas similar to those studied, especially where vegetation has been removed and terrain has relatively steep slopes (greater than 6%), generate sediment runoff comparable to small construction sites and should therefore be considered for regulations requiring erosion and sediment control measures.  相似文献   

10.
《Applied Geochemistry》2006,21(9):1498-1521
A baseline determination of CO2 and CH4 fluxes and soil gas concentrations of CO2 and CH4 was made over the Teapot Dome oil field in the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, USA. This was done in anticipation of experimentation with CO2 sequestration in the Pennsylvanian Tensleep Sandstone underlying the field at a depth of 1680 m.The baseline data were collected during the winter, 2004 in order to minimize near-surface biological activity in the soil profile. The baseline data were used to select anomalous locations that may be the result of seeping thermogenic gas, along with background locations. Five 10-m holes were drilled, 3 of which had anomalous gas microseepage, and 2 were characterized as “background.” These were equipped for nested gas sampling at depths of 10-, 5-, 3-, 2-, and 1-m depths. Methane concentrations as high as 170,000 ppmv (17%) were found, along with high concentrations of C2H6, C3H8, n-C4H10, and i-C4H10. Much smaller concentrations of C2H4 and C3H6 were observed indicating the beginning of hydrocarbon oxidation in the anomalous holes. The anomalous 10-m holes also had high concentrations of isotopically enriched CO2, indicating the oxidation of hydrocarbons. Concentrations of the gases decreased upward, as expected, indicating oxidation and transport into the atmosphere. The ancient source of the gases was confirmed by 14C determinations on CO2, with radiocarbon ages approaching 38 ka within 5 m of the surface.Modeling was used to analyze the distribution of hydrocarbons in the anomalous and background 10-m holes. Diffusion alone was not sufficient to account for the hydrocarbon concentration distributions, however the data could be fit with the addition of a consumptive reaction. First-order rate constants for methanotrophic oxidation were obtained by inverse modeling. High rates of oxidation were found, particularly near the surface in the anomalous 10-m holes, demonstrating the effectiveness of the process in the attenuation of CH4 microseepage. The results also demonstrate the importance of CH4 measurements in the planning of a monitoring and verification program for geological CO2 sequestration in sites with significant remaining hydrocarbons (i.e. spent oil reservoirs).  相似文献   

11.
天然气能源在地下储气库的存储及利用   总被引:1,自引:0,他引:1  
地下储气库对调节冬夏季节天然气供需矛盾,保障用户需求、优化集输系统功能有重要作用。在对地下储气库概念及原理进行阐述的基础上,系统地给出了地下储气库的研究设计模式,提出了建立地下储气库应具备的首要条件,同时对地下储气库设计过程中应重点解决的问题及指标设计进行了详细论述。通过大港油区地下储气库地质方案设计的探索实践,证实了所提出的设计及评价方法的可行性。  相似文献   

12.
盐岩地下储气库风险分级机制初探   总被引:4,自引:2,他引:4  
贾超  张强勇  张宁  刘健  李术才  杨春和 《岩土力学》2009,30(12):3621-3626
能源储备是国家重大战略需求,目前国内已经开始大规模兴建盐岩能源地下储库群,由于国内的盐岩储库地层具有埋深浅、盐层薄、夹层多、品位低等特点,导致建库难度大、运行风险高,因此,开展盐岩地下油气储库风险分析研究具有重要的理论意义和工程应用价值。针对国内盐岩地下油气储库现状,在风险分析中引入功能设计理念,以体积收缩率作为储库运营期风险的单项分级指标,初步提出了地下油气储库运营风险分级机制的基本方法,以国内某盐岩地下储气库为例,通过流变计算获得不同储气内压变化条件下,储库风险随时间的变化规律,较好地验证了所提方法的合理性和有效性。  相似文献   

13.
Abstract Metre-scale amphibolite boudins in the Cheyenne Belt of south-eastern Wyoming are cut and deformed by shear zones which preserve a full strain transition across 7 cm, from relatively undeformed amphibolite with a relict igneous texture to mylonitic amphibolite with an L-S tectonic fabric. The strain transition is marked by the progressive rotation of amphibole + plagioclase aggregates into parallelism with the shear-zone boundary. An increase in strain magnitude is indicated by development of the tectonic fabric and progressive reduction of amphibole and plagioclase grain size as a result of cataclasis. Bulk chemistry of five samples across a single strain transition shows no significant or systematic variation in major element chemistry except for a minor loss of SiO2, which indicates that the shear zone was a system essentially closed to non-volatile components during metamorphism and deformation. Amphibolites throughout the shear zone consist of amphibole and plagioclase with only minor amounts of quartz, chlorite, epidote, titanite and ilmenite. Within the relatively undeformed amphibolite, amphibole and plagioclase have wide compositional ranges in single thin sections. Amphibole compositions vary from actinolitic hornblende to magnesio-hornblende with increases in Al, Fe, Na and K contents and decreases in Si and Mg that can be modelled as progress along tschermakite, edenite and FeMg-1 exchange vectors from tremolite. Plagioclase ranges from An60 in cores to An30 within grain-boundary domains. With increasing strain magnitude, local variation of amphibole composition decreases as amphibole becomes predominantly magnesio-hornblende. Plagioclase composition range also decreases, although grain-boundary domains still have higher albite content. These petrological data indicate that shear-zone metamorphism was controlled by the magnitude of strain during synmetamorphic deformation. SEM and microprobe imaging indicate that chemical reactions occurred by a dissolution and reprecipitation process during or after cataclastic deformation. This suggests that grain-boundary formation was an important process in the petrological evolution of the shear zone, possibly by providing zones for fluid ingress to facilitate metamorphic reactions. These results highlight the necessity for conducting detailed microstructural evaluation of rocks in order to interpret petrological, isotopic and geochronological data.  相似文献   

14.
New stratigraphic and geochronologic data from the Killpecker Dunes in southwestern Wyoming facilitate a more precise understanding of the dune field’s history. Prior investigations suggested that evidence for late Pleistocene eolian activity in the dune field was lacking. However, luminescence ages from eolian sand of ∼15,000 yr, as well as Folsom (12,950-11,950 cal yr B.P.) and Agate Basin (12,600-10,700 cal yr) artifacts overlying eolian sand, indicate the dune field existed at least during the latest Pleistocene, with initial eolian sedimentation probably occurring under a dry periglacial climate. The period between ∼13,000 and 8900 cal yr B.P. was characterized by relatively slow eolian sedimentation concomitant with soil formation. Erosion occurred between ∼8182 and 6600 cal yr B.P. on the upwind region of the dune field, followed by relative stability and soil formation between ∼5900 and 2700 cal yr B.P. The first of at least two latest Holocene episodes of eolian sedimentation occurred between ∼2000 and 1500 yr, followed by a brief (∼500 yr) episode of soil formation; a second episode of sedimentation, occurring by at least ∼700 yr, may coincide with a hypothesized Medieval warm period. Recent stabilization of the western Killpecker Dunes likely occurred during the Little Ice Age (∼350-100 yr B.P.). The eolian chronology of the western Killpecker Dunes correlates reasonably well with those of other major dune fields in the Wyoming Basin, suggesting that dune field reactivation resulted primarily due to departures toward aridity during the late Quaternary. Similar to dune fields on the central Great Plains, dune fields in the Wyoming Basin have been active under a periglacial climate during the late Pleistocene, as well as under near-modern conditions during the latest Holocene.  相似文献   

15.
Identification of the source of CO2 in natural reservoirs and development of physical models to account for the migration and interaction of this CO2 with the groundwater is essential for developing a quantitative understanding of the long term storage potential of CO2 in the subsurface. We present the results of 57 noble gas determinations in CO2 rich fields (>82%) from three natural reservoirs to the east of the Colorado Plateau uplift province, USA (Bravo Dome, NM., Sheep Mountain, CO. and McCallum Dome, CO.), and from two reservoirs from within the uplift area (St. John’s Dome, AZ., and McElmo Dome, CO.). We demonstrate that all fields have CO2/3He ratios consistent with a dominantly magmatic source. The most recent volcanics in the province date from 8 to 10 ka and are associated with the Bravo Dome field. The oldest magmatic activity dates from 42 to 70 Ma and is associated with the McElmo Dome field, located in the tectonically stable centre of the Colorado Plateau: CO2 can be stored within the subsurface on a millennia timescale.The manner and extent of contact of the CO2 phase with the groundwater system is a critical parameter in using these systems as natural analogues for geological storage of anthropogenic CO2. We show that coherent fractionation of groundwater 20Ne/36Ar with crustal radiogenic noble gases (4He, 21Ne, 40Ar) is explained by a two stage re-dissolution model: Stage 1: Magmatic CO2 injection into the groundwater system strips dissolved air-derived noble gases (ASW) and accumulated crustal/radiogenic noble gas by CO2/water phase partitioning. The CO2 containing the groundwater stripped gases provides the first reservoir fluid charge. Subsequent charges of CO2 provide no more ASW or crustal noble gases, and serve only to dilute the original ASW and crustal noble gas rich CO2. Reservoir scale preservation of concentration gradients in ASW-derived noble gases thus provide CO2 filling direction. This is seen in the Bravo Dome and St. John’s Dome fields. Stage 2: The noble gases re-dissolve into any available gas stripped groundwater. This is modeled as a Rayleigh distillation process and enables us to quantify for each sample: (1) the volume of groundwater originally ‘stripped’ on reservoir filling; and (2) the volume of groundwater involved in subsequent interaction. The original water volume that is gas stripped varies from as low as 0.0005 cm3 groundwater/cm3 gas (STP) in one Bravo Dome sample, to 2.56 cm3 groundwater/cm3 gas (STP) in a St. John’s Dome sample. Subsequent gas/groundwater equilibration varies within all fields, each showing a similar range, from zero to ∼100 cm3 water/cm3 gas (at reservoir pressure and temperature).  相似文献   

16.
The Laramie Mountains of south-eastern Wyoming contain two metamorphic domains that are separated by the 1.76 Ga. Laramie Peak shear zone (LPSZ). South of the LPSZ lies the Palmer Canyon block, where apatite U–Pb ages are c. 1745 Ma and the rocks have undergone Proterozoic kyanite-grade Barrovian metamorphism. In contrast, in the Laramie Peak block, north of the shear zone, the U–Pb apatite ages are 2.4–2.1 Ga, the granitic rocks are unmetamorphosed and supracrustal rocks record only low-T amphibolite facies metamorphism that is Archean in age. Peak mineral assemblages in the Palmer Canyon block include (a) quartz–biotite–plagioclase–garnet–staurolite–kyanite in the pelitic schists; (b) quartz–biotite–plagioclase–low-Ca amphiboles–kyanite in Mg–Al-rich schists, and locally (c) hornblende–plagioclase–garnet in amphibolites. All rock types show abundant textural evidence of decompression and retrograde re-equilibration. Notable among the texturally late minerals are cordierite and sapphirine, which occur in coronas around kyanite in Mg–Al-rich schists. Thermobarometry from texturally early and late assemblages for samples from different areas within the Palmer Canyon block define decompression from >7 kbar to <3 kbar. The high-pressure regional metamorphism is interpreted to be a response to thrusting associated with the Medicine Bow orogeny at c. 1.78–1.76 Ga. At this time, the north-central Laramie Range was tectonically thickened by as much as 12 km. This crustal thickening extended for more than 60 km north of the Cheyenne belt in southern Wyoming. Late in the orogenic cycle, rocks of the Palmer Canyon block were uplifted and unroofed as the result of transpression along the Laramie Peak shear zone to produce the widespread decompression textures. The Proterozoic tectonic history of the central Laramie Range is similar to exhumation that accompanied late-orogenic oblique convergence in many Phanerozoic orogenic belts.  相似文献   

17.
A total of 268 thermal spring samples were analyzed for total soluble As using reduced molybdenum-blue; 27 of these samples were also analyzed for total Sb using flame atomic absorption spectrometry. At Yellowstone the ClAs atomic ratio is nearly constant among neutral-alkaline springs with Cl > 100 mg L?1, and within restricted geographic areas, indicating no differential effects of adiabatic vs. conductive cooling on arsenic. The ClAs ratio increases with silica and decreases with decreasing ClΣCO3; the latter relationship is best exemplified for springs along the extensively sampled SE-NW trend within the Lone Star-Upper-Midway Basin region. The relationship between ClAs and ClΣCO3 at Yellowstone suggests a possible rock leaching rather than magmatic origin for much of the Park's total As flux. Condensed vapor springs are low in both As and Cl. Very high ClAs ratios ( > 1000) are associated exclusively with highly diluted (Cl < 100 mg L?1) mixed springs in the Norris and Shoshone Basins and in the Upper White Creek and Firehole Lake areas of Lower Basin. The high ratios are associated with acidity and/or oxygen and iron; they indicate precipitation of As following massive dilution of the Asbearing high-Cl parent water.Yellowstone Sb ranged from 0.009 at Mammoth to 0.166 mg L?1 at Joseph's Coat Spring. Within basins, the ClSb ratio increases as the ClΣCO3 ratio decreases, in marked contrast to As. Mixed springs also have elevated ClSb ratios. White (1967) and Weissberg (1969) previously reported stibnite (Sb2S3), but not orpiment (As2S3), precipitating in the near surface zone of alkaline geothermal systems.  相似文献   

18.
向文  张强勇  蔡兵 《岩土力学》2014,35(Z2):379-385
盐岩因其具有良好的蠕变特性、低渗透性以及损伤自我恢复特性成为国际上公认的最理想能源地下存储介质。在盐岩地下储气库运营过程中储库套管受到储气内压、材料参数和几何尺寸等不确定性因素的影响,为了评价这些随机风险因素对储库套管结构运行安全的影响,建立了盐岩储气库的套管结构模型和基于Von Mises屈服准则的套管结构功能函数,根据建立的结构模型和结构功能函数,应用响应面法结合蒙特卡洛抽样计算获得储库在高压和低压运行条件下套管结构可靠度的变化规律。可靠性分析表明,为保证套管运行安全,储库最低运行内压应大于3 MPa,最高运行内压应小于22 MPa,套管靴距离储库腔顶的距离应大于10 m,并应适当加大套管的壁厚和减小套管的内径。  相似文献   

19.
The Permian Park City Formation consists of cyclically bedded subtidal to supratidal carbonates, cherts and siltstones. Early diagenesis of Park City Formation carbonates occurred under the influence of waters ranging from evaporative brines to dilute meteoric solutions and resulted in evaporite emplacement (syndepositional nodules and cements), as well as dolomitization, silicification and leaching of carbonate grains. Major differences are seen, however, in the diagenetic patterns of subsurface and surface sections of Park City Formation rocks. Subsurface samples are characterized by extensively preserved evaporite crystals and nodules, and preserve evidence of significant silicification (chert, chalcedony and megaquartz) and minor calcitization of evaporites. In outcrop sections, the evaporites are more poorly preserved, and have been replaced by silica and calcite and also leached. The resultant mouldic porosity is filled with widespread, very coarse, blocky calcite spar. These replacements appear to be multistage phenomena. Field and petrographic evidence indicates that silicification involved direct replacement of evaporites and occurred during the early stages of burial prior to hydrocarbon migration. Siliceous sponge spicules provided a major source of silica, and the fluids involved in replacement were probably a mixture of marine and meteoric waters. A second period of replacement and minor calcitization is inferred to have occurred during deep burial (under the influence of thermochemical sulphate reduction), although the presence of hydrocarbons probably retarded most other diagenetic reactions during this time interval. The major period of evaporite diagenesis, however, occurred during late stage uplift. The late stage replacement and pore-filling calcites have δ13C values ranging from 0·5 to -25·3%, and δ18O values of -16·1 to -24·30 (PDB), reflecting extensive modification by meteoric water. Vigorous groundwater flow, associated with mid-Tertiary block faulting, led to migration of meteoric fluids through the porous carbonates to depths of several kilometres. These waters reacted with the in situ hydrocarbon-rich pore fluids and evaporite minerals, and precipitated calcite cements. The Tosi Chert appears to have been an even more open system to fluid migration during its burial and has undergone a much more complex diagenetic history, as evidenced by multiple episodes of silicification, calcitization (ferroan and non-ferroan), and hydrocarbon emplacement. The multistage replacement processes described here do not appear to be restricted to the Permian of Wyoming. Similarly complex patterns of alteration have been noted in the Permian of west Texas, New Mexico, Greenland and other areas, as well as in strata of other ages. Thus, multistage evaporite dissolution and replacement may well be the norm rather than the exception in the geological record.  相似文献   

20.
In geologic materials, petroleum, and the environment, selenium occurs in various oxidation states (VI, IV, 0, -II), mineralized forms, and organo-Se complexes. Each of these forms is characterized by specific chemical and biochemical properties that control the element’s solubility, toxicity, and environmental behavior. The organic rich chalks and shales of the Upper Cretaceous Niobrara Formation and the Pierre Shale in South Dakota and Wyoming are bentoniferous stratigraphic intervals characterized by anomalously high concentrations of naturally occurring Se. Numerous environmental problems have been associated with Se derived from these geological units, including the development of seleniferous soils and vegetation that are toxic to livestock and the contamination of drinking water supplies by Se mobilized in groundwater.This study describes a sequential extraction protocol followed by speciation treatments and quantitative analysis by Hydride Generation-Atomic Absorption Spectroscopy. This protocol was utilized to investigate the geochemical forms and the oxidation states in which Se occurs in these geologic units. Organic Se and di-selenide minerals are the predominant forms of Se present in the chalks, shales, and bentonites, but distinctive variations in these forms were observed between different sample types. Chalks contain significantly greater proportions of Se in the form of di-selenide minerals (including Se associated with pyrite) than the shales where base-soluble, humic, organo-Se complexes are more prevalent. A comparison between unweathered samples collected from lithologic drill cores and weathered samples collected from outcrop suggest that the humic, organic-Se compounds in shale are formed during oxidative weathering and that Se oxidized by weathering is more likely to be retained by shale than by chalk. Selenium enrichment in bentonites is inferred to result from secondary processes including the adsorption of Se mobilized by groundwater from surrounding organic rich sediments to clay mineral and iron hydroxide surfaces, as well as microbial reduction of Se within the bentonitic intervals. Distinct differences are inferred for the biogeochemical pathways that affected sedimentary Se sequestration during periods of chalk accumulation compared to shale deposition in the Cretaceous seaway. Mineralogy of sediment and the nature of the organic matter associated with each of these rock types have important implications for the environmental chemistry and release of Se to the environment during weathering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号