首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brief consideration is given to the conception of the total photospheric motion field. A synthesis of the most thorough investigations is made and the radial (V rad) and tangential (V tg) components of the velocity amplitude of the total photospheric motion field are deduced. At depth logτ5 = ?3.0 V rad and V tg have average values of 1.2 and 1.7 km s?1 respectively. They increase smoothly with depth and reach their maximum values of V rad=3.0, V tg=3.4 km s?1 at depths logτ5= ?0.2 and logτ5 = +0.4 respectively. In the deep photospheric layers both components seem to decrease with depth.  相似文献   

2.
BUSS observations of the profiles of two well observed spectral lines in the ultraviolet spectrum of CMi (Procyon; F5 IV–V) are analysed with a Fourier transform method in order to determine values of various parameters of the velocity field of the upper photosphere. We find a microturbulent line-of-sight velocity componentL = 0.9 ± 0.4 km s–1, a macroturbulent velocity componentL M = 5.3 ± 0.2 km s–1, and a rotational velocity componentv R sini=10.0±1.2 km s–1. In these calculations a single-moded sinusoidal isotropic macroturbulent velocity function was assumed. The result appears to be sensitive to the assumed shape of the macroturbulence function: for an assumed Gaussian shape the observations can be described withv R sini=4 km s–1 andL M = 11.6 ± 2.7 km s–1. A comparison is made with other results and theoretical predictions.  相似文献   

3.
A method for studying small scale photospheric velocity fields with a balloon experiment is proposed. A sodium resonance cell is used with a diffraction limited telescope. Good pointing accuracy is not necessary. Preliminary results of ground-based observations are given.  相似文献   

4.
Rutten  R. J.  Hoyng  P.  De Jager  C. 《Solar physics》1974,36(2):321-337
The steady-state vertical-velocity response of an isothermal atmosphere to pressure fluctuations of arbitrary period and horizontal wavelength at its base is derived in the approximation of dissipationless polytropic motion in the atmosphere. It is pointed out that, since only upward modes can be excited in an isothermal atmosphere perturbed from below, the infinite response found by Worrall (1972) at the critical frequency g does not occur. The correct behavior of the response is presented in some detail.Comparison of the response of the model, for the case of isothermal osculations, with observed features of the photospheric oscillations indicates that, in addition to the evanescent photospheric oscillations which occur at the compression-wave propagation cut-off frequencies and which have horizontal wavelengths 3000 km, in the lower photosphere there are also smaller-scale evanescent oscillations which have horizontal wavelengths 1000 km, periods ranging from 200 to 400 s, amplitudes comparable to that of the larger-scale oscillations, and in which the phase of the vertical velocity oscillation leads the phase of the pressure oscillation.  相似文献   

5.
Using a two-dimensional, dissipative magnetohydrodynamic model, this paper presents a numerical simulation of the magnetic energy buildup in a quadrupolar field by photospheric shear motion. When electric current density is larger than a certain critical value, an anomalous resistivity is introduced in order to account for the dissipation caused by instabilities in high current regions. It is shown that like a bipolar field, a quadrupolar field can efficiently store magnetic free energy through photospheric shear motion. Electric current formed by shear concentrates on the separatrix and magnetic loops rooted in areas where the shear velocity gradient is large. The atmosphere is heated by anomalous resistive dissipation during the shear. Both magnetic and thermal energy increases nonlinearly with shearing displacement. When the anomalous resistivity increases or the critical current density decreases, the growth rate reduces for magnetic energy but goes up for thermal energy.  相似文献   

6.
By means of a simple relation between the velocity v of the fluid particle and the velocity vf of the photospheric footpoint of the magnetic field line vz and Bz being respectively the components of v and the magnetic field B normal to the photospheric surface, it is shown formally that through the phtospheric surface the transport of all the quantities attributed to the magnetic field, such as the magnetic flux, the magnetic energy and the helicity, is independent of vz, and vf is the only kinematical quantity on which the transport depends. In addition, in the neighborhood of the neutral line the velocity vl of the moving curve of constant Bz is found to be equal approximately to the component of v or vf in the direction of vl. Since vl can be measured or extimated, so can the components of v and vf near the neutral line.  相似文献   

7.
V. Bumba 《Solar physics》1996,169(2):303-312
We have compiled the results of our long-term studies of the local magnetic field and its activity development, derived from investigating sunspot group evolution, photoelectrically measured longitudinal magnetic and velocity fields, and measurements of sunspot proper motions. We estimate certain regularities according to which the magnetic and velocity fields, and photospheric, as well as chromospheric activities develop. We speculate about the physical background of such processes.Dedicated to Cornelis de Jager  相似文献   

8.
A more objective statistical technique is applied directly to the four time series used in Paper I. The empirical probability density functions indicate that the measurements are realizations of a narrow-band random process with Gaussian statistics. This result allows quantitative statistical use of the mean autocorrelation function. For example, a characteristic correlation time is 23 min, and the motion becomes statistically uncorrelated over intervals greater than 40 min. The mean autocorrelation function is found to be free of secondary maxima that have been so troublesome in other analyses. The question raised in this paper is whether our statistical model of the motion as a Gaussian random process is also applicable to smaller regions on the order of 1 to 2 in size.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
The differential rotation of the large-scale photospheric magnetic field has been investigated with an autocorrelation technique using synoptic charts of the photospheric field during the interval 1959–66. Near the equator the rotation period of the field is nearly the same as the rotation rate of long-lived sunspots studied by Newton and Nunn. Away from the equatorial zone the field has a significantly shorter rotation period than the spots. Over the entire range of latitudes investigated the average rotation period of the photospheric magnetic field was about 1 1/4 days less than the average rotation period of the material observed with Doppler shifts by Livingston and by Howard and Harvey. Near the equator the photospheric field results agree with the results obtained from recurrent sunspots, while above 15° the photospheric field rotation rates agree with the rotation rates of the K corona and the filaments.  相似文献   

10.
It is shown that the short-period fluctuations of photospheric velocity records can be explained by the scanning effect of atmospheric seeing (image motion) and the velocity gradients present on the solar surface. Some observations supporting this explanation are presented.Mitteilungen aus dem Fraunhofer Institut Nr. 76.  相似文献   

11.
Teske  Richard G. 《Solar physics》1974,39(2):363-375
Two-dimensional spatial autocorrelation functions and power spectral density distributions were obtained from high-resolution velocity spectroheliograms. Although the autocorrelation functions indicate the existence of velocity cells of size roughly 2500 to 3500 km, the power spectra fail to reveal them because the cells are not strictly spatially periodic.  相似文献   

12.
A large equatorial coronal streamer observed in the outer corona (3R ) grew in brightness and size during successive limb passages between October 6, 1973 and January 10, 1974 (solar rotations 1606–1611). Unlike previous studies of streamers and their photospheric associations, no definite surface feature could be identified in the present case. This suggests that the streamer is associated with the large scale photospheric magnetic field. Comparison of the streamer growth with observed underlying photospheric magnetic flux changes indicated that as the streamer increased in brightness, areal extent, and density, the photospheric magnetic flux decreased. Three possible explanations for the streamer's growth are presented; the conceptually simplest being that the decrease in photospheric field results in an opening of the flux tubes under the streamer which permits an increased mass flux through the streamer.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

13.
Csada  I. K. 《Solar physics》1974,35(2):325-330
The photospheric magnetic data recorded from August 12, 1959 to September 29, 1967 and averaged over Bartels rotation periods are treated as zonal terms of the solar magnetic field which is expanded in a series of spherical harmonics. Numerical analysis of the reduced data gives seven periods. Three of these seem to be essential in the superposed variation of the solar magnetic field. The first of them (17.74 yr) is thought to be a contribution from the magnetic cycle for the determination of which the data covering only 8 yr interval are of insufficient accurity. For this reason, a 22.2 yr period is favoured by the computations. The numerical values of the two shorter periods are deduced as 2.557 yr and 4.194 yr. The amplitudes and phase angles of the periodic terms in question are determined.  相似文献   

14.
On the basis of assumed photospheric temperature models for 36 extreme supergiants (logg e -values of 1, 0.5 and 0;T e ranging from approx. 3700–33 000 K) photospheric fluxesSλ) were computed for 36 wavelengths ranging from 100 Å to 60 000 Å. The hot models are in perfect radiative equilibrium; the cooler show deviations up to 10%, sometimes even larger. Only in the relatively deep parts of the photospheres (τ5?1) the radiation field at each geometrical level can be characterized by one unique radiation temperature; for smaller τ5-values there are large deviations from local thermal equilibrium. The influence of deviations from local thermodynamical equilibrium on the fluxes is briefly examined, and appears small but for the shortest wavelengths. In tables and graphs we give for these models πF(γ)-values, integrated fluxes, effective temperatures, coloursU, B andV, and the Balmer discontinuityD.  相似文献   

15.
A statistical investigation has been made about the flare-process in relation to the photospheric magnetic field and configuration. It is understood from the analysis that the flare energy bears a linear relationship with the rate of change of flux of the longitudinal component of photospheric magnetic field.  相似文献   

16.
The mean photospheric magnetic field of the sun seen as a star has been compared with the interplanetary magnetic field observed with spacecraft near the earth. Each change in polarity of the mean solar field is followed about 4 1/2 days later by a change in polarity of the interplanetary field (sector boundary). The scaling of the field magnitude from sun to near earth is within a factor of two of the theoretical value, indicating that large areas on the sun have the same predominant polarity as that of the interplanetary sector pattern. An independent determination of the zero level of the solar magnetograph has yielded a value of 0.1±0.05 G. An effect attributed to a delay of approximately one solar rotation between the appearance of a new photospheric magnetic feature and the resulting change in the interplanetary field is observed.  相似文献   

17.
We have searched for correlations between photospheric magnetic field changes in the north and south hemispheres of the Sun. Both active region logs and analysis of Mount Wilson magnetograms were employed. No correlations were found, and we infer that local convective turbulence is more important than dynamo processes with regard to the appearance of individual active regions.  相似文献   

18.
On the basis of the possibility of sight-line velocity observations by a special equatorial solar spectrograph, a research programme for detection of photospheric large-scale velocities has been initiated. The first series of observations in the FeI 6302 Å absorption line has been limited to the central meridian.The combined limb effect assumed to incorporate an unresolved stationary photospheric motion, has been evaluated. The observed asymmetry of the obtained curve is mainly explained by dB 0/dt.The remaining sight-line velocities along the central meridian, taken as random, gave an r.m.s. value of 32 m s–1. In a few cases a certain kinematic situation in some areas along the central meridian lasted for 2 to 4 consecutive days. It is assumed that such velocity features belong to the kinematic picture of a large-scale photospheric motion which, as a whole, has not yet been clearly seen.  相似文献   

19.
Possibilities for the storage of energy in coronal electric currents in different magnetic background field configurations are investigated in the framework of the solar flare energy build-up model of Van Tend and Kuperus (1978). The results are compared to characteristics of filaments and X-ray loops. Empirical flare predictors are interpreted theoretically.  相似文献   

20.
The large-scale photospheric magnetic field has been computed by allowing observed active region fields to diffuse and to be sheared by differential rotation in accordance with the Leighton (1969) magnetokinematic model of the solar cycle. The differential rotation of the computed field patterns as determined by autocorrelation curves is similar to that of the observed photospheric field, and poleward of 20° latitude both are significantly different from the differential rotation of the long-lived sunspots (Newton and Nunn, 1951) used as an input into the computations.Now at Department of Physics, Victoria University of Wellington, Wellington, New Zealand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号