共查询到20条相似文献,搜索用时 0 毫秒
1.
Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing 下载免费PDF全文
With the completion of South-North Water Transfer Project in China, plenty of high quality water will be transported to Beijing. To restore the groundwater level in Beijing, part of transferred water is planned to be used for artificial recharge. Clogging is an unavoidable challenge in the artificial recharge process. Therefore, a test is designed to analyse clogging duration and scope of influence and to test the reinjection properties of different recharge media. The test employs the self-designed sand column system with variable spacing and section monitoring, composed of four parts: Sand column, water-supply system, pressure-test system and flow-test system, to simulate the clogging of artificial recharge of sand and gravel pits. The hydraulic conductivity levels of all sand column sections are obtained to analyse the clogging of the injection of different concentrations in media of different particle sizes. In this experiment, two kinds of media are used–round gravel from sand and gravel pit in Xihuang village and the sand from sand and gravel pit by the Yongding River. The concentrations of recharge fluid are respectively 0.5 g/L and 1 g/L. The results show that clogging usually lasts for 20 hrs., and the hydraulic conductivity drops to the original 10%. Clogging usually occurs at 0–12 cm section of the sand column. The scope of influence is 0–60 cm. In column 3 and 4, whose average particle sizes are larger, section 20–50 cm also suffers from clogging, apart from section 0–12 cm. The effective recharge times are respectively 33 hrs. in column 1, 14 hrs. in column 2, 12 hrs. in column 3 and 12 hrs. in column 4. The larger the average particle size is, the quicker the clogging occurs. In media of larger particles, the change in suspension concentration does not have significant influence on the development of clogging. In conclusion, it is suggested that during artificial recharge, the conditions of reinjection medium should be fully considered and effective method of recharge be employed in order to improve effective recharge time. 相似文献
2.
John M. Stiefel Assefa M. Melesse Michael E. McClain René M. Price Elizabeth P. Anderson Narendra K. Chauhan 《Hydrogeology Journal》2009,17(8):2061-2073
In light of the increasing deterioration of groundwater supplies in Rajasthan, India, rainwater harvesting practices in southern Rajasthan were studied to determine the effects of artificially recharged groundwater on the supply and quality of local groundwater. A physical and geochemical investigation utilizing environmental tracers (δ18O and Cl–), groundwater level and groundwater quality measurements, and geological surveys was conducted with two objectives: (1) to quantify the proportion of artificially recharged groundwater in wells located near rainwater harvesting structures and (2) to examine potential effects of artificial recharge on the quality of groundwater in these wells. A geochemical mixing model revealed that the proportion of artificial recharge in these wells ranged from 0 to 75%. Groundwater tracer, water table, and geological data provided evidence of complex groundwater flow and were used to explain the spatial distribution of artificial recharge. Furthermore, wells receiving artificial recharge had improved groundwater quality. Statistical analysis revealed a significant difference between the water quality in these wells and wells determined not to receive artificial recharge, for electrical conductivity and SO 4 – . The findings from this study provide quantitative evidence that rainwater harvesting structures in southern Rajasthan influence the groundwater supply and quality of nearby wells by artificially recharging local groundwater. 相似文献
3.
4.
地下水人工回灌是解决地下水超采问题的有效措施,悬浮颗粒物堵塞是影响回灌进行的技术瓶颈。目前多数研究聚焦在悬浮物堵塞方面,然而地表回灌水中重金属离子以及腐殖质对多孔介质物理堵塞的影响缺乏研究。本研究采用室内渗流砂柱试验研究富里酸、Cu(Ⅱ)以及两者共存对多孔介质悬浮物堵塞的影响,分别采用高岭土(SS组)、富里酸+高岭土(SS+FA组)、富里酸+Cu(Ⅱ)+高岭土(SS+FA+Cu组)配置模拟回灌用水。研究结果表明:(1)回灌结束时,SS组、SS+FA组、SS+FA+Cu组多孔介质整体相对渗透系数K’分别降至0.233,0.095,0.182。SS组和SS+FA+Cu组在中上层(0~7.50 cm)相对渗透系数K’均降至0.28以下,而在底层(7.50~10.50 cm)相对渗透系数K’仅降至0.45左右,说明2组多孔介质中上层重度堵塞(0相似文献
5.
Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as saline water, and nine as mixed hydrothermal fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% hydrothermal fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by hydrothermal fluids. 相似文献
6.
Groundwater recharge in irrigated semi-arid areas: quantitative hydrological modelling and sensitivity analysis 总被引:3,自引:0,他引:3
Joaquín Jiménez-Martínez Lucila Candela Jorge Molinero Karim Tamoh 《Hydrogeology Journal》2010,18(8):1811-1824
For semi-arid regions, methods of assessing aquifer recharge usually consider the potential evapotranspiration. Actual evapotranspiration rates can be below potential rates for long periods of time, even in irrigated systems. Accurate estimations of aquifer recharge in semi-arid areas under irrigated agriculture are essential for sustainable water-resources management. A method to estimate aquifer recharge from irrigated farmland has been tested. The water-balance-modelling approach was based on VisualBALAN v. 2.0, a computer code that simulates water balance in the soil, vadose zone and aquifer. The study was carried out in the Campo de Cartagena (SE Spain) in the period 1999–2008 for three different groups of crops: annual row crops (lettuce and melon), perennial vegetables (artichoke) and fruit trees (citrus). Computed mean-annual-recharge values (from irrigation+precipitation) during the study period were 397 mm for annual row crops, 201 mm for perennial vegetables and 194 mm for fruit trees: 31.4, 20.7 and 20.5% of the total applied water, respectively. The effects of rainfall events on the final recharge were clearly observed, due to the continuously high water content in soil which facilitated the infiltration process. A sensitivity analysis to assess the reliability and uncertainty of recharge estimations was carried out. 相似文献
7.
Quantification of groundwater recharge and river bed clogging by daily water level measurements in a check dam 总被引:1,自引:0,他引:1
Check dams are one of the methods of managed aquifer recharge to augment groundwater storage in regions with non-perennial rivers. The objectives of this study were to quantify the groundwater recharge from a check dam in the Arani River, north of Chennai, India, and to assess the clogging of the riverbed. The water level in the check dam was measured daily for 3 years from 2010 to 2013. Other field investigations carried out include measurement of the topographic elevation of the riverbed using the differential global positioning system. Based on the water balance method, the quantity of water evaporated and recharged was estimated. A comparison of 3-year daily water level measurements indicated that there is no clogging in the riverbed during the study period, as this check dam is fitted with a sluice gate which is operated at appropriate times to flush out the sediments. 相似文献
8.
Chemical and mechanical clogging of groundwater abstraction wells at well field Heel,the Netherlands
C. G. E. M. van Beek A. A. Hubeek B. de la Loma Gonzalez P. J. Stuyfzand 《Hydrogeology Journal》2017,25(1):67-78
Well field Heel, in the south east of the Netherlands, consists of a row of wells drilled in an anoxic pyrite-containing aquifer alongside a former gravel pit, which now serves as a recharge basin, where water is actively aerated. All wells are seriously affected by chemical (screen slot) and/or mechanical (well bore) clogging. The objective of this study is to explain this combined occurrence. A combination of chemical, hydraulic and well-maintenance data indicate three groundwater quality types: (1) oxic basin water, (2) anoxic iron-containing basin water after oxidation of the traversed aquifer, and (3) deeply anoxic native groundwater. Wells abstracting a mixture of oxic basin water and anoxic basin water and/or native groundwater experience chemical well clogging, whereas wells abstracting (only or partly) native groundwater are vulnerable to mechanical well clogging. In the end, after oxic basin water has completely oxidized the traversed the aquifer, only two groundwater quality types will be present. Wells abstracting only oxic basin water will show no clogging, and wells abstracting a mixture of native groundwater and oxic basin water will experience chemical and possibly also mechanical well clogging. In this reasoning, the sequence in abstracted groundwater quality types coincides with a sequence in well clogging: from mechanical to chemical to no clogging. As well field Heel is situated in sloping terrain, the interplay between regional hydraulic gradient and different water qualities results in one-sided chemical clogging in the upper part of the well screen during abstraction, and in the lower part during the resting phase. 相似文献
9.
10.
P.C. Blaser M. Coetsiers W. Aeschbach-Hertig R. Kipfer M. Van Camp H.H. Loosli K. Walraevens 《Applied Geochemistry》2010
The particular objective of the present work is the development of a new radiocarbon correction approach accounting for palaeoclimate conditions at recharge and hydrochemical evolution. Relevant climate conditions at recharge are atmospheric pCO2 and infiltration temperatures, influencing C isotope concentrations in recharge waters. The new method is applied to the Ledo-Paniselian Aquifer in Belgium. This is a typical freshening aquifer where recharge takes place through the semi-confining cover of the Bartonian Clay. Besides cation exchange which is the major influencing process for the evolution of groundwater chemistry (particularly in the Bartonian Clay), also mixing with the original porewater solution (fossil seawater) occurs in the aquifer. Recharge temperatures were based on noble gas measurements. Potential infiltration water compositions, for a range of possible pCO2, temperature and calcite dissolution system conditions, were calculated by means of PHREEQC. Then the sampled groundwaters were modelled starting from these infiltration waters, using the computer code NETPATH and considering a wide range of geochemical processes. Fitting models were selected on the basis of correspondence of calculated δ13C with measured δ13C. The 14C modelling resulted in residence times ranging from Holocene to Pleistocene (few hundred years to over 40 ka) and yielded consistent results within the uncertainty estimation. Comparison was made with the δ13C and Fontes and Garnier correction models, that do not take climate conditions at recharge into account. To date these are considered as the most representative process-oriented existing models, yet differences in calculated residence times of mostly several thousands of years (up to 19 ka) are revealed with the newly calculated ages being mostly (though not always) younger. Not accounting for climate conditions at recharge (pCO2 and temperature) is thus producing substantial error on deduced residence times. The derived 14C model ages are correlated with He concentrations measured in the groundwater of the aquifer. The obtained residence times show a gap between about 14 and 21 ka indicating possible permafrost conditions which inhibited any groundwater recharge. 相似文献
11.
12.
为探讨中国东部地区变化环境下水循环演变机制,通过水文站网加密观测、构建不同特征试验流域等方法,揭示了不同土地利用和不同城镇化水平下水文要素分布及响应规律。结果表明:①小流域内场次极端降雨局部差异较大,主要受到微地形和风向的影响。②鄞江镇试验流域水位涨幅和单位雨量水位涨幅均高于天然画龙溪试验流域,主要受到了流域大小和城镇化率等因素的影响。③城镇用地和耕地土壤水消退过程较快,林地退水过程相对较慢;浅层10cm、20cm和40cm土壤含水率对降雨滞后响应时间分别为0~0.25h、0.25~0.75h和0.5~0.75h,而深层(60cm和80cm)土壤含水率由于受到优势流的影响,响应较为复杂,响应时间变动范围较大。④小流域地下水对降雨的响应存在滞后性,响应时间为6.5~12h。 相似文献
13.
人工回灌补给滨海含水层是海水入侵修复经常采用的工程措施,然而人工回灌条件下滨海砂质含水层经常出现渗透性显著降低的现象,其含水介质渗透性的时空演变规律仍不清楚。本文以青岛市大沽河下游咸水入侵区含水层砂样为研究对象,通过利用不同尺度的室内砂柱淡咸水驱替试验,对定水头和定流速条件下人工回灌咸淡水驱替过程中砂质含水层渗透性的时空演变特征进行了研究。结果表明:当淡水驱替咸水时含水介质的渗透性会发生显著变化,整个砂柱的渗透性先降低后回升,原因是回灌过程中砂柱中的黏土矿物发生释放、迁移、沉积;定水头条件下,在砂柱的前半段存在一个淘空区,渗透系数是初始渗透系数的1.6~2.0倍,砂柱其它部分渗透性是先降低再轻微回弹;定流速条件下,砂柱的渗透系数随时间的变化均呈现先降低后升高趋势,且砂柱各段离入水口的距离越远其渗透系数的值越小;砂柱黏粒含量的变化规律与渗透性的演化特征相吻合。研究成果可为人工回灌治理滨海含水层海水入侵提供一定的科学依据。 相似文献
14.
Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district,West Bengal,using RS,GIS and MCDM techniques 总被引:10,自引:4,他引:10
Artificial recharge plays a pivotal role in the sustainable management of groundwater resources. This study proposes a methodology to delineate artificial recharge zones as well as to identify favorable artificial recharge sites using integrated remote sensing (RS), geographical information system (GIS) and multi-criteria decision making (MCDM) techniques for augmenting groundwater resources in the West Medinipur district of West Bengal, India, which has been facing water shortage problems for the past few years. The thematic layers considered in this study are: geomorphology, geology, drainage density, slope and aquifer transmissivity, which were prepared using IRS-1D imagery and conventional data. Different themes and their corresponding features were assigned proper weights based on their relative contribution to groundwater recharge in the area, and normalized weights were computed using the Saaty’s analytic hierarchy process (AHP). These thematic layers were then integrated in the GIS environment to delineate artificial recharge zones in the study area. The artificial recharge map thus obtained divided the study area into three zones, viz., ‘suitable,’ ‘moderately suitable’ and ‘unsuitable’ according to their suitability for artificial groundwater recharge. It was found that about 46% of the study area falls under ‘suitable’ zone, whereas 43% falls under the ‘moderately suitable’ zone. The western portion of the study area was found to be unsuitable for artificial recharge. The artificial recharge zone map of the study area was found to be in agreement with the map of mean groundwater depths over the area. Furthermore, forty possible sites for artificial recharge were also identified using RS and GIS techniques. Based on the available field information, check dams are suggested as promising artificial recharge structures. The results of this study could be used to formulate an efficient groundwater management plan for the study area so as to ensure sustainable utilization of scarce groundwater resources. 相似文献
15.
城市下垫面改变引起水文循环过程发生变异,导致目前已掌握的天然情况下的产汇流规律和机制难以解释城市化等新形势下的水文现象与过程,而面临需重新再认识的挑战。本文以长三角地区为典型,建立了不同城市化水平及空间规模的水文试验流域,探讨了快速城市化地区暴雨洪水响应规律和机制。结果表明:(1)不同量级降水事件下城镇用地土壤水响应程度(表层土壤水涨幅基本超过4%)总体高于其他土地利用类型,城市化地区下垫面的改变通过影响土壤水动态响应模式直接影响了地表产流过程,植被覆盖率较低的城镇用地和荒地土壤含水率呈现出陡涨陡落现象,而植被作用下的土地利用类型则表现出缓慢上升和缓慢消退的土壤水响应过程。(2)流域洪峰滞时和洪峰流量整体表现为随流域面积增加而呈幂律函数关系形式的增加。(3)总降水量与主要洪水特征(如洪峰流量、单位面积洪峰流量和径流深)基本呈显著相关(相关系数分别达0.49、0.41和0.78以上)。城市下垫面通过改变土壤水动态响应等产汇流特征而直接影响了洪水过程,未来长三角地区暴雨洪水在城市化和气候因素双重作用下呈现持续加剧的趋势。 相似文献
16.
This paper analyzes the composition and distribution of coastal phytoplankton in the western portion of the Middle Caspian
in the context of changes in the hydrological and hydrochemical regime under the conditions of the rising level of the Caspian
Sea. It has been demonstrated that the changes in the water regime led to an increase in the taxonomic diversity, the quantitative
characteristics of phytoplankton, and the succession of the size groups. 相似文献
17.
M. Rezaeianzadeh A. Stein H. Tabari H. Abghari N. Jalalkamali E. Z. Hosseinipour V. P. Singh 《International Journal of Environmental Science and Technology》2013,10(6):1181-1192
Artificial neural networks (ANNs) are used by hydrologists and engineers to forecast flows at the outlet of a watershed. They are employed in particular where hydrological data are limited. Despite these developments, practitioners still prefer conventional hydrological models. This study applied the standard conceptual HEC-HMS’s soil moisture accounting (SMA) algorithm and the multi layer perceptron (MLP) for forecasting daily outflows at the outlet of Khosrow Shirin watershed in Iran. The MLP [optimized with the scaled conjugate gradient] used the logistic and tangent sigmoid activation functions resulting into 12 ANNs. The R 2 and RMSE values for the best trained MPLs using the tangent and logistic sigmoid transfer function were 0.87, 1.875 m3 s?1 and 0.81, 2.297 m3 s?1, respectively. The results showed that MLPs optimized with the tangent sigmoid predicted peak flows and annual flood volumes more accurately than the HEC-HMS model with the SMA algorithm, with R 2 and RMSE values equal to 0.87, 0.84 and 1.875 and 2.1 m3 s?1, respectively. Also, an MLP is easier to develop due to using a simple trial and error procedure. Practitioners of hydrologic modeling and flood flow forecasting may consider this study as an example of the capability of the ANN for real world flow forecasting. 相似文献
18.
Majid Dehghani Bahram Saghafian Firoozeh Rivaz Ahmad Khodadadi 《Arabian Journal of Geosciences》2017,10(12):266
In this study, application of a class of stochastic dynamic models and a class of artificial intelligence model is reported for the forecasting of real-time hydrological droughts in the Black River basin in the USA. For this purpose, the Standardized Hydrological Drought Index (SHDI) was adopted in different time scales to represent the hydrological drought index. Six probability distribution functions (PDF) were fitted to the discharge time series to obtain the best fit for SHDI calculation. Then, a dynamic linear spatio-temporal model (DLSTM) and artificial neural network (ANN) were used to forecast SHDI. Although results indicated that both models were able to forecast SHDI in different time scales, the DLSTM was far superior in longer lead times. The DLSTM could forecast SHDI up to 6 months ahead while ANN was only capable of forecasting SHDI up to 2 months ahead appropriately. For short lead times (1–6 months), the DLSTM has performed nearly perfect in test phase and CE oscillates between 0.97 and 0.86 while for ANN modeling, CE is between 0.72 and 0.07. However, the performance of DLSTM and ANN reduced considerably in medium lead times (7–12 months). Overall, the DLSTM is a powerful tool for appropriately forecasting SHDI at short time scales; a major advantage required for drought early warning systems. 相似文献
19.
Robert M. Gailey 《Hydrogeology Journal》2017,25(7):2163-2183
Water supply wells can act as conduits for vertical flow and contaminant migration between water-bearing strata under common hydrogeologic and well construction conditions. While recognized by some for decades, there is little published data on the magnitude of flows and extent of resulting water quality impacts. Consequently, the issue may not be acknowledged widely enough and the need for better management persists. This is especially true for unconsolidated alluvial groundwater basins that are hydrologically stressed by agricultural activities. Theoretical and practical considerations indicate that significant water volumes can migrate vertically through wells. The flow is often downward, with shallow groundwater, usually poorer in quality, migrating through conduit wells to degrade deeper water quality. Field data from locations in California, USA, are presented in combination with modeling results to illustrate both the prevalence of conditions conducive to intraborehole flow and the resulting impacts to water quality. Suggestions for management of planned wells include better enforcement of current regulations and more detailed consideration of hydrogeologic conditions during design and installation. A potentially greater management challenge is presented by the large number of existing wells. Monitoring for evidence of conduit flow and solute transport in areas of high well density is recommended to identify wells that pose greater risks to water quality. Conduit wells that are discovered may be addressed through approaches that include structural modification and changes in operations. 相似文献
20.
Hassen Ouelhazi Fethi Lachaal Abdelkrim Charef Bilel Challouf Habib Chaieb Faten Jarraya Horriche 《Arabian Journal of Geosciences》2014,7(10):4407-4421
Korba aquifer is one of the most typical examples of overexploited coastal aquifer in the Mediterranean countries. In fact, from 1985, a considerable piezometric level drop, water salinization, and seawater intrusion were registered in the aquifer. In December 2008, Tunisian authorities initiated a general plan to groundwater management in order to augment groundwater resources, restore the piezometric levels, and improve water quality. The plan consists of artificial recharge of groundwater used treated wastewater through three infiltration basins. During the first 4 years (from December 2008 to December 2012), 1.41 Mm3 of treated wastewater was injected to the Korba aquifer. This study presents a hydrogeological assessment of groundwater evolution during the recharge processes. In this study, 32 piezometric and chemical surveys of 70 piezometers and observed wells are used to present hydrogeological investigation and water quality evolution of wastewater reuse through artificial recharge in Korba coastal aquifer. The piezometric evolution maps are used to specify the positive effect in groundwater level that exceeding 1.5 m in some regions. The interpretation of salinity evolution maps are used to indicate the improving of groundwater quality. 相似文献