首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Line-of-sight velocity distributions of low-luminosity elliptical galaxies   总被引:1,自引:0,他引:1  
The shape of the line-of-sight velocity distribution (LOSVD) is measured for a sample of 14 elliptical galaxies, predominantly low-luminosity ellipticals. The sample is dominated by galaxies in the Virgo cluster but also contains ellipticals in nearby groups and low-density environments. The parametrization of the LOSVD given by Gerhard and van der Marel & Franx is adopted, which measures the asymmetrical and symmetrical deviations of the LOSVD from a Gaussian by the amplitudes h 3 and h 4 of the Gauss–Hermite series. Rotation, velocity dispersion, h 3 and h 4 are determined as a function of radius for both major and minor axes. Non-Gaussian LOSVDs are found for all galaxies along the major axes. Deviations from a Gaussian LOSVD along the minor axis are of much lower amplitude if present at all. Central decreases in velocity dispersion are found for three galaxies. Two galaxies have kinematically decoupled cores: NGC 4458 and the well-known case of NGC 3608.  相似文献   

9.
10.
In this letter we investigate the kinematical properties of early-type dwarfs by significantly enlarging the scarce observational sample so far available. We present rotation curves and mean velocity dispersions for four bright dwarf ellipticals and two dwarf lenticular galaxies in the Virgo cluster. Most of these galaxies exhibit conspicuous rotation curves. In particular, five out of the six new galaxies are found to be close to the predictions for oblate spheroids flattened by rotation. Therefore, and contrary to the previous observational hints, the present data suggest that an important fraction of dwarf early-type galaxies may be rotationally supported.  相似文献   

11.
Stable models of elliptical galaxies   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
15.
We investigate the possibility of discriminating between modified Newtonian dynamics (MOND) and Newtonian gravity with dark matter, by studying the vertical dynamics of disc galaxies. We consider models with the same circular velocity in the equatorial plane (purely baryonic discs in MOND and the same discs in Newtonian gravity embedded in spherical dark matter haloes), and we construct their intrinsic and projected kinematical fields by solving the Jeans equations under the assumption of a two-integral distribution function. We find that the vertical velocity dispersion of deep MOND discs can be much larger than in the equivalent spherical Newtonian models. However, in the more realistic case of high surface density discs, this effect is significantly reduced, casting doubt on the possibility of discriminating between MOND and Newtonian gravity with dark matter by using current observations.  相似文献   

16.
17.
This paper investigates the detailed dynamical properties of a relatively homogeneous sample of disc-dominated S0 galaxies, with a view to understanding their formation, evolution and structure. By using high signal-to-noise ratio long-slit spectra of edge-on systems, we have been able to reconstruct the complete line-of-sight velocity distributions of stars along the major axes of the galaxies. From these data, we have derived both model distribution functions (the phase density of their stars) and the approximate form of their gravitational potentials.
The derived distribution functions are all consistent with these galaxies being simple disc systems, with no evidence for a complex formation history. Essentially no correlation is found between the characteristic mass scalelengths and the photometric scalelengths in these galaxies, suggesting that they are dark-matter dominated even in their inner parts. Similarly, no correlation is found between the mass scalelengths and asymptotic rotation speed, implying a wide range of dark matter halo properties.
By comparing their asymptotic rotation speeds with their absolute magnitudes, we find that these S0 galaxies are systematically offset from the Tully–Fisher relation for later-type galaxies. The offset in luminosity is what one would expect if star formation had been suddenly switched off a few Gyr ago, consistent with a simple picture in which these S0s were created from ordinary later-type spirals which were stripped of their star-forming interstellar medium when they encountered a dense cluster environment.  相似文献   

18.
We present a study of the local B - and K s-band Tully–Fisher relation (TFR) between absolute magnitude and maximum circular speed in S0 galaxies. To make this study, we have combined kinematic data, including a new high-quality spectral data set from the Fornax cluster, with homogeneous photometry from the Third Reference Catalogue of Bright Galaxies and Two Micron All Sky Survey catalogues, to construct the largest sample of S0 galaxies ever used in a study of the TFR. Independent of environment, S0 galaxies are found to lie systematically below the TFR for nearby spirals in both optical and infrared bands. This offset can be crudely interpreted as arising from the luminosity evolution of spiral galaxies that have faded since ceasing star formation.
However, we also find a large scatter in the TFR. We show that most of this scatter is intrinsic, not due to the observational uncertainties. The presence of such a large scatter means that the population of S0 galaxies cannot have formed exclusively by the above simple fading mechanism after all transforming at a single epoch. To better understand the complexity of the transformation mechanism, we have searched for correlations between the offset from the TFR and other properties of the galaxies such as their structural properties, central velocity dispersions and ages (as estimated from line indices). For the Fornax cluster data, the offset from the TFR correlates with the estimated age of the stars in the individual galaxies, in the sense and of the magnitude expected if S0 galaxies had passively faded since being converted from spirals. This correlation implies that a significant part of the scatter in the TFR arises from the different times at which galaxies began their transformation.  相似文献   

19.
Studying three samples of early-type galaxies, which include approximately 8800 galaxies and cover a relatively ample magnitude range  (〈Δ M 〉∼ 5.5 mag)  , we find that the coefficients as well as the intrinsic dispersion of the Fundamental Plane depend on the width and brightness of the magnitude range within which the galaxies are distributed. We analyse this dependence, and the results show that it is due to the fact that the distribution of galaxies in the space defined by the variables     depends on the luminosity.  相似文献   

20.
We present intermediate-resolution spectroscopic data for a set of dwarf and giant galaxies in the Coma cluster, with  −20.6 < MR < −15.7.  The photometric and kinematic properties of the brighter galaxies can be cast in terms of parameters which present little scatter with respect to a set of scaling relations known as the fundamental plane. To determine the form of these fundamental scaling relations at lower luminosities, we have measured velocity dispersions for a sample comprising 69 galaxies on the border of the dwarf and giant regime. Combining these data with our photometric survey, we find a tight correlation of luminosity and velocity dispersion,   L ∝σ2.0  , substantially flatter than the Faber–Jackson relation characterizing giant elliptical galaxies. In addition, the variation of mass-to-light ( M / L ) ratio with velocity dispersion is quite weak in our dwarf sample:   M / L ∝σ0.2.  Our overall results are consistent with theoretical models invoking large-scale mass removal and subsequent structural readjustment, e.g. as a result of galactic winds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号