首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibilities of using the average compositions of tonalite–trondhjemite–granodiorite association rocks (TTG), which make up a significant part of the Archaean continental crust, have been examined. The results of the TTG average compositions obtained by other researchers and the authors' data of the average compositions of TTG from the Baltic and Ukrainian shields and the entire Archaean crust are given. It is shown that the average compositions of the Archaean TTG of continental large crustal fragments (cratons or provinces) practically do not bear any information on their sources or conditions of their formation. The possibility of obtaining of such information by means of analysis of the average compositions of TTG, composing smaller fragments of the crust, exemplified by rocks of the Karelian subprovinces of the Baltic Shield has been demonstrated.  相似文献   

2.
The compositions of the tonalite–trondhjemite–granodiorite (TTG) assemblage and volcanic rocks of the Archaean greenstone belts from different domains of the Karelian province of the Baltic Shield are compared. Neoarchean medium felsic volcanic rocks and TTG of the Central Karelian domain drastically differ from analogous Mesoarchean rocks of the neighboring Vodlozero and West Karelian domains in higher Rb, Sr, P, La, and Ce contents and, correspondingly, values of Sr/Y, La/Yb, and La/Sm, and also in a different REE content distribution owing to different rock sources of these domains. This fact is confirmed by differences in the composition and the nature of the REE distribution in the basic and ultrabasic volcanic rocks making up the greenstone belts of these domains. It is established that the average compositions of Mesoarchean TTG rocks and volcanic rocks of the Karelian province differ markedly from those of plagiogranitoids and volcanic rocks of the recent geotectonic environments in high Mg (mg#) and Sr contents. Neoarchean volcanic rocks of Karelia differ from recent island-arc volcanic rocks, but are similar in composition to recent volcanic rocks of the continental arcs. On the basis of the cumulative evidence, the Karelian province of the Baltic Shield was subject to dramatic changes in the crust formation conditions at the beginning of the Neoarchean at the turn of about 2.75–2.78 Ga. These changes led to formation of volcano-sedimentary and plutonic rock complexes, different in composition from Mesoarchean rocks, and specific complexes of intrusive sanukitoids and granites. Changes and variations in the rock composition were related to the mixing of plume sources with continental crust and/or lithospheric mantle material, likely as a result of the combined effect of plumes and plate tectonics. This process resulted in formation of a younger large fragment of the Archean crust such as the Central Karelian domain which factually connected more ancient fragments of the crust and likely contributed to development of the Neoarchean Kenorland Supercontinent.  相似文献   

3.
《Gondwana Research》2006,9(4):589-595
The Central Indian continental crust is postulated to have formed around the Archean nuclei of the Bastar Craton (Radhakrishna, 1993). Around 3.5 Ga. Old, high-Al 2 O 3 trondhjemite gneisses have been reported from the southern part of the Bastar Craton (Sarkar et al., 1993). However, neither isotopic nor geochemical evidence exists in the literature for the presence of rocks older than ∼2.5 Ga from the northern part of the Bastar Craton (Sarkar et al., 1990). The absence of tonalite-trondhjemite-granodiorite (TTG) suites from the Amgaon Gneisses (Rao et al., 2000), were considered to indicate substantial geochemical differences between the Amgaon gneisses and the TTG basement gneisses of the Dharwar Craton (i.e., the peninsular gneisses). Accordingly the mode of the tectonomagmatic evolutionary patterns of the Bastar Craton was considered to be different, both in time in space from the bordering Dharwar and Bundelkhand Cratons, respectively. In this communication we report the presence of high-Al 2 O 3 trondhjemite from the Amgaon gneisses, along with calc-alkaline and peraluminous granites that are geochemically similar to the late granitoids (∼2.5 to 2.6 Ga old) of the Dharwar Craton, suggesting that the two cratons were nearest neighbours at least during the late Archean.  相似文献   

4.
The Central Indian continental crust is postulated to have formed around the Archean nuclei of the Bastar Craton (Radhakrishna, 1993). Around 3.5 Ga. Old, high-Al 2 O 3 trondhjemite gneisses have been reported from the southern part of the Bastar Craton (Sarkar et al., 1993). However, neither isotopic nor geochemical evidence exists in the literature for the presence of rocks older than 2.5 Ga from the northern part of the Bastar Craton (Sarkar et al., 1990). The absence of tonalite-trondhjemite-granodiorite (TTG) suites from the Amgaon Gneisses (Rao et al., 2000), were considered to indicate substantial geochemical differences between the Amgaon gneisses and the TTG basement gneisses of the Dharwar Craton (i.e., the peninsular gneisses). Accordingly the mode of the tectonomagmatic evolutionary patterns of the Bastar Craton was considered to be different, both in time in space from the bordering Dharwar and Bundelkhand Cratons, respectively. In this communication we report the presence of high-Al 2 O 3 trondhjemite from the Amgaon gneisses, along with calc-alkaline and peraluminous granites that are geochemically similar to the late granitoids (2.5 to 2.6 Ga old) of the Dharwar Craton, suggesting that the two cratons were nearest neighbours at least during the late Archean.  相似文献   

5.
《China Geology》2018,1(1):109-136
The mainland of China is composed of the North China Craton, the South China Craton, the Tarim Craton and other young orogenic belts. Amongst the three cratons, the North China Craton has been studied most and noted for its widely-distributed Archean basement rocks. In this paper, we assess and compare the geology, rock types, formation age and geochemical composition features of the Archean basements of the three cratons. They have some common characteristics, including the fact that the crustal rocks prior to the Paleoarchean and the supracrustal rocks of the Neoarchean were preserved, and Tonalite-Trondhjemtite-Granodiorite (TTG) magmatism and tectono-magmatism occurred at about 2.7 Ga and about 2.5 Ga respectively. The Tarim Craton and the North China Craton show more similarities in their early Precambrian crustal evolution. Significant findings on the Archean basement of the North China Craton are concluded to be: (1) the tectonic regime in the early stage (>3.1 Ga) is distinct from modern plate tectonics; (2) the continental crust accretion occurred mostly from the late Mesoarchean to the early Neoarchean period; (3) a huge linear tectonic belt already existed in the late Neoarchean period, suggesting the beginning of plate tectonics; and (4) the preliminary cratonization had already been completed by about 2.5 Ga. Hadean detrital zircons were found at a total of nine locations within China. Most of them show clear oscillatory zoning, sharing similar textures with magmatic zircons from intermediate-felsic magmatic rocks. This indicates that a fair quantity of continental material had already developed on Earth at that time.  相似文献   

6.
The diamond-bearing mantle keels underlying Archean cratons are a unique phenomenon of Early Precambrian geology. The common stable assemblage of the Archean TTG early continental crust and underlying subcontinental lithospheric mantle clearly shows their coupled tectogenesis, which was not repeated in younger geological epochs. One of the least studied aspects of this phenomenon is concerned with the eclogitic xenoliths carried up by kimberlite pipes together with mantle-derived nodules. The eclogitic xenoliths reveal evidence for their subduction-related origin, but the Archean crustal counterparts of such xenoliths remained unknown for a long time, and the question of their crustal source and relationships to the formation of early continental crust remained open. The Archean crustal eclogites recently found in the Belomorian Belt of the Baltic Shield are compared in this paper with eclogitic xenoliths from kimberlites in the context of the formation of both Archean subcontinental lithospheric mantle (SCLM) and early continental crust. The crustal eclogites from the Belomorian Belt are identical in mineral and chemical compositions to the eclogite nodules (group B), including their diamond-bearing varieties. The eclogite protoliths are comparable in composition with the primary melts of the Meso- and Neoarchean oceanic crust, which was formed at a potential temperature of the upper mantle which exceeded its present-day temperature by 150–250 K. The reconstructed pathways of the Archean oceanic crust plunging in the upper mantle suggest that the Archean mantle was hotter than in the modern convergence settings. The proposed geodynamic model assumes coupled formation of the Archean diamond-bearing SCLM and growth of early continental crust as a phenomenon related to the specific geodynamics of that time controlled by a higher terrestrial heat flow.  相似文献   

7.
The Archean provinces and lithotectonic complexes of the Baltic (Fennoscandian) Shield are considered. The supracrustal complexes are classified by age: <3.2, 3.10–2.90, 2.90–2.82, 2.82–2.75, and 2.75–2.65 Ga. The data on Archean granitoid complexes and metamorphic events are mentioned briefly, whereas the recently found fragments of the Archean ophiolitic and eclogite-bearing associations are discussed in more detail. The Paleoarchean rocks and sporadic detrital grains of Paleoarchean zircons have been found in the Baltic Shield; however, the relatively large fragments of the continental crust likely began to form only in the Mesoarchean (3.2–3.1 Ga ago), when the first microcontinents, e.g., Vodlozero and Iisalmi, were created. The main body of the continental crust was formed 2.90–2.65 Ga ago. The available information on the Paleoarchean complexes of the Baltic Shield is thus far too scanty for judgment on their formation conditions. The geologic, petrologic, isotopic, and geochronological data on the Meso-and Neoarchean lithotectonic complexes testify to their formation in the geodynamic settings comparable with those known in Phanerozoic: subduction-related (ensialic and ensimatic), collisional, spreading-related, continental rifting, and the setting related to mantle plumes.  相似文献   

8.
The Archean to Paleoproterozoic Central Zone of the North China Craton is situated between the Eastern and Western Archean continental blocks and contains two contrasting series of Neoarchean granitoids: the 2523–2486 Ma tonalite−trondhjemite–granodiorite (TTG) gneisses in the Fuping Complex, and the 2555–2525 Ma calc-alkaline granitoids (tonalite, granodiorite, granite and monzogranite) in the Wutai Complex. The Fuping TTG gneisses most likely formed from partial melting of 2.7 Ga basalts at >50 km, with an involvement of 3.0 Ga crustal material. The Wutai granitoids have higher K2O, LILE and Rb/Sr, but lower Sr/Y and LaN/YbN than the Fuping TTG gneisses, are characterized by Nd TDM from 2.5 to 2.8 Ga and Nd(t) from 0.49 to 3.34, and are derived from partial melting of a juvenile source at <37 km.The geochemistry of these two contrasting series of Neoarchean granitoids provides further evidence that the Wutai Complex originated and evolved separately from the Fuping Complex. The Wutai Complex most likely formed as an oceanic island arc with volcanism and synvolcanic granitoid intrusions at 2555–2525 Ma. The Wutai Complex was subsequently accreted onto the Eastern Archean Continental Block, and was probably responsible for crustal thickening and TTG magmatism at 2523–2486 Ma in the Fuping Complex (as part of the Taihangshan–Hengshan block), at the western margin of the Eastern Archean Continental Block.  相似文献   

9.
A. B. Vrevskii 《Petrology》2018,26(2):121-144
The paper reports newly obtained geological and isotopic-geochemical data on the volcano-sedimentary complex of the Uraguba Neoarchean greenstone structure in the Kola–Norwegian province of the Fennoscandian Shield. New U–Th–Pb geochronologic data (SIMS) on the metadacite (2790 ± 9 Ma) from a rock unit of interbedding metadacite, komatiite tuff, and lava breccia and on veins of plagioclase–microcline granite (2697 ± 10 and 2696 ± 9 Ma) that cuts the komatiite constrain the time span when supracrustal complex of the Uraguba structure was produced and underwent tectono-metamorphic transformations to approximately 100 Ma. The metavolcanic rocks of the komatiite–tholeiite association of the Uraguba structure belong to two distinct isotopic-geochemical types, which are spatially separated from one another and were produced by melting different mantle sources. Geological and isotopic-geochemical data indicate that the Uraguba structure is analogous to such unique tectonic structures on cratons as the Neoarchean Belingwe and Bulawayo belts in the Zimbabwe Shield, Kalgoorlie Belt in the Eastern Goldfilds province at the Yilgarn Craton, Kuhmo–Tipasjarvi Belt in the Karelian epi-Archean craton, and the Warawoona Paleoarchean Belt in the Pilbara Craton.  相似文献   

10.
MARTIN  HERV? 《Journal of Petrology》1987,28(5):921-953
The grey gneisses of eastern Finland form the basement on whichthe Archaean greenstone belts were developed. They are composedof orthogneisses emplaced during two distinct magmatic episodes:2.86 Ga (Kivij?rvi gneisses) and 2.65 (Naavala gneisses). Theirmodal and chemical compositions are those of trondhjemites,tonalites and granodiorites (TTG). Both suites show low-K2Ocalc-alkaline differentiation trends (trondhjemitic). The aim of this study is to qualify and quantify the successionof different mechanisms by which the TTG series evolved. Theyoungest process was studied first, and the arguments then appliedin order to go back in time to the older ones. For each one,quantification was arrived at with the major elements, and theseresults provided a basis for calculation with the rare earthelements (REE). Finally the whole model was tested with othertrace elements. The petrogenetic model may be summarized as follows: meltingof the upper mantle to form a tholeiitic crust; melting of thesetholeiites transformed into garnet-bearing amphibolites to yieldthe parental magma of the TTG. The residue of the melt consistedof hornblende, plagioclase, clinopyroxene, and garnet with minoramounts of ilmenite and magnetite (10 < F < 30); and fractionalcrystallization of hornblende, plagioclase, and ilmenite withoccasional allanite and/or zircon in small amounts ((1-F) <40). No matter when they were emplaced during the Archaean, all theTTG of this part of the Baltic Shield arose from similar parentalmagmas. The petrogenetic study has shown that garnet and hornblendewere necessarily residual phases during the melting of the Archaeantholeiites. This constraint is very important, as it impliesthat the Archaean geothermal gradients occurring in subduction-zoneswere much higher than in modern times, thus allowing the partialmelting of the subducted oceanic crust.  相似文献   

11.
翟明国 《古地理学报》1999,24(5):825-847
大陆最古老的陆壳物质是沉积岩中4.4 Ga的碎屑锆石,最古老的陆壳岩石年龄为4.1-4.0 Ga,出露面积约20 km2。3.9-3.6 Ga的古老陆核出露在不同克拉通中,而大陆的生长峰期是在2.9-2.7 Ga,全球稳定的陆壳圈层形成是在~2.5 Ga,被称为克拉通化。陆壳以英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)为代表,体积占古老陆壳的~70%以上。古陆表现为高级片麻岩区-花岗绿岩带格局(穹隆-龙骨格局),与显生宙的洋-陆格局不同,暗示构造体制的差异。火山沉积组合即是围绕高级片麻岩地体以层状向斜方式存在的绿岩带,后者相对变质很浅或未变质。早期地球演化中,先有陆还是先有洋、陆核形成和生长的机制、什么时候开始有露出海面的陆地、太古宙时期的洋-陆格局等等都还没有定论。古元古代时期,全球长期处于伸展阶段,巨厚的裂谷型沉积以及伴随的大氧化事件,可能是开启古地理研究的最早地质时期。本文还以华北克拉通为例,作了陆壳演化的简单介绍。  相似文献   

12.
Felsic magmatism associated with ocean–ocean and ocean–continent subduction processes provide important evidence for distinct episodes of crust-generation and continental lithospheric evolution. Rhyolites constitute an integral component of the tholeiitic to calc-alkaline basalt–andesite–dacite–rhyolite (BADR) association and contribute to crustal growth processes at convergent plate margins. The evolution of the Dharwar Craton of southern peninsular India during Meso- to Neoarchean times was marked by extensive development of greenstone belts. These granite-greenstone terranes have distinct volcano-sedimentary associations consistent with their geodynamic setting. The present study deals with geochemistry of rhyolites from the Chitradurga-Shimoga greenstone belts of western (WDC) and the Gadwal-Kadiri greenstone belts of eastern (EDC) sectors of Dharwar Craton to compare and evaluate their petrogenesis and geodynamic setting and their control on the continental lithospheric evolution of the Dharwar Craton. At a similar range of SiO2, Al2O3, Fe2O3, the rhyolites of WDC are more potassic, whereas the EDC rhyolites are more sodic and less magnesian with slight increase in TiO2. Minor increase in MgO content of WDC rhyolites reflects their ferromagnesian trace elements which are comparatively lower in the rhyolites of EDC. The relative enrichment in LILE (K, Rb) and depletion in HFSE (Nb, Ta, Zr, Hf) marked by negative Nb–Ta, Zr–Hf and Ti anomalies endorse the convergent margin processes for the generation of rhyolites of both the sectors of Dharwar Craton. The high silica potassic rhyolites of Shimoga and Chitradurga greenstone belts of WDC showing prominent negative Eu and Ti anomalies, flat HREE patterns correspond to Type 3 rhyolites and clearly point towards their generation and emplacement in an active continental margin environment. The geochemical characteristics of Gadwal and Kadiri rhyolites from eastern Dharwar Craton marked by aluminous compositions with low and fractionated HREE patterns and minor negative Eu anomalies are in conformity with Type 1 rhyolites and suggest that they were erupted in an intraoceanic island arc system. The overall geochemical systematics of the rhyolites from both the sectors of Dharwar Craton suggest a change in the geodynamic conditions from intraoceanic island arc of eastern Dharwar Craton and an active continental margin of western Dharwar marked by ocean–ocean subduction and migration of oceanic arc towards a continent followed by arc-continent collision that contributed for the evolution of continental lithosphere in the Dharwar Craton.  相似文献   

13.
翟明国 《古地理学报》2022,24(5):825-847
大陆最古老的陆壳物质是沉积岩中4.4 Ga的碎屑锆石,最古老的陆壳岩石年龄为4.1-4.0 Ga,出露面积约20 km2。3.9-3.6 Ga的古老陆核出露在不同克拉通中,而大陆的生长峰期是在2.9-2.7 Ga,全球稳定的陆壳圈层形成是在~2.5 Ga,被称为克拉通化。陆壳以英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)为代表,体积占古老陆壳的~70%以上。古陆表现为高级片麻岩区-花岗绿岩带格局(穹隆-龙骨格局),与显生宙的洋-陆格局不同,暗示构造体制的差异。火山沉积组合即是围绕高级片麻岩地体以层状向斜方式存在的绿岩带,后者相对变质很浅或未变质。早期地球演化中,先有陆还是先有洋、陆核形成和生长的机制、什么时候开始有露出海面的陆地、太古宙时期的洋-陆格局等等都还没有定论。古元古代时期,全球长期处于伸展阶段,巨厚的裂谷型沉积以及伴随的大氧化事件,可能是开启古地理研究的最早地质时期。本文还以华北克拉通为例,作了陆壳演化的简单介绍。  相似文献   

14.
The Hadean and Archean geologic history of the Earth is discussed in the context of available knowledge from different sources: space physics and comparative planetology; isotope geochronology; geology and petrology of Archean greenstone belts (GB) and tonalite-trondhjemite-granodiorite (TTG) complexes; and geodynamic modeling review to analyse plate-tectonic, plume activity, and impact processes. Correlation between the age peaks of terrestrial Hadean-Early Archean zircons and late heavy bombardment events on the Moon, as well as the Hf isotope composition of zircons indicating their mostly mafic sources, hint to an important role of impact processes in the Earth’s history between 4.4 and 3.8 Ga. The earliest continental crust (TTG complexes) formed at 4.2 Ga (Acasta gneisses), while its large-scale recycling left imprint in Hf isotope signatures after 3.75 Ga. The associations and geochemistry of rocks suggest that Archean greenstone belts formed in settings of rifting, ocean floor spreading, subduction, and plume magmatism generally similar to the present respective processes. The Archean history differed in the greater extent of rocks derived from mantle plumes (komatiites and basalts), boninites, and adakites as well as in shorter subduction cycles recorded in alternation of typical calc-alkaline andesite-dacite-rhyolite and adakite series that were generated in a hotter mantle with more turbulent convection and unsteady subduction. The Archean is interpreted as a transient period of small plate tectonics.  相似文献   

15.
Despite representing one of the largest cratons on Earth, the early geological evolution of the Amazonia Craton remains poorly known due to relatively poor exposure and because younger metamorphic and tectonic events have obscured initial information. In this study, we investigated the sedimentary archives of the Carajás Basin to unravel the early geological evolution of the southeastern Amazonia Craton. The Carajás Basin contains sedimentary rocks that were deposited throughout a long period spanning more than one billion years from the Mesoarchean to the Paleoproterozoic. The oldest archives preserved in this basin consist of a few ca. 3.6 Ga detrital zircon grains showing that the geological roots of the Amazonia Craton were already formed by the Eoarchean. During the Paleoarchean or the early Mesoarchean (<3.1 Ga), the Carajás Basin was large and rigid enough to sustain the formation and preservation of the Rio Novo Group greenstone belt. Later, during the Neoarchean, at ca. 2.7 Ga, the southeastern Amazonia Craton witnessed the emplacement of the Parauapebas Large Igneous Province (LIP) that probably covered a large part of the craton and was associated with the deposition of some of the world largest iron formations. The emplacement of this LIP immediately preceded a period of continental extension that formed a rift infilled first by iron formations followed by terrigenous sediments. This major change of sedimentary regime might have been controlled by the regional tectonic evolution of the Amazonia Craton and its emergence above sea-level. During the Paleoproterozoic, at ca. 2.1 Ga, the Rio Fresco Group, consisting of terrigenous sediments from the interior of the Amazonia Craton, was deposited in the Carajás Basin. At that time, the Amazonian lithosphere could have either underwent thermal subsidence forming a large intracratonic basin or could have been deformed by long wavelength flexures that induced the formation of basins and swells throughout the craton under the influence of the growing Transamazonian mountain belt.  相似文献   

16.
Southern Cross was one of the earliest gold mining centres in Western Australia. Over 142 tonnes of gold have been produced from the district, and, on a gold per hectare basis, the Southern Cross greenstone belt in the southwestern Yilgarn Craton is the most productive of Western Australia's Archaean greenstone belts. The SW Yilgarn Craton is characterised by high-grade (amphibolite- to granulite-facies) metamorphism, extensive granitoid magmatism and older greenstone volcanism ages, compared to the well-known greenschist-facies metamorphism and younger (2.7 Ga) eruption ages which dominate in the Eastern Goldfields Province. The Pb-isotope compositions of deep-seated granitoids in the SW Archaean Yilgarn Craton, which were emplaced coeval with a craton-wide major orogenic lode-gold mineralization event at about 2.64–2.63 Ga, have been determined for 96 whole-rock and 24 K-feldspar samples. The Pb isotope data of the granitoids are consistent with a crustal origin for their genesis, probably by reworking (partial melting) of older continental crust. The Pb isotope composition of greenstones, which are the main host rocks for gold mineralisation, and pyrites from the komatiite-hosted syngenetic Ni deposits in the amphibolite-facies Forrestania greenstone belt, have also been determined, with initial Pb-isotope ratios higher than that for the Eastern Goldfields Province. The Pb isotopic character of the orogenic lode-gold deposits in the region is intermediate between coeval granitoid and greenstone Pb, indicating that the ore fluids contained metals from both reservoirs. The Pb in the ore fluid of the most deeply formed deposit, Griffin's Find, overlaps the isotopic composition of coeval granitoids, indicating the deep-seated granitoid magmatism was the primary source for Pb in the ore fluids. Received: 8 October 1998 / Accepted 22 December 1998  相似文献   

17.
The basement of the North China Craton can be divided into the eastern, central and western zones, based on lithological, structural, metamorphic and geochronological data. The western zone comprises two different petrotectonic units: Archaean tonalitic–trondhjemitic–granodioritic (TTG) grey gneisses and metamorphic mafic rocks, and Palaeoproterozoic khondalite series. The former is characterized by isobaric cooling (IBC)-type anticlockwise PT paths in the north-northwestern part of the zone and near-isothermal decompression (ITD)-type clockwise PT paths in the eastern part, adjacent to the central zone. On the other hand, the tectonothermal evolution of Palaeoproterozoic khondalite series rocks is characterized exclusively by nearly isothermal decompression following the peak of metamorphism and then cooling, defining clockwise PT paths. The Archaean TTG gneisses and associated mafic rocks with anticlockwise metamorphic PT paths reflects an origin related to underplating and intrusion of mantle-derived magmas which may be derived from mantle plumes. They represent a late Archaean continental block in the western part of the North China Craton. The Palaeoproterozoic khondalite series rocks represent passive continental margin deposits. They were metamorphosed and deformed in the late Palaeoproterozoic during the amalgamation of the western continental block with another continental block in the east part of the North China Craton. The ITD-type clockwise PTt paths of the Palaeoproterozoic khondalite series rocks record the tectonothermal histories of the collision of the western and eastern continental blocks which resulted in the final assembly of the North China Craton at c. 1800 Ma.  相似文献   

18.
大陆的起源     
太阳系固体星球都有类似的核-幔-壳结构,但唯独人类居住的地球具有长英质组成的大陆壳.太古宙大陆克拉通主要由英云闪长岩(Tonalite)-奥长花岗岩(Trondhjemite)-花岗闪长岩(Granodiorite)为主的TTG深成侵入体变质而成的正片麻岩和由基性-超基性酸性火山岩及少量沉积岩变质的表壳岩(绿岩)组成....  相似文献   

19.
This paper deals with the meta-mafic volcanic rocks of the Gongyiming iron deposit at Baotou, Inner Mongolia. The major and trace elements and REE data indicate that the meta-mafic volcanic rocks occurred in the environment similar to a modern continental rift. Sm-Nd and Rb-Sr isotopic studies indicated that the meta-basic rocks were formed during the Early Neoarchean from 2800 Ma to 2900 Ma and reworked during the Late Neoarchean (2500 Ma) by metamorphism. Because of the separation of the North China Craton from the Siberia Craton during the Middle Proterozoic (1600 Ma), the Rb-Sr systematics of the rocks has been changed. The Se‘ ertengshan greenstone seems to occur during the Middle Archean. A stable continental crust may have existed during the Paleoarchean.  相似文献   

20.
The 2·95 Ga Pilbara high-Mg diorite suite intrudes thecentral part of the Archaean granite–greenstone terrainof the Pilbara Craton, Western Australia, and shows many featurestypical of high-Mg diorite (sanukitoid) suites from other lateArchaean terrains. Such suites form a minor component of Archaeanfelsic crust. They are typically emplaced in late- to post-kinematicsettings, sometimes in association with felsic alkaline magmatism,and are either unaccompanied by, or post-date, tonalite–trondhjemite–granodiorite(TTG) magmatism, which comprises a much greater proportion ofArchaean felsic crust. The TTG series comprises sodic, Sr-richrocks with high La/Yb and Sr/Y ratios, thought to result frompartial melting of eclogite facies basaltic crust. High-Mg dioriteshares these characteristics but has significantly higher mg-number(  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号