首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different continental collision belts show contrasting metamorphic trend along their length, including the distribution of extreme metamorphism; i.e., ultrahigh-pressure (>100 km depth) and ultrahigh-temperature (900–1150 °C) metamorphisms. However, no previous study has succeeded in explaining these trends. The present study investigates the main factors that control the metamorphic trends along collision belts, with reference to the Dabie–Hongseong collision belt between the North and South China blocks and the Himalayan collision belt between the Indian and Asian blocks. In the Dabie–Hongseong collision belt, collision began in the east before 245 Ma and propagated westward until ca. 220 Ma. In the eastern part of the belt, the amount of oceanic slab that subducted before collision was insufficient to pull down the continental crust to the depths of ultrahigh-pressure metamorphism; however, ultrahigh-pressure metamorphism occurred in the western part of the belt. Slab break-off also migrated from east to west, with a westward increase in the depth of break-off (from ca. 10 kbar in the west to ca. 35 kbar in the east). These lateral trends along the belt resulted in a westward change from ultrahigh-temperature (915–1160 °C, 9.0–10.6 kbar) to high-pressure (835–860 °C, 17.0–20.9 kbar) and finally ultrahigh-pressure metamorphism (680–880 °C, 30–40 kbar). In the Himalayan collision belt, collision started from the west at 50 Ma and propagated eastward. The amount of oceanic slab subducted prior to collision was sufficient to pull down the continental crust to the depths of ultrahigh-pressure metamorphism in the west, but not in the east. Slab break-off started in the west at ca. 46 Ma and propagated eastward, with an eastward decrease in the depth of slab break-off from 27–29 to 17–18 kbar. Consequently, the metamorphic trend along the belt changes eastward from ultrahigh-pressure (690–750 °C, 27–29 kbar) to high-pressure and finally high-pressure granulite facies metamorphism (890 °C, 17–18 kbar). The differences in metamorphic trend between the Dabie–Hongseong and Himalayan collision belts reflect the amount of oceanic crust subducted prior to collision and the depth and timing of slab break-off along each belt.  相似文献   

2.
The Omitiomire copper deposit is a relatively recent discovery in the Pan-African Damara Belt of central Namibia. The deposit is situated in Mesoproterozoic gneisses and amphibolites of the Ekuja Dome overlain by amphibolite-grade metaturbidites of the Southern Zone accretionary prism that formed during northward subduction of the Kalahari Craton below the Congo Craton between ca. 580–520 Ma. Copper mineralisation is confined to an anastomosing system of shallowly-dipping, retrograde mylonitic shear zones within the Ekuja Dome. The shear zones are centred around a lithologically heterogeneous amphibolite-gneiss sequence. Mylonitisation and copper mineralisation are closely associated with the retrogression of particularly amphibolites and the partial or complete replacement of amphibolites by biotite–epidote and biotite–chlorite–epidote schists that host the chalcocite-dominated mineralisation.Deformation and mineralisation in the heterogeneous shear-zone system can be shown to describe a progression. Initial strain localization is confined to lithological (amphibolite-gneiss) contacts and associated quartz veining and fluid flow are preferentially developed around the margins of competent amphibolite units. Fluid infiltration and the retrogression of amphibolites to biotite–epidote schists leads to strain localization into the marginal schists that envelop amphibolites. Further veining and fluid flow are localised into the central parts of amphibolite units leading to the pervasive retrogression to biotite–epidote schists that dominate the central parts of the shear-zone system. Earlier quartz-vein generations appear as isoclinally folded and dismembered ribbons or boudins in mineralised schists. The clearly syntectonic introduction of the copper mineralisation is underlined by the intergrowth of chalcocite with the retrograde assemblages and chalcocite forming part of the mylonitic shear-zone fabric.3D modelling of drillhole data combined with limited surface exposure delineates a shallow east dipping, gently undulating ore body parallel to the regional gneissosity of the Ekuja Dome. The ore body comprises several mineralised lenses varying in thickness from 10 m to > 100 m. Prominent ore shoots are gently doubly plunging to the N and S and parallel to the regionally developed L > S fabric in the gneisses. Kinematic indicators in the mineralised shear zone system point to a top-to-the S sense of shear, parallel to the regional L fabric and parallel to the southverging transport recorded in the structurally overlying prism metasediments.The regional setting of the Omitiomire deposit, kinematics, and retrograde, but high-temperature overprint of original mineral assemblages in the mineralised shear zones indicate deformation and fluid flow during the expulsion of the basement gneisses during N-ward direction subduction of the Kalahari Craton below the Congo Craton. Lithological, geochronological, structural and P–T data suggest numerous similarities and, indeed, correlations between the Omitiomire-style copper mineralisation of the Damara Belt with the large copper deposits hosted by basement gneisses in the Domes Region of the Lufilian Arc in Zambia.  相似文献   

3.
Early Paleozoic paleomagnetic data from NW Argentina and Northern Chile have shown large systematic rotations within two domains: one composed of the Western Puna that yields very large (up to 80°) counter-clockwise rotations, and the other formed by the Famatina Ranges and the Eastern Puna that shows (~40°) clockwise rotations around vertical axes. In several locations, lack of significant rotations in younger rocks constrains this kinematic pattern to have occurred during the Paleozoic. Previous tectonic models have explained these rotations as indicative of rigid-body rotations of large para-autochthonous crustal blocks or terranes. A different but simple tectonic model that accounts for this pattern is presented in which rotations are associated to crustal shortening and tectonic escape due to the collision of the allochthonous terrane of Precordillera in the Late Ordovician. This collision should have generated dextral shear zones in the back arc region of the convergent SW Gondwana margin, where systematic domino-like clockwise rotations of small crustal blocks accommodate crustal shortening. The Western Puna block, bordering the Precordillera terrane to the north, might have rotated counterclockwise as an independent microplate due to tectonic escape processes, in a fashion similar to the present-day relationship between the Anatolia block and the Arabian microplate.  相似文献   

4.
Garnets from different migmatites and granites from the Damara orogen (Namibia) were dated with the U-Pb technique after bulk dissolution of the material. Measured 206Pb/204Pb ratios are highly variable and range from ca. 21 to 613. Variations in isotope (208Pb/204Pb, 206Pb/204Pb) and trace element (Th/U, U/Nd, Sm/Nd) ratios of the different garnets show that some garnets contain significant amounts of monazite and zircon inclusions. Due to their very low 206Pb/204Pb ratios, garnets from pelitic migmatites from the Khan area yield Pb-Pb ages with large errors precluding a detailed evaluation. However, the 207Pb/206Pb ages (ca. 550–500 Ma) appear to be similar to or older than U-Pb monazite ages (530±1–517±1 Ma) and Sm-Nd garnet ages (523±4–512±3 Ma) from the same sample. It is reasonable to assume that the Pb-Pb garnet ages define growth ages because previous studies are consistent with a higher closure temperature for the U-Pb system in garnet relative to the U-Pb system in monazite and the Sm-Nd system in garnet. For igneous migmatites from Oetmoed, Pb-Pb garnet ages (483±15–492±16 Ma) and one Sm-Nd garnet whole rock age (487±8 Ma) are similar whereas the monazite from the same sample is ca. 30–40 Ma older (528±1 Ma). These monazite ages are, however, similar to monazite ages from nearby unmigmatized granite samples and constrain precisely the intrusion of the precursor granite in this area. Although there is a notable difference in closure temperature for the U-Pb and Sm-Nd system in garnet, the similarity of both ages indicate that both garnet ages record garnet growth in a migmatitic environment. Restitic garnet from an unmigmatized granite from Omaruru yields similar U-Pb (493±30–506±30 Ma) and Sm-Nd (493±6–488±7 Ma) garnet ages whereas the monazite from this rock is ca. 15–25 Ma older (516±1–514±1 Ma). Whereas the monazite ages define probably the peak of regional metamorphism in the source of the granite, the garnet ages may indicate the time of melt extraction. For igneous garnets from granites at Oetmoed, the similarity between Pb-Pb (483±34–474±17 Ma) and Sm-Nd (492±5–484±13 Ma) garnet ages is consistent with fast cooling rates of granitic dykes in the lower crust. Differences between garnet and monazite U-Pb ages can be explained by different reactions that produced these minerals at different times and by the empirical observation that monazite seems resistant to later thermal re-equilibration in the temperature range between 750 and 900 °C (e.g. Braun et al. 1998). For garnet analyses that have low 206Pb/204Pb ratios, the influence of high- inclusions is small. However, the relatively large errors preclude a detailed evaluation of the relationship between the different chronometers. For garnet with higher 206Pb/204Pb ratios, the overall similarity between the Pb-Pb and Sm-Nd garnet ages implies that the inclusions are not significantly older than the garnet and therefore do not induce a premetamorphic Pb signature upon the garnet. The results presented here show that garnet with low 238U/204Pb ratios together with Sm-Nd garnet data and U-Pb monazite ages from the same rock can be used to extract geologically meaningful ages that can help to better understand tectonometamorphic processes in high-grade terranes.Editorial responsibility: J. Hoefs  相似文献   

5.
The Sergipano Belt is the outcome of collision between the Pernambuco–Alagoas Massif and the São Francisco Craton during Neoproterozoic assembly of West Gondwana. Field relationships and U–Pb geochronology of granites intruded in garnet micaschists of the Macururé Domain are used to constrain the main collisional event (D2) in the belt. The granites are divided into two groups, the pre-collisional granites (pre- to early-D2) and the syn-collisional granites (syn- to tardi-D2), the latter were emplaced as sheets along the S2 axial plane foliation or they were collected at the hinge zones of F2 folds. A U–Pb SHRIMP zircon age of 628 ± 12 Ma was obtained for the pre-collisional Camará tonalite. Two U–Pb TIMS titanite ages were obtained for the syn-collisional granites, 584 ± 10 Ma for the Angico granite and 571 ± 9 Ma for the Pedra Furada granite, and these ages are close to the garnet-whole rock Sm–Nd isochron of 570 Ma found for the peak of metamorphism in the Sergipano Belt. The ages of the Camará tonalite (628 Ma) and the Pedra Furada granite (571 Ma) mark respectively the maximum age for beginning of the D2 event and minimum age for the end in the Macururé Domain. Using these ages, the main Neoproterozoic D2 collisional event has been in operation in the Sergipano Belt for at least 57 million years. Correlation with coeval granitoids farther north in the Borborema Province indicate that while in the Sergipano Belt the syn-D2 granites (ca. 590–570 Ma) were emplaced under compression, in the Borborema Province they emplaced under extensional conditions related to regional strike-slip shear zones. These contrasting emplacement settings for contemporaneous Neoproterozoic granitoids are explained by a combination of continent–continent collision and extrusion tectonics.  相似文献   

6.
《International Geology Review》2012,54(10):1244-1269
ABSTRACT

Western Anatolia is a complex assemblage of terranes, including the Sakarya Terrane and the Tauride-Anatolide Platform that collided during the late Cretaceous and Palaeogene (80–25 Ma) after the closure of the Izmir-Ankara Ocean. Determining the precise timing at which this ocean closed is particularly important to test kinematic reconstructions and geodynamic models of the Mediterranean region, and the chronology of suturing and its mechanisms remain controversial. Here, we document the Cretaceous-Eocene sedimentary history of the Central Sakarya Basin, along the northern margin of the Neotethys Ocean, via various approaches including biostratigraphy, geochronology, and sedimentology. Two high-resolution sections from the Central Sakarya Basin show that pelagic carbonate sedimentation shifted to rapid siliciclastic deposition in the early Campanian (~ 79.6 Ma), interpreted to be a result of the build-up of the accretionary prism at the southern margin of the Sakarya Terrane. Rapid onset of deltaic progradation and an increase in accumulation rates in the late Danian (~ 61 Ma), as well as a local angular unconformity are attributed to the onset of collision between the Sakarya Terrane and the Tauride-Anatolide Platform. Thus, our results indicate that though deformation of the subduction margin in Western Anatolia started as early as the Campanian, the closure of the ?zmir-Ankara Ocean was only achieved by the early Palaeocene.  相似文献   

7.
Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the petrogenetic and tectonic setting for this magmatism is poorly understood. This study presents new field, petrographic, U–Pb zircon, and geochemical data from NW New Guinea. These data have been used to identify six units of Cenozoic igneous rocks which record episodes of magmatism during the Oligocene, Miocene, and Pliocene. These episodes occurred in response to the ongoing interaction between the Australian and Philippine Sea plates. During the Eocene, the Australian Plate began to obliquely subduct beneath the Philippine Sea Plate forming the Philippine–Caroline Arc. Magmatism in this arc is recorded in the Dore, Mandi, and Arfak volcanics of NW New Guinea where calc-alkaline and tholeiitic rocks formed within subduction-related fore-arc and extension-related back-arc settings from 32 to 27 Ma. Collision along this plate boundary in the Oligocene–Miocene jammed the subduction zone and caused a reversal in subduction polarity from north-dipping to south-dipping. Following this, subduction of the Philippine Sea Plate beneath the Australian Plate produced magmatism throughout western New Guinea. In NW New Guinea this is recorded by the middle Miocene (18–12 Ma) Moon Volcanics, which include an early period of high-K to shoshonitic igneous activity. These earlier magmatic rocks are associated with the subduction zone polarity reversal and an initially steeply dipping slab. The magmatic products later changed to more calc-alkaline compositions and were emplaced as volcanic rocks in the fore-arc section of a primitive continental arc. Finally, following terminal arc–continent collision in the late Miocene–Pliocene, mantle derived magmas (including the Berangan Andesite) migrated up large strike-slip faults becoming crustally contaminated prior to their eruption during the Plio–Pleistocene. This study of the Cenozoic magmatic history of NW New Guinea provides new data and insights into the tectonic evolution of the northern margin of the Australian Plate.  相似文献   

8.
Natural Hazards - Due to excessive harvesting of underground water resources in many important aquifers inside Iran, ground subsidence is occurring at different speeds. In present study, InSAR...  相似文献   

9.
Through a large-scale examination of the morpho-sedimentary features on sea floors in the Taiwan–Luzon convergent margin, we determined the main sediment dispersal system which stretches from 23°N to 20°N and displays as an aligned linear sediment pathway, consisting of the Penghu Canyon, the deep-sea Penghu Channel and northern Manila Trench. The seafloor of South China Sea north of 21°N are underlain by a triangle-shaped collision marine basin, resulting from oblique collision between the Luzon Arc and Chinese margin, and are mainly occupied by two juxtaposed slopes, the South China Sea and Kaoping Slopes, and a southward tilting basin axis located along the Penghu Canyon. Two major tributary canyons of the Formosa and Kaoping and small channels and gullies on both slopes join into the axial Penghu Canyon and form a dendritic canyon drainage system in this collision marine basin. The canyon drainage system is characteristic of lateral sediment supply from flank slopes and axial sediment transport down-canyon following the tilting basin axis. The significance of the collision marine basin in term of source to sink is that sediments derived from nearby orogen and continental margins are transported to and accumulated in the collision basin, serving as a temporary sediment sink and major marine transport route along the basin axis. The comparison of the Taiwan–South China Sea collision zone with the Papua New Guinea collision zone of the western Solomon Sea reveals remarkable similarities in tectonic settings and sedimentary processes that have resulted in similar sediment dispersal systems consisting of (1) a canyon drainage network mainly in the collision basin and (2) a longitudinal sediment transport system comprising a linear connection of submarine canyon, deep-sea channel and oceanic trench beyond the collision marine basin.  相似文献   

10.
The Uatumã silicic large igneous province (SLIP) has covered about 1,500,000 km2 of the Amazonian craton at ca. 1880 Ma, when the Columbia/Nuna supercontinent has been assembled. Paleomagnetic and geochronological data for this unit were obtained for the Santa Rosa and Sobreiro Formations in the Carajás Province, southwestern Amazonian craton (Central-Brazil Shield). AF and thermal demagnetizations revealed northern (southern) directions with high upward (downward) inclinations (component SF1), which passes a ‘B’ reversal test, and is carried by magnetite and SD hematite with high-blocking temperature. This component is present on well-dated 1877.4 ± 4.3 Ma (U-Pb zrn - LA-ICPMS) rhyolitic lava flows, providing the SF1 key paleomagnetic pole (Q = 6) located at 319.7°E, 24.7°S (A95 = 16.9°). A second southwestern (northeastern) direction with low inclination (Component SF2) was obtained for a well-dated 1853.7 ± 6.2 Ma (U-Pb zrn - LA-ICPMS) dike of the Velho Guilherme Suite. This component also appears as a secondary component in the host rhyolites of the Santa Rosa Fm and andesites of the Sobreiro Fm at the margins of the dike previously dated. Its primary origin is confirmed by a positive baked contact test, where a Velho Guilherme dike crosscuts the 1880 Ma andesite from the Sobreiro Formation. The corresponding SF2 key pole is located at 220.1°E, 31.1°S (A95 = 5°) and is classified with a reliability criterion Q = 7. The large angular distance between the almost coeval (difference of ~ 25 Ma) SF1 and SF2 poles implies high plate velocities (~ 39.3 cm/yr) which are not consistent with modern plate tectonics. The similar significant discrepancy of paleomagnetic poles with ages between 1880 and 1860 Ma observed in several cratons could be explained by a true polar wander (TPW) event. This event is the consequence of the reorganization of the whole mantle convection, and is supported by paleomagnetic reconstructions at 1880 Ma and 1860 Ma and also by geological/geochronological evidence.  相似文献   

11.
New combined U–Pb and Lu–Hf isotope analyses on zircon from three turbidite deposits, and petrologic data for associated igneous rocks were used to study the evolution of the Paleozoic basement of Eastern Cordillera, NW Argentina. Maximum and minimum ages for turbidite deposits, considered to be part of the Puncoviscana Fm., are reported. In the Tastil area, turbidites were deposited in a fore-arc setting after 560 Ma and intruded at 534 Ma by the Tastil batholith. In the El Niño Muerto Hill area turbidites with maximum depositional age of 496 ± 11 Ma were intruded by high-K dacites at 483 ± 3 Ma. In the Río Blanco Valley, the turbiditic/hemipelagitic sediments, with maximum depositional age of 463 ± 11 Ma were contemporaneous with E-MORB/OIB volcanism. The U–Pb and Lu–Hf data permitted to distinguish two major periods of magmatic activity during Late Mesoproterozoic–Early Neoproterozoic (0.95 to 1.2 Ga) and Late Neoproterozoic–Early Paleozoic (0.75 to 0.46 Ga) times, the former dominated by the input of juvenile crust and the latter by arc magmatism and recycling of Meso- to Paleoproterozoic crust. On the basis of new data we suggest that western margin of Gondwana was controlled by subduction processes and accretion of small terrains during Neoproterozoic–Early Paleozoic times.  相似文献   

12.
Zircon U–Pb ages of the Mesoproterozoic dyke swarms (Lakhna dyke swarm) at the interface between the Eastern Ghats Mobile Belt and Bastar Craton of the Indian Peninsula are reported here to decipher the tectonic evolution of the region. The dyke swarm, which is dominantly N–S in orientation, has intruded the Bastar Craton at ca. 1450 Ma. The dykes vary in composition from dolerite to trachyte and rhyolite and have been emplaced in a continental anorogenic setting. The above age puts a lower time constraint on the sedimentary sequences of the Purana basin (Khariar basin) that have been deposited unconformably over the Bastar Craton. The shale member of the Khariar basin shows evidence of synsedimentary shearing suggesting that the sedimentation probably continued up to 517 Ma, the age of shearing and overthrusting of the granulite nappes of the Eastern Ghats Mobile Belt on the Craton. Further, the compression accompanying thrusting of the nappes, uplifted the Purana basins during inversion.  相似文献   

13.
The geodynamic evolution of the Zagros Mountains of Iran remains obscure. In particular, the time of formation of the Zagros ophiolites and the closure of the Neo-Tethys Ocean are highly controversial. Here we present new precise zircon U–Pb ages that show that the younger part (Sahneh–Kamyaran) of the Kermanshah ophiolite formed at 35.7 ± 0.5 Ma and the older part (Harsin) at 79.3 ± 0.9 Ma. Field relations and geochemical evidence show that the younger Sahneh–Kamyaran part is probably a fossil oceanic core complex, and the older Sahneh part is probably a continental-oceanic transition complex. Both the Sahneh–Kamyaran and Sahneh parts were later emplaced into an accretionary complex. We conclude and infer that the final closure time of the southern Neo-Tethys Ocean was after the Late Eocene. Our data and tectonic model have crucial implications for the geodynamic evolution of the Zagros region.  相似文献   

14.
《International Geology Review》2012,54(10):1222-1243
ABSTRACT

Neoproterozoic I-type granites could provide vital insights into the crust–mantle interaction and the crustal evolution along the western Yangtze Block, South China. This paper presents new zircon U–Pb ages, bulk-rock geochemistry, and in situ zircon Lu–Hf isotope on the Dalu I-type granites from the southwestern Yangtze Block. Zircon U–Pb dating show the crystallization ages of 781.1 ± 2.8 Ma for granodiorites and 779.8 ± 2.0 Ma for granites, respectively. The Dalu granodiorites are Na-rich, calc-alkaline, metaluminous to slightly peraluminous (A/CNK = 0.94–1.08). Zircons from granodiorite have positive εHf(t) values (+2.16 to +7.39) with crustal model ages of 1.21–1.54 Ga, indicating juvenile mafic lower crust source. The Dalu granites are high-K calc-alkaline, peraluminous rocks. They have variable zircon εHf(t) values (?4.65 to +5.80) with crustal model ages of 1.31–1.97 Ga, suggesting that they were derived from the mature metasediment-derived melts by the mixing of newly formed mafic lower crust-derived melts. The geochemical variations in Dalu pluton is dominated not only by the different source rocks but also by the different melting temperatures. Combining with the geochemistry and isotopic compositions of I-type granitoids and tectonic setting in the western Yangtze Block, we propose that the Dalu I-type granodiorites–granites associations are the magmatic response from different crustal levels, which were induced by the heat anomaly due to the asthenosphere upwelling in the subduction-related setting.  相似文献   

15.
Detailed mapping, coupled with geochronological and geochemical investigations, has revealed the presence of a 1917–1913 Ma gabbro–monzodiorite–monzonite suite along the southeast margin of the Hearne Craton in northern Saskatchewan, Canada. The predominantly plutonic suite is also characterised by 1915 Ma old trachyandesitic subvolcanic and volcaniclastic inclusions. The rocks are hornblende–epidote–titanite ± augite bearing and collectively termed the Porter Bay Complex. The plutonic rocks cut the 2569 Ma Lueaza River granitoid suite, a component of the Hearne Craton and are themselves intruded by 1859 Ma pegmatitic diorite, 1856 Ma layered gabbro-anorthosite, and 1853 Ma quartz-diorite belonging to the Wathaman Batholith, one of the world's largest Paleoproterozoic Andean-type continental arcs. Wholerock major element geochemistry characterises the Porter Bay Complex as calc-alkalic to alkali-calcic, metaluminous and variable from ferroan to magnesian. Trace element concentrations are characterised by negative high field strength element anomalies, suggesting emplacement along a destructive plate margin. The geochemical signatures of the Wathaman Batholith and the Porter Bay Complex are largely identical. The geographic location, map relationships, and geochronological, geochemical and petrographic constraints are consistent with the Porter Bay Complex having formed in a subduction-related continental arc setting. The southeastern margin of the Hearne Craton was therefore a long-lived active continental margin with two separate periods of continental arc magmatism between 1.92–1.91 Ga and 1.86–1.85 Ga.  相似文献   

16.
The Gangbian alkaline complex in the southeastern Yangtze Block (South China) is composed of Si-undersaturated pyroxene syenites and Si-saturated to -oversaturated syenites and quartz monzonites. SIMS zircon U–Pb analyses indicate that the complex was emplaced at 848 ± 4 Ma, during a previously-recognized interval of magmatic quiescence between the ca 1.0–0.89 Ga Sibaoan orogenic magmatism and the ca 0.83–0.78 Ga magmatic flare-up. The Gangbian rocks are characterized by wide, coherent variations in major and trace elements (SiO2 = 47.6–68.4%, K2O + Na2O = 4.5–10.5%, K2O/Na2O = 0.4–1.2, MgO = 1.2–8.5%, Cr = 4.5–239 ppm, and Ni = 4.5–143 ppm) and by enrichment in LIL and LREE and depletion in Nb, Ta and P in trace element spidergrams. Their whole-rock εNd(T) (? 6.5 to ? 0.4) and εHf(T) (? 10.7 to 0.4) are positively correlated, suggesting involvement of both metasomatized mantle and continental crust materials in their genesis. In situ zircon Hf–O isotopic measurements for the most evolved quartz monzonite sample yield a binary mixing trend between the mantle- and supracrustal-derived melts. It is suggested that the pyroxene syenites were derived by partial melting of metasomatized, phlogopite-bearing lithospheric mantle, and the parental magma experienced extensive fractionation of pyroxene and olivine associated with varying degrees of crustal contamination. Subsequent fractional crystallization of hornblende and minor amounts of plagioclase from the alkali basaltic magmas, accompanied by crustal contamination, produced the Si-saturated to -oversaturated syenites and quartz monzonites. These ca. 0.85 Ga alkaline rocks and neighboring contemporaneous dolerite dykes are the products of the anorogenic magmatism after the Sibao Orogeny. They post-date the final amalgamation between the Yangtze and Cathaysia Blocks, most likely manifesting the initial rifting of South China within the Rodinia supercontinent.  相似文献   

17.
Under the action of tectonic stress ore fluids carrying ore-forming materials can migrate from a higher stress district to a lower one.This is a fact which has been widely accepted by geological cir-cles.However,can the components migrate in solid rocks under the action of stress?This problem has long attracted the attention of many geologists.The author has made a series of simulating experi-tal system.The results show that mylonite was produced as a consequence of shear flowage deformation in dolomite .The contents of the elements in porphyryclast and flowage deformation matrix were analyzed by means of electron microprobe,and the results show that Pb and Zn are obvi-ously concentrated in the shear-flowage deformation zone.Furthermore,Pb is concentrated in its cen-tre while Zn is concentrated on its margins .Newly-formed micro-grained galena can be detected locally.  相似文献   

18.
The Koru and Tesbihdere mining districts in Biga Peninsula, Northwestern Turkey, consist of twelve deposits covering approximately 12 km2. The epithermal Au-Ag enriched base metal veins and associated low-grade breccia and stockwork at Koru and Tesbihdere are hosted by Oligocene subaerial and calc-alkaline volcanic rocks including basaltic andesite lavas, dacitic lava-tuffs, rhyolitic lava-domes and tuffs. NW- to N-trending strike-slip faults and E- and NE-trending faults constitute the most important ore-controlling structures in the Koru and Tesbihdere districts respectively. In the Koru mining district, galena is the dominant ore mineral in barite-quartz veins containing sphalerite, chalcopyrite, pyrite, bornite, enargite and tennantite. According to base metal content, the Tesbihdere mining district can be subdivided into sphalerite-galena dominated Tesbihdere mineralization and chalcopyrite-pyrite dominated Bakır and Kuyu Zones mineralization. Gold is present in small quantities with maximum 3.14 g/t Au values either as free grains in quartz or as micro inclusions in pyrite and galena. The most widespread silver minerals are polybasite, pearceite, argentite and native silver which commonly occur as replacements of galena, sphalerite and pyrite, and other sulfides, or as fillings of microfractures in sulfides and quartz.Microthermometric measurements of primary liquid-rich fluid inclusions in sphalerite, barite and quartz in Koru indicate that the veins were formed at temperatures between 407 and 146 °C from fluids with salinities between 0.7 and 12.5 wt.% equiv. NaCl. Barite from the Tahtalıkuyu, Kuyutaşı and 5th Viraj mineralization show the highest homogenization temperatures. Fluid inclusion data for ore-stage quartz and sphalerite from the Tesbihdere mining district, indicate that these minerals were deposited at temperatures between 387 and 232 °C from more diluted fluids with moderate salinities between 0.2 and 10.6 wt.% NaCl equiv. Tahtalıkuyu and 5th Viraj mineralization show only boiling trends while Kuyutaşı, Tesbihdere, Bakır and Kuyu Zones mineralization show both boiling and isothermal mixing trends. The O and H isotope compositions of ore fluids from the Tahtalıkuyu (δ18O =  1.40 to 0.25‰; δD =  72.49 to − 52.68‰) and Kuyutaşı (δ18O =  2.29 to 3.59‰; δD =  90.70 to − 70.93‰) mineralization indicate that there was a major contribution from a magmatic component to ore genesis. Based on 9 quartz samples associated with orebodies at the Tesbihdere mining district, the relatively higher δ18O and lower δD isotope compositions from hydrothermal fluids could be attributed to a relatively dilute fluid derived by the mixing with meteoric water. The Pb isotope compositions also reveal that most of the lead in both mining districts is derived from the Oligocene-Miocene magmatic rocks, possibly with smaller contributions from the Eocene magmatic rocks.  相似文献   

19.
The Mount Woods Domain in the Gawler Craton, South Australia records a complex tectonic evolution spanning the Palaeoproterozoic and Mesoproterozoic. The regional structural architecture is interpreted to represent a partially preserved metamorphic core complex that developed during the ~1600–1580 Ma Hiltaba Event, making this one of the oldest known core complexes on Earth. The lower plate is preserved in the central Mount Woods Domain, which comprises the Mount Woods Metamorphics. These rocks yield a detrital zircon maximum depositional age of ~1860 Ma and were polydeformed and metamorphosed to upper amphibolite to granulite facies during the ~1740–1690 Ma Kimban Orogeny. The upper plate comprises a younger succession (the Skylark Metasediments) deposited at ~1750 Ma. Within the upper plate, sedimentary and volcanic successions of the Gawler Range Volcanics were deposited into half graben that evolved during brittle normal faulting. The Skylark Shear Zone represents the basal detachment fault separating the upper and lower plate of the core complex. The geometry of normal faults in the upper plate is consistent with NE-SW extension.Both the upper and lower plates are intruded by ~1795–1575 Ma Hiltaba Suite granitic and mafic plutons. The core complex was extensively modified during the ~1570–1540 Ma Kararan Orogeny. Exhumation of the western and eastern Mount Woods Domain is indicated by new 40Ar/39Ar biotite cooling ages that show that rock packages in the central Mount Woods Domain cooled past ~300 °C ± 50 °C at ~1560 Ma, which was ~20 million years before equivalent cooling in the western and eastern Mount Woods Domain. Exhumation was associated with activity along major syn-Kararan Orogeny faults.  相似文献   

20.
NS-trending dikes which contain dioritic enclaves widely occur in the Miaoergou pluton, West Junggar, Xinjiang. The dikes are composed of quartz diorite and quartz diorite porphyrite. LA-ICP-MS zircon U-Pb ages of the quartz diorite and diorite are 298.0±3.7 Ma and 299.4±2.5 Ma, respectively, corresponding to the end of the Late Carboniferous to beginning of the Early Permian. The dikes and enclaves have similar geochemical properties with island arc features. They are calc-alkaline, with moderate SiO2 (53.58% to 57.89%), high MgO (3.09% to 4.83%, Mg# values ranging from 44.69 to 54.12), TiO2 (1.17% to 1.66%), Cr (51.24×10-6 to 126.1×10-6), Ni (35.91×10-6 to 57.55×10-6) contents and K/Na ratios (0.35 to 0.70). Moreover, all samples are enriched in large-ion lithophile elements (LILEs: e.g. K, Rb, Ba and U) and light rare earth elements, but strongly depleted in high field strength elements (HFSEs: e.g. Nb, Ta and Ti), with insignificant Eu anomalies (δEu=0.67 to 1.08). In contrast, the dikes and enclaves in the Miaoergou pluton show geochemical signatures similar to those of the Cenozoic sanukitoids in Setouchi volcanic belt of SW Japan and the sanukitoids in the Hatu area, West Junggar. The source of the dikes might be the depleted mantle previously metasomatized by fluids released from subduction slabs. These sanukitic dikes may be generated by interaction of the mantle wedge with fluids derived from dehydration of the subducting oceanic slab, resulting in 2% to 5% partial melting of amphibole-spine peridotite. The identification of the sanukitic dikes in the Miaoergou pluton, together with previous studies, suggest that the southern West Junggar region was still dominated by subduction-related island arc setting at the beginning of the Early Permian, and multi-stage subduction-accretionary orogeny may account for the difference of subduction duration between the north and the south of West Junggar. © 2018, Science Press. All right reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号