首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
EChOSim is the end-to-end time-domain simulator of the Exoplanet Characterisation Observatory (EChO) space mission. EChOSim has been developed to assess the capability of the EChO mission concept to detect and characterise the atmospheres of transiting exoplanets. Here we discuss the details of the EChOSim implementation and describe the models used to represent the instrument and to simulate the detection. Software simulators have assumed a central role in the design of new instrumentation and in assessing the level of systematics affecting the measurements of existing experiments. Thanks to its high modularity, EChOSim can simulate basic aspects of several existing and proposed spectrometers including instruments on the Hubble Space Telescope and Spitzer, ground-based and balloon-borne experiments. A discussion of different uses of EChOSim is given, including examples of simulations performed to assess the EChO mission.  相似文献   

2.
The Exoplanet Characterisation Observatory (EChO) has been studied as a space mission concept by the European Space Agency in the context of the M3 selection process. Through direct measurement of the atmospheric chemical composition of hundreds of exoplanets, EChO would address fundamental questions such as: What are exoplanets made of? How do planets form and evolve? What is the origin of exoplanet diversity? More specifically, EChO is a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planetary sample within its four to six year mission lifetime. In this paper we use the end-to-end instrument simulator EChOSim to model the currently discovered targets, to gauge which targets are observable and assess the EChO performances obtainable for each observing tier and time. We show that EChO would be capable of observing over 170 relativity diverse planets if it were launched today, and the wealth of optimal targets for EChO expected to be discovered in the next 10 years by space and ground-based facilities is simply overwhelming. In addition, we build on previous molecular detectability studies to show what molecules and abundances will be detectable by EChO for a selection of real targets with various molecular compositions and abundances. EChO’s unique contribution to exoplanetary science will be in identifying the main constituents of hundreds of exoplanets in various mass/temperature regimes, meaning that we will be looking no longer at individual cases but at populations. Such a universal view is critical if we truly want to understand the processes of planet formation and evolution in various environments. In this paper we present a selection of key results. The full results are available in Online Resource 1.  相似文献   

3.
The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv?=?9–12 and to see contrasts of the order of 10?4–10?5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4–2.5 μm spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4–1.0 μm and 1.0–2.5 μm spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectrometer makes use of a HgCdTe detector of 512 by 512 pixels, 18 μm pitch and working at a temperature of 45 K as the entire VNIR optical bench. The instrument has been interfaced to the telescope optics by two optical fibers, one per channel, to assure an easier coupling and an easier colocation of the instrument inside the EChO optical bench.  相似文献   

4.
The scientific output of the proposed EChO mission (in terms of spectroscopic characterization of the atmospheres of transiting extrasolar planets) will be maximized by a careful selection of targets and by a detailed characterization of the main physical parameters (such as masses and radii) of both the planets and their stellar hosts. To achieve this aim, the availability of high-quality data from other space-borne and ground-based programs will play a crucial role. Here we identify and discuss the elements of the Gaia catalogue that will be of utmost relevance for the selection and characterization of transiting planet systems to be observed by the proposed EChO mission.  相似文献   

5.
More than a thousand exoplanets have been discovered over the last decade. Perhaps more excitingly, probing their atmospheres has become possible. With current data we have glimpsed the diversity of exoplanet atmospheres that will be revealed over the coming decade. However, numerous questions concerning their chemical composition, thermal structure, and atmospheric dynamics remain to be answered. More observations of higher quality are needed. In the next years, the selection of a space-based mission dedicated to the spectroscopic characterization of exoplanets would revolutionize our understanding of the physics of planetary atmospheres. Such a mission was proposed to the ESA cosmic vision program in 2014. Our paper is therefore based on the planned capabilities of the Exoplanet Characterization Observatory (EChO), but it should equally apply to any future mission with similar characteristics. With its large spectral coverage (0.4 ? 16 μm), high spectral resolution (λλ > 300 below 5 μm and λλ > 30 above 5 μm) and 1.5m mirror, a future mission such as EChO will provide spectrally resolved transit lightcurves, secondary eclipses lightcurves, and full phase curves of numerous exoplanets with an unprecedented signal-to-noise ratio. In this paper, we review some of today’s main scientific questions about gas giant exoplanets atmospheres, for which a future mission such as EChO will bring a decisive contribution.  相似文献   

6.
MDia and POTS     
We describe the Munich Difference Imaging Analysis pipeline that we developed and implemented in the framework of the Astro-WISE1 package to automatically measure high precision light curves of a large number of stellar objects using the difference imaging approach. Combined with programs to detect time variability, this software can be used to search for planetary systems or binary stars with the transit method and for variable stars of different kinds. As a first scientific application, we discuss the data reduction and analysis performed with Astro-WISE on the pre-OmegaTranS data set, that we collected during a monitoring campaign of a dense stellar field with the Wide Field Imager at the ESO 2.2 m telescope.  相似文献   

7.
The status of laboratory spectroscopic data for exoplanet characterisation missions such as EChO is reviewed. For many molecules (eg H 2O, CO, CO 2, H\(_{3}^{+}\), O 2, O 3) the data are already available. For the other species work is actively in progress constructing this data. Much of the is work is being undertaken by ExoMol project (www.?exomol.?com). This information can be used to construct a mission-specific spectroscopic database.  相似文献   

8.
The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which are one of the main targets of EChO. Finally we will present the ongoing developments that are necessary for the chemical modeling of exoplanet atmospheres.  相似文献   

9.
Hiroyuki K.M. Tanaka 《Icarus》2007,191(2):603-615
In order to evaluate the obliquity-driven atmospheric-density path length effect on nuclide production rate on Mars, we performed a Monte-Carlo simulation to produce the number of secondary particles such as muons, neutrons and protons in the martian atmosphere and to simulate that production of 10Be and 36Cl in the martian regolith by muons and neutrons depends on how much atmosphere had been present for the past 10 million years. The vertical profile of the present martian atmosphere to generate secondary particles has been determined based on the data provided by the Viking missions. For other thickness profiles, we scaled Linsley's atmospheric model. Atmospheric shower has been generated with the SIBYLL 2.1 for high-energy hadronic interactions and EHSA for low energy photonuclear interactions. With increasing atmospheric thickness, more primary interactions occur in the atmosphere. Consequently the proton flux is reduced and the secondary cosmic ray flux, such as muons or energetic neutrons increases at surface. The result indicates that the muon production is more sensitive to obliquity-driven atmospheric variations than proton reduction. A thicker atmosphere would result in enhanced nuclide production at a place deeper than 5 m below the surface and the nuclides present in detectable concentrations. Application to the polar deposit is described.  相似文献   

10.
We consider the problem of automatically (and robustly) isolating and extracting information about waves and oscillations observed in EUV image sequences of the solar corona with a view to near real-time application to data from the Atmospheric Imaging Array (AIA) on the Solar Dynamics Observatory (SDO). We find that a simple coherence/travel-time based approach detects and provides a wealth of information on transverse and longitudinal wave phenomena in the test sequences provided by the Transition Region and Coronal Explorer (TRACE). The results of the search are pruned (based on diagnostic errors) to minimize false-detections such that the remainder provides robust measurements of waves in the solar corona, with the calculated propagation speed allowing automated distinction between various wave modes. In this paper we discuss the technique, present results on the TRACE test sequences, and describe how our method can be used to automatically process the enormous flow of data (≈1 Tb day−1) that will be provided by SDO/AIA. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

11.
The Fabry-Perot interferometer on Dynamics Explorer 2 was used as a low sensitivity photometer to study the O2 Atmospheric A band during the daytime. A study of the brightness of the emission showed that the assumed source of O2(b1Σg+) in the thermosphere, O(1D), can account for the observed intensity up to about 250 km but with a significantly different scale height. This combined with an enhanced brightness above this altitude suggests an additional source for this emission.  相似文献   

12.
A feasibility study has been carried out to assess the potentialof an Artificial Neural Network (ANN) for determiningthe direction of incidence of an Atmospheric Cerenkov Event(ACE) from the arrival-time information registered by aspaced-array of wide-angle Cerenkov detectors. Theresults obtained so far, using both, simulated and experimental data, indicate that a properly-trained net can yield a degree of accuracy which is comparable with what is achieved through the conventional 2-minimization, wavefront-fitting procedure.  相似文献   

13.
Two spectra of the star BM Ori were obtained with the 2.6-m Crimean Astrophysical Observatory telescope near its maximum eclipse phase. The light detector was a CCD array. The wavelength range 5305–5373 Å was chosen in such a way that it contained no strong primary lines. Optimum filtration of the spectra yielded a signal-to-noise ratio of ~300. Eighteen secondary lines are seen in the spectrum. Atmospheric parameters of the secondary star were determined: T eff=5740 K and logg=3.0; the secondary was classified by these parameters as being of spectral type G2 III. The best agreement between observed and synthetic spectra is achieved for metallicity [M/H]=?0.5 and microturbulence ξt=0 km s?1. The projected rotational velocity is Vsini=60 km s?, in agreement with the synchronous velocity in the hypothesis that assumes a total eclipse by the secondary star. Atmospheric elemental abundances in the secondary are estimated. Nickel, chromium, and iron exhibit an underabundance of ~1 dex.  相似文献   

14.
Over the last few years a number of software and hardware improvements have been implemented to the 32-m Cassegrain radio telescope located near Toruń. The 19-bit angle encoders have been upgraded to 29-bit in azimuth and elevation axes. The control system has been substantially improved, in order to account for a number of previously-neglected, astrometric effects that are relevant for milli-degree pointing. In the summer 2015, as a result of maintenance works, the orientation of the secondary mirror has been slightly altered, which resulted in worsening of the pointing precision, much below the nominal telescope capabilities. In preparation for observations at the highest available frequency of 30-GHz, we use One Centimeter Receiver Array (OCRA), to take the most accurate pointing data ever collected with the telescope, and we analyze it in order to improve the pointing precision. We introduce a new generalized pointing model that, for the first time, accounts for the rail irregularities, and we show that the telescope can have root mean square pointing accuracy at the level <?8 and <?12 in azimuth and elevation respectively. Finally, we discuss the implemented pointing improvements in the light of effects that may influence their long-term stability.  相似文献   

15.
16.
SMM data from the Corograph/Polarimeter experiment giving intensities of H and continuum emission in eight erupting prominences are analyzed to obtain the physical conditions in the regions of H emission. Since the H intensity depends upon three unknowns whereas only two independent observations are available, it is necessary to assume one additional condition in order to obtain unique solutions. Solutions are chosen that give the maximum expansion of the prominence volume as reflected by minimum values of the electron density. These solutions correspond closely with those giving the best agreement between the gas pressure in the prominence and the ambient coronal pressure. Electron densities are found to be of the order of 108 cm-3 at temperatures near 2 × 104 K.The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation.  相似文献   

17.
EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 μ m to 11.0 μ m. The baseline design includes the goal wavelength extension to 0.4 μ m while an optional LWIR module extends the range to the goal wavelength of 16.0 μ m. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control (Instrument Control Function) and the housekeepings and scientific data digital processing (Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.  相似文献   

18.
On our way toward the characterization of smaller and more temperate planets, missions dedicated to the spectroscopic observation of exoplanets will teach us about the wide diversity of classes of planetary atmospheres, many of them probably having no equivalent in the Solar System. But what kind of atmospheres can we expect? To start answering this question, many theoretical studies have tried to understand and model the various processes controlling the formation and evolution of planetary atmospheres, with some success in the Solar System. Here, we shortly review these processes and we try to give an idea of the various type of atmospheres that these processes can create. As will be made clear, current atmosphere evolution models have many shortcomings yet, and need heavy calibrations. With that in mind, we will thus discuss how observations with a mission similar to EChO would help us unravel the link between a planet’s environment and its atmosphere.  相似文献   

19.
Abstract– The Northwest Africa (NWA) 1500 meteorite is an olivine‐rich achondrite containing approximately 2–3 vol% augite, 1–2 vol% plagioclase, 1 vol% chromite, and minor orthopyroxene, Cl‐apatite, metal and sulfide. It was originally classified as a ureilite, but is currently ungrouped. We re‐examined the oxygen three‐isotope composition of NWA 1500. Results of ultra‐high precision (~0.03‰ for Δ17O) laser fluorination analyses of two bulk chips, and high precision (~0.3‰) secondary ion mass spectrometry (SIMS) analyses of olivine and plagioclase in a thin section, show that the oxygen isotope composition of NWA 1500 (Δ17O = ?0.22‰ from bulk samples and ?0.18 ± 0.06‰ from 16 mineral analyses) is within the range of brachinites. We compare petrologic and geochemical characteristics of NWA 1500 with those of brachinites and other olivine‐rich primitive achondrites, including new petrographic, mineral compositional and bulk compositional data for brachinites Hughes 026, Reid 013, NWA 5191, NWA 595, and Brachina. Modal mineral abundances, texture, olivine and pyroxene major and minor element compositions, plagioclase major element compositions, rare earth element abundances, and siderophile element abundances of NWA 1500 are within the range of those in brachinites and, in most cases, well distinguished from those of winonaites/IAB silicates, acapulcoites/lodranites, ureilites, and Divnoe. NWA 1500 shows evidence of internal reduction, in the form of reversely zoned olivine (Fo ~65–73 core to rim) and fine‐grained intergrowths of orthopyroxene + metal along olivine grain margins. The latter also occur in Reid 013, Hughes 026, NWA 5191, and NWA 595. We argue that reduction (olivine→enstatite + Fe0 + O2) is the best hypothesis for their origin in these samples as well. We suggest that NWA 1500 should be classified as a brachinite, which has implications for the petrogenesis of brachinites. Fe‐Mn‐Mg compositions of brachinite olivine provide evidence of redox processes among bulk samples. NWA 1500 provides evidence for redox processes on a smaller scale as well, which supports the interpretation that these processes occurred in a parent body setting. SIMS data for 26Al‐26Mg isotopes in plagioclase in NWA 1500 show no 26Mg excesses beyond analytical uncertainties (1–2‰). The calculated upper limit for the initial 26Al/27Al ratio of the plagioclase corresponds to an age younger than 7 Ma after CAI. Compared to 53Mn‐53Cr data for Brachina ( Wadhwa et al. 1998b ), this implies either a much younger formation age or a more protracted cooling history. However, Brachina is atypical and this comparison may not extend to other brachinites.  相似文献   

20.
We discuss the propagation of random errors in the so-called great-circle reduction of the Hipparcos mission and for the proposed space astrometry project ROEMER. As a step towards the determination of stellar positions, proper motions and parallaxes, one-dimensional instantaneous relative positions of stars along fixed great circles are estimated from elementary measurements of the locations of stellar images within the instrument's field of view. The measurement errors, being dominated by photon noise, can be regarded as uncorrelated. The precision of the calculated one-dimensional positions (abscissae) depends on the precision and number of elementary measurements, the number of stars and their distribution in magnitude, and finally on the rigidity of the great-circle reduction. The rigidity quantifies how well the random measurement errors are averaged out in the least-squares solution, and is closely related to the condition number of the design matrix. We discuss the rigidity concept for idealised situations involving one, two, or several fields of view (zero, one, or more basic angles). A simple model of the error propagation is derived and used to predict the precision for a hypothetical space astrometry project such as ROEMER. It is found that the rigidity is much improved by the greater number of stars observed with ROEMER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号