首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the mining complex of Kherzet Youcef, including the Chaabet-el-Hamra mine and processing plant, chemical analyzes were carried out on soil and sediment samples and exceeded the normative guidelines for zinc, lead, and cadmium except a small area in the foothills. X-ray diffractometer analyzes confirmed the presence of a considerable inclusion of sulfides (up to 20%), such as pyrite, marcasite (FeS2) and sphalerite (ZnS) especially at the liquid waste disposal site and technogenic sediments. To predict changes in the mineral composition of soils and waste under the condition of their contact with rain water and to assess the potential contamination of ground waters, a thermodynamic model SELECTOR was applied on selected samples. The results of this study conclude that the calculated equilibrium mineral composition is very close to the real phase composition only for the least polluted soils. For technogenic sediments or waste, the equilibrium mineral composition differs significantly from the experimental one. The modeling of potential transition of the main pollutants in water soluble forms allows concluding that in the study area should be feared of exceeding of normative guidelines of cadmium, zinc, and lead.  相似文献   

2.
The studies presented explore post-depositional changes of zinc, cadmium, lead, manganese and 137Cs distribution in alluvial sediments accumulated in the upper Odra River valley in southern Poland. The rate of these changes was estimated by comparing metal and 137Cs distributions in four vertical alluvial profiles with a history of river pollution and sediment deposition. The untypical 137Cs distribution with peaks in the surface 40–60 cm and lower down, even at a depth of 2.5 m in strata deposited before the beginning of nuclear tests in 1954, indicates rapid post-depositional migration of this isotope from the surface and its retention in lower, less permeable layers. Moreover, the highest concentrations of lead, zinc and cadmium were found at a depth of 4 m in sediments accumulated in the mid-nineteenth century in spite of the growth of industrialization and the pollution of the Odra River with heavy metals until the end of the twentieth century. The post-depositional changes in heavy metals and 137Cs are rapid in comparison with the slow element migration usually observed in uninundated soils. This difference is explained by the frequent and easy infiltration of polluted river water into the gravelly and sandy sediments present in the profiles.  相似文献   

3.
The Carson River Superfund Site in west-central Nevada is an area of Hg-contaminated soil, sediment, water, air, and biola resulting from the amalgamation milling of Ag-Au ores of the Comstock lode worked approximately a century ago. In order to develop an understanding of the behavior, transport, and fate of Hg at this site, a technique was developed to estimate the proportions of total, elemental, exchangeable, organic, and sulfide Hg in soils, sediments, and tailings.Results of this analysis performed on active Carson River sediments indicate that Hg is selectively dissolved out of Hg-Au amalgam particles and subsequently adsorbed to fine-grained sediments which are then deposited in downstream, low-energy reaches of the Carson River and Labontan Reservoir. In the relatively more-reducing environment of the reservoir Hg appears to be converted, in large part, to relatively-insoluble HgS.The original elemental form of Hg released to the environment is the chemical form which is still dominant in most highly-contaminated soils, sediments, and tailings. Deeper, more-reducing soil horizons, however, appear to fix a significant portion of the Hg as HgS, analogous to the Lahontan Reservoir example described above. This fixation as HgS is documented to be largely limited to higher-sulfur areas where sulfide minerals from the Comstock ores increase the total sulfur concentrations of contaminated soils, sediments, and tailings.  相似文献   

4.
In the coastal area of western Finland, a large number of streams are strongly acidic and contaminated with metals. The reason for this is not historical and present industrial, mining and urban activities, but a current high rate of weathering and leaching of widespread acid sulphate soils (pH 2.5–4.0) developed in artificially drained Holocene marine and lacustrine sulphide-bearing sediments. Evaluation of existing hydro- and geochemical field and experimental data revealed that: (1) cobalt, Ni and Zn are extensively leached from the acid sulphate soils and thus exist abundantly in streams affected by such soils, (2) copper and Tl are also leached abundantly from the acid sulphate soils, although not to the same extent as are Co, Ni and Zn, (3) vanadium is in general depleted and Cr only weakly enriched in streams draining ‘the average acid sulphate soil’, but they increase substantially in severely acidic streams in catchments underlain with particularly acidic soil, (4) arsenic and Pb are not leached more abundantly from the acid sulphate soils than from the common types of soils and sediments (till, glaciofluvial deposits, peat) resulting in aquatic abundance and distribution patterns unrelated to the acid sulphate soil occurrences.  相似文献   

5.
As a result of over-erosion of soils, the fine particles, which contain the majority of nutrients, are easily washed away from soils, which become deficient in a host of components, accumulating in lakes. On one hand, the accumulation of nutrients-rich sediments are a problem, as they affect the quality of the overlying water and decrease the water storage capacity of the system; on the other hand, sediments may constitute an important resource, as they are often extremely rich in organic and inorganic nutrients in readily available forms. In the framework of an extensive work on the use of rock related materials to enhance the fertility of impoverish soils, this study aimed to evaluate the role on the nutrients cycle, of particles recycling processes from the watershed to the bottom of a large dam reservoir, at a wet tropical region under high weathering conditions. The study focus on the mineralogical transformations that clay particles undergo from the soils of the drainage basin to their final deposition within the reservoir and their influence in terms of the geochemical characteristics of sediments. We studied the bottom sediments that accumulate in two distinct seasonal periods in Tucuruí reservoir, located in the Amazonian Basin, Brazil, and soils from its drainage basin. The surface layers of sediments in twenty sampling points with variable depths, are representative of the different morphological sections of the reservoir. Nineteen soil samples, representing the main soil classes, were collected near the margins of the reservoir. Sediments and soils were subjected to the same array of physical, mineralogical and geochemical analyses: (1) texture, (2) characterization and semi-quantification of the clay fraction mineralogy and (3) geochemical analysis of the total concentration of major elements, organic compounds (organic C and nitrogen), soluble fractions of nutrients (P and K), exchangeable fractions (cation exchange capacity, exchangeable bases and acidity) and pH(H2O).There is a remarkable homogeneity in the sedimentary distribution along the reservoir in terms of the texture and mineralogy of the clay fraction and of the chemistry of the total, soluble and exchangeable phases. These observations contrast with the physical, morphological and chemical heterogeneity of the soils and the setting lithology. Most of the sediments has a higher contribution of fine-grained material and the mineralogy of the clay fraction is dominated by kaolinite in soils and kaolinite and illite in sediments, followed by lesser amounts of gibbsite, goethite, and metahaloisite and by small/vestigial contents of chlorite and smectite. The sediments are mainly inherited from the watershed but there exist marked differences between the accumulated sediments and their parent materials. These differences mainly come from the selective erosion of fine-grained particles and the extreme climatic conditions which enhance complex transformations of mineralogical and chemical nature. Compared with the parental soils, the reservoir sediments show the following differences: (1) enrichment in fine-grained and less dense inorganic particles, (2) aggradative mineralogical transformations, including enrichment in clay minerals with higher cationic adsorption and exchange capacity, (3) degradation of the crystalline structure of Fe- and Al-oxides (goethite, gibbsite), (4) increase in easily leached elements (Mg, Ca, P, K, Na) and decrease in chemically less mobile elements (Si, Fe) and (5) higher contents of organic carbon, nitrogen, and soluble forms of P and K, mainly concentrated in the clay fraction. These transformations are extremely important in the nutrients cycle, denoting that sediments represent an efficient sink for nutrients from the over-erosion of soils. Mineral and organic compounds can permanently or temporarily sequester these nutrients, recycling them and enhancing their availability through the slow release of components from relatively loose crystal structures. These processes can easily explain the enrichment in soluble and exchangeable forms of elements such as P, K, Ca or Mg. This study conclude that the particles recycling in a large tropical dam reservoir which receives high fluxes of allochthonous nutrients, has an important role in the good quality of sediments for agricultural use and in the profitable use of this technology to recover depleted soils in remediation projects in regions near large hydroelectric plants.  相似文献   

6.
Pollen taphonomy in a canyon stream   总被引:1,自引:0,他引:1  
Surface soil samples from the forested Chuska Mountains to the arid steppe of the Chinle Valley, Northeastern Arizona, show close correlation between modern pollen rain and vegetation. In contrast, modern alluvium is dominated by Pinus pollen throughout the canyon; it reflects neither the surrounding floodplain nor plateau vegetation. Pollen in surface soils is deposited by wind; pollen grains in alluvium are deposited by a stream as sedimentary particles. Clay-size particles correlate significantly with Pinus, Quercus, and Populus pollen. These pollen types settle, as clay does, in slack water. Chenopodiaceae-Amaranthus, Artemisia, other Tubuliflorae, and indeterminate pollen types correlate with sand-size particles, and are deposited by more turbulent water. Fluctuating pollen frequencies in alluvial deposits are related to sedimentology and do not reflect the local or regional vegetation where the sediments were deposited. Alluvial pollen is unreliable for reconstruction of paleoenvironments.  相似文献   

7.
福建沿海地区土壤-稻谷重金属含量关系与影响因素研究   总被引:12,自引:8,他引:4  
福建沿海地区土壤Pb含量远高于我国其他地区及全国背景值,其对农产品安全、生态环境的影响值得关注。本文采集该地区典型耕作区58套土壤-水稻样品,查明Pb、Cd等重金属元素含量特征及其关键控制因素。研究表明从水稻根→茎叶→稻谷,重金属元素含量和富集系数呈现明显的下降趋势,有害重金属As、Pb等的递减速率远大于植物营养元素Cu、Zn,指示水稻根部对重金属元素具有一定的阻截作用。土壤-稻谷间Pb具有显著正相关性,显示土壤Pb是稻谷Pb的重要来源;稻谷Pb含量与土壤有机碳呈显著负相关关系,与土壤pH呈弱负相关关系,说明富含有机碳、相对碱性的土壤环境可降低土壤Pb的生物有效性,减少稻谷对土壤Pb的吸收富集。土壤理化条件对稻谷Cd富集系数有显著影响,富含有机碳、Al2O3、Fe2O3、CaO、MgO、S的土壤条件有利于阻断稻谷对土壤Cd的吸收,降低土壤Cd污染的生态风险。本项研究为开展水田土壤重金属污染治理修复、预测稻谷食用安全提供了重要的依据。  相似文献   

8.
《Applied Geochemistry》2000,15(4):513-530
Soil samples taken from excavated pits on traverses across New Zealand’s Scott Base, Antarctica, were leached with water and 0.01 M HNO3 and the leachates analysed for Ag, Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. The soils had high conductivity and pH values generally increasing with depth and in the range 8.3–10.1. The water leachate generally contained most of the extractable metals except Mn and Cd, and As. Linear relationships were observed between some metals leached into alkaline solution and the Fe in those solutions. The ratios to Fe were comparable to those of the host basanite, and this observation is interpreted as showing that these metals are incorporated in fine mineral particulates derived directly from the rock mass. Outliers in leachable metal concentrations in the soils indicated appreciable contamination of the soil from anthropogenic sources with Ag, Cd, Cu, Pb and Zn as well as As. In some locations high concentrations of Ag and Cd correspond to specific sources and drainage channels. High concentrations of Pb were widely spread and in the top soil layers whereas the elevated concentrations of Zn were distributed throughout the soil profiles indicating atmospheric sources and different mobilities within the soils. Transport within the soils is evident for some metals, as is lateral movement over and through the soils.  相似文献   

9.
During ancient times the natural deposition fluxes of lead which can be leached with dilute acid from sediments in Santa Barbara, Santa Monica and San Pedro basins offshore from the Los Angeles Urban complex, were about 0.7, 0.1 and 0.2 μg Pb/cm2 yr respectively. Since there was little difference in biological productivity in surface waters of these basins, it is proposed that clay is a major transport vehicle for sequestered soluble lead, which then explains why the lead deposition flux within the Santa Barbara basin was so much larger compared to the other basins. The fluxes of silicate mud in the basins in ancient times were about 92, 19 and 30 mg/cm2 yr in Santa Barbara, Santa Monica and San Pedro basins respectively. Today deposition fluxes of acid soluble lead within these three basins are 3- to 9-fold greater, being about 2.1, 1.1 and 1.8 μg Pb/cm2 yr respectively, partly in the form of directly deposited large sewage particles, which account for none, 23 and 34 of the total industrial lead deposition fluxes in the respective basins. Concentrations of leachable lead in varve dated sediment layers increase with time and isotopic compositions of these leads change in accordance with corresponding known changes of isotopic compositions of industrial lead in the Los Angeles atmosphere. Lead remaining in acid leached sediment residues originates from igneous and clay minerals, exhibiting no change in concentration or isotopic composition since pre-industrial times.Deposition fluxes of total barium in sediments among the three basins were proportional to mass deposition fluxes before 1950 in the same manner as for lead. Afterwards, there are barium concentration maxima with time in both Santa Monica and San Pedro Basin sediments which are attributable to industrial sewage rather than to episodic erosion from barium-rich sedimentary evaporite strata exposed locally along the shore. An increase of barium concentrations in present day Santa Barbara basin sediments may reflect dispersal of barium-rich drilling mud from local drilling operations.  相似文献   

10.
The fate and transport of As was examined at an industrial site where soil- and groundwater contamination are derived from the application of As2O3 as a herbicide. Application of arsenical herbicides was discontinued in the 1970s and soils in the source area were partially excavated in 2003. Arsenic contamination (up to 280 mg/kg) remains in the source area soils and a plume of As-contaminated groundwater persists in the surficial aquifer downgradient of the source area with maximum observed As concentrations of 1200 μg/L near the source area. The spatial extent of As contamination as defined by the 10 μg/L contour appears to have remained relatively stable over the period 1996–2006; the boundary of the 1000 μg/L contour has retreated over the same time period indicating a decrease in total As mass in the surficial groundwater.In column experiments conducted with source area soil, the As concentrations in the column effluent were comparable to those observed in groundwater near the source area. A substantial fraction of the As could be leached from the source area soil with ammonium sulfate and ammonium phosphate. Exhaustive extraction with background groundwater removed most of the total As. These results indicate that As in the source area soils is geochemically labile. Source area soils are low in extractable Fe, Mn and Al, and characterization by X-ray absorption spectroscopy and electron microscopy indicated that As is present primarily as arsenate sorbed to (alumino)silicate minerals. Batch sorption experiments showed much less sorption on surficial aquifer sediments than on sediments from the Jackson Bluff Formation (JBF), a presumed confining layer. This limited capacity of the surficial aquifer sediments for As sorption is consistent with the similar As contents observed for these sediments within and upgradient of the As plume. The apparent stability of the As plume cannot be explained by sequestration of As within the surficial aquifer. Sorption to JBF sediments may contribute to As sequestration, but As enrichment in JBF sediments within the plume (i.e., as compared with JBF sediments upgradient) was not observed. These results indicate that neither the persistence of As in the source area soils or the apparent stability of the plume of As-contaminated groundwater at this site can be explained by geochemical controls on As mobility. The absence of demonstrable geochemical bases for such observations suggests that possible hydrologic controls should be further investigated at this site.  相似文献   

11.
黄石市罗桥地区土壤镉污染的环境地球化学特征   总被引:3,自引:0,他引:3  
对黄石市罗桥地区土壤中镉元素污染的环境地球化学调查研究表明:1)罗桥地区土壤Cd的背景值为0.068×10-6. 2)不同性质的土壤中,Cd的全量及有效态含量也有差异.其含量大小依次为:排放污水水沟污泥 > 水稻土 > 岗地土. 3)距污染源不同距离、不同深度的土壤样品中Cd的污染程度也不同.Cd污染主要集中于土壤的表面,很少向下迁移.污水样品中的Cd含量也随着排污上游到下游因污水的净化能力增强而降低. 4)对于各污染土壤样品,土壤中各形态Cd含量关系依次为:残余态 > 交换态 > 铁锰氧化物结合态 > 水溶态 > 有机态.5)因污水排放及污水灌溉引起的水型污染是罗桥地区土壤Cd污染的直接来源.大冶有色金属冶炼厂废气排放也是罗桥地区土壤Cd污染的另一个原因.  相似文献   

12.
An investigation of the metallurgical complex surroundings in Elbasani, Albania used background samples to rule out the level of contamination in the study area. Our results show that atmospheric dust particles and soils are of high concern while overbank sediments and actual river sediments are of lower concern. The heavy metals with concentrations of up to 5 times above the local background values are Zn, Cr, Ni, Cu, Fe and Co in soils; Fe, Cr, Co, Ni, Zn, Pb in dust particles; and, Cr and Zn in the actual river/stream sediments. Due to the small size of the dust particles and the atmospheric transportation mechanism primarily related to prevailing winds, the concern for the transport of dust particles is high, especially with respect to risks associated with inhalation. The people working and living in the vicinity of the metallurgical complex of Elbasani are at the highest risk of exposure. Concerns relating to soils are associated with the potential for translocation of the trace element particles into vegetation, in particular, within the upper part of the plants. Therefore, the consumption of the vegetables grown in the vicinity of the metallurgical site should be avoided. Special attention has been given to the Shkumbini river, where the long residence time of water and particulates may result in transitions of trace elements between dissolved and particulate phases downstream.  相似文献   

13.
Organic amendment application to heavy metal contaminated soils may contribute to leaching of phosphorus (P). The objectives of this study were to determine the influence of sheep manure and ethylenediamine tetraacetic acid (EDTA) on the P leaching from a wide range of calcareous contaminated soils. Glass tubes, 4.9 cm diameter, and 40 cm long, were packed with contaminated soil. The resulting 20 cm long column of soils had bulk density of 1.3–1.4 g cm−3. The columns were leached with distilled water, 0.01 M EDTA, 0.01 M CaCl2 or sheep manure extract (SME) solutions. The breakthrough curves for P were different and the amounts of P leached varied considerably between different soils and leaching solutions. The amounts leached with SME were less than the amount added through the SME, indicating that some P was retained by the soil, mainly due to preliminary sorption of organic ligands on to the soil with the creation of new sorbing surfaces. The amount leached with EDTA solution varied from 9.9 to 46.3% of the extractable P when 15 pore volumes had passed through the column. Low amounts of P were leached by 0.01 M CaCl2, which is likely to be due to the high concentration of soluble Ca used in the solution. Thus, among leaching solutions the application of EDTA and SME on contaminated calcareous soils might enhance the mobility of P and large amounts of P will be leached, leading to contamination of ground and surface waters.  相似文献   

14.
In the present study sediment and water samples collected from Kowsar Dam reservoir in Kohkiluye and Boyerahmad Province, southwest of Iran, are subjected to bulk digestion and chemical partitioning. The concentrations of nickel, lead, zinc, copper, cobalt, cadmium, manganese and iron in water and bed sediment were determined by atomic absorption spectrometry. The concentrations of metals bounded to five sedimentary phases were estimated. On this basis, the proportions of natural and anthropogenic elements were calculated.The anthropogenic portion of elements are as follows: zinc (96 %)> cobalt (88 %)> iron (78 %)> magnesium (78 %)> nickel (78 %)> copper (66 %)> lead (63 %)> cadmium (59 %). The results show sediment contamination by nickel, cadmium and lead, according to the world aquatic sediments and mean earth crust values. Manganese and copper have strong association with organic matter and are of high portion of sulfide bounded ions. Finally, The degree of sediment contamination was evaluated using enrichment factor, geo-accumulation index (Igeo) and pollution index (IPoll). The sediments were identified to be of high cadmium and lead pollution index. The pattern of pollution intensity according to enrichment factor is as follows; manganese (1.25) < copper (1.63) < zinc (1.93) < cobalt (2.35) < nickel (3.83) < lead (12.63) < cadmium (78.32). Cluster analysis was performed in order to assess heavy metal interactions between water and sediment. Accordingly, nickel, cadmium and copper are earth originated. Zinc, copper and manganese are dominated by pH. All the elemental concentrations in water and sediment are correlated except for sedimental copper.  相似文献   

15.
《Applied Geochemistry》2002,17(9):1209-1218
Acid sulphate soils, common in the coastal areas of Finland, contribute strongly to high acid, S and metal loadings on adjacent surface waters. This, in turn, is causing significant harm to the aquatic ecology. There is, however, limited knowledge on the total amounts of acidity and chemical elements leached from these soils. The overall objective of this study was to determine geochemical patterns in acid sulphate soils and their parent sediments and, based on the identified patterns assess the extent, mechanisms and present state of leaching of major and trace elements from these soils. The distribution of pH, aqua regia extractable concentrations of P and metals (Al, Ba, Ca, Co, Cr, Cu, Fe, K, La, Mg, Mn, Na, Ni, Sr, Th, Ti, V, Zn) and total concentrations of S and C were determined in 30 vertical profiles collected in the 23 km2 large Rintala agricultural area (mid-western Finland) underlain largely with S-rich sediments. It was found that approximately 70% of the area consists of acid sulphate soils with a minimum pH<4.0, an average depth of 1.8 m, and S concentrations in the parent sediments varying from 0.24 to 1.04%. Acid sulphate soils have not developed where the S concentrations in the sediments are ⩽0.10% or where the concentrations of organic C in the soil zones are >4%. Four different methods were used to estimate the losses of chemical elements from the acid sulphate soils: (1) the concentrations in the soil were compared with those in the parent sediments, (2) due to indicated heterogeneities in several profiles, the vertical changes of the immobile Ti was used to re-calculate element losses, (3) element depletions in the acid sulphate soils (as compared to those in the parent sediments) were compared to the corresponding depletions in the non acid sulphate soils, (4) element concentrations in drainage waters were compared with those in the parent sediments. Based on these calculations, it was assessed that the percentual leaching of the aqua regia extractable fraction (total for S) has been as follows: S (40–50%), Na (30–50%), Mn (25–35%), Sr (15–20%), Ca–Ni–Co (approximately 10%), Mg–K–Zn (5–10%), Th–La–Cu–Al–P–Ti–Fe (<5%), and Ba–Cr–V (<1%). While it was possible to quite accurately estimate the percentages and thus the amounts of elements lost, it was not possible to estimate the rate of leaching as there is no available detailed information on dates when ditching activities and thus oxidation-acidification processes started. Other calculations indicated that the mobile S reservoir is still some 15 ton/hectare, which is huge but still smaller than the losses that have occurred since the area was drained (23–28 ton/hectare).  相似文献   

16.
Displacement studies on leaching of potassium (K+) were conducted under unsaturated steady state flow conditions in nine undisturbed soil columns (15.5 cm in diameter and 25 cm long). Pulses of K+ applied to columns of undisturbed soil were leached with distilled water or calcium chloride (CaCl2) at a rate of 18 mm h−1. The movement of K+ in gypsum treated soil leached with distilled water was at a similar rate to that of the untreated soil leached with 15 mM CaCl2. The Ca2+ concentrations in the leachates were about 15 mM, the expected values for the dissolution of the gypsum. When applied K+ was displaced with the distilled water, K+ was retained in the top 10–12.5 cm depth of soil. In the undisturbed soil cores there is possibility of preferential flow and lack of K+ sorption. The application of gypsum and CaCl2 in the reclamation of sodic soils would be expected to leach K+ from soils. It can also be concluded that the use of sources of water for irrigation which have a high Ca2+ concentration can also lead to leaching of K+ from soil. Average effluent concentration of K+ during leaching period was 30.2 and 28.6 mg l−1 for the gypsum and CaCl2 treated soils, respectively. These concentrations are greater than the recommended guideline of the World Health Organisation (12 mg K+ l−1).  相似文献   

17.
《Applied Geochemistry》2005,20(10):1907-1919
Soil from an infiltration trench for highway runoff was leached in columns alternately with NaCl and de-ionised water to simulate the runoff of de-icing salt into the trench followed by snowmelt or rainwater. Simultaneously, two columns with the same soil were leached with de-ionised water throughout the experiment. In addition, the groundwater below the infiltration trench was sampled on some occasions. The column leachate and groundwater were split into two sub samples, one was filtered though a 0.45 μm filter; both were analysed for Pb, Cd, Zn, Fe and total organic carbon (TOC). The column experiment showed clearly that an extensive mobilisation of Pb occurred in low electrolyte water leaching following NaCl leaching. The high Pb concentration coincided with peaks in Fe and TOC concentrations and implied colloid-assisted transport. Conversely, Cd and Zn concentrations were raised in the NaCl leachate and a high correlation with Cl showed that Cl complexes are important for the mobilisation, although a pH effect and ionic exchange cannot be excluded. Only 0.15% and 0.06% of the total amount of Pb was leached from the columns leached with alternating NaCl and deionised water confirming the usual hypotheses about the high immobility of Pb in soils. However, on one occasion when the ionic strength and pH was the lowest measured the concentration of Pb in groundwater sampled from 2.5 m depth was 27 μg L−1 in the dissolved phase (<0.45 μm) and 77 μg L−1 in the particle phase (>0.45 μm). These Pb concentrations are almost 3 and 8 times above the Swedish limit for drinking water quality. Accordingly, in spite of the immobility of Pb the accumulation in roadside soils is so large that groundwater quality is threatened. In conclusion, the study suggests that roadside soils impacted by NaCl from de-icing operations contribute Pb to groundwater by colloid-assisted transport.  相似文献   

18.
Amin  Ammar  Bankher  Khalid 《Natural Hazards》1997,16(1):57-63
The occurrence of land subsidence in the Kingdom Saudi Arabia is either natural or man-made. Natural land subsidence occurs due to the development of subterranean voids by a solution of host rocks in carbonate and evaporite terrains, over many areas of Saudi Arabia. Man-induced land subsidence is either due to the removal of groundwater in the agricultural areas or to wetting of unstable soils. Therefore, earth fissures and a lowering of the ground surface in unconsolidated sediments took place in alluvial plains and volcanic vent terrains. Unstable soils include Sabkha soils and loess sediments. These types of soils occur in coastal plains, desert areas and volcanic terrains. When this soil is wetted either during agricultural activities, waste disposal or even during a rain storm, subsidence takes place due to either the removal of salts from the Sabkha soil or the rearrangement of soil particles in loess sediments.  相似文献   

19.
This study reports on trace metal uptake by the grass species Melinis repens, growing in roadside soils and sediments in tropical northeastern Australia. Median total Cu, Pb, Ni and Zn concentrations were significantly (P < 0.05) higher in road edge soils (Cu = 61.1 mg/kg, Pb = 97.3 mg/kg, Ni = 28.6 mg/kg, Zn = 729 mg/kg) than in background soils collected away from roads (Cu = 5.8 mg/kg, Pb = 11.2 mg/kg, Ni = 3.7 mg/kg, Zn = 21 mg/kg). Significantly (P < 0.05) elevated Zn values were recorded in the stems of the M. repens specimens growing on roadside soils (231.6 mg/kg dry weight of tissue) compared with those of grasses growing on background soils (40.8 mg/kg dry weight of tissue). Moreover, median Cu, Ni and Zn values in the roots of roadside grasses (Cu = 29.1 mg/kg, Ni = 2.73 mg/kg, Zn = 169 mg/kg) were significantly (P < 0.05) higher than their respective levels in the roots of background M. repens samples (Cu = 5.98 mg/kg, Ni = 0.70 mg/kg, Zn = 22 mg/kg). A greenhouse experiment showed that Cu and Zn in road sediments are labile and are available for uptake by M. repens. The studied roadside soils and sediments were leached with a diethylenetriaminepentaacetic acid–CaCl2–triethanolamine–HCl extraction solution, which proved to be a rudimentary indicator of Zn availability and uptake to the root tissue of M. repens. The results demonstrate that trace metals in roadside grasses have the potential to be directed up the food-chain as grasses are consumed by herbivores. In addition, bioavailable metal contaminants hosted by road sediments have the capacity to impact on ecosystems downstream of roads because these sediments are mobilised by road runoff waters from road surfaces into adjoining catchments.  相似文献   

20.
High lead (Pb) concentration has been measured in the incoming water to the water supply for a small Swedish village since the 1990s. There are several sources of the contamination and the objective of this study was to identify these by analysis of Pb isotopes. Lead has four stable isotopes in nature (204Pb, 206Pb, 207Pb, 208Pb) and the relative proportions of these vary according to their geological source. The study showed that two anthropogenic sources of Pb, a glassworks deposit and a highway, had similar Pb isotope ratios and thus it was not possible to separate them. However, the very high Pb concentration in the glassworks deposit suggested that this is the main source of the very high concentrations observed occasionally in low flow conditions. The soil in the recharge area of the most important well for the water supply had elevated Pb concentrations compared with background values in soils. Moreover, the Pb ratios in this soil differed from those in the anthropogenic sources. Several sites of mineralisation or natural enrichment have been identified in outcrops about 14?km northwest of the site and several anomalies in Pb exist in the glacial till. The conclusion was that Pb originating from the soil in the recharge area generally dominates and leads to Pb concentrations in water of 1?C2???g?L?1. However, at higher concentrations, e.g. around 10???g?L?1, water transported in cracks and fissure from the glassworks deposit becomes more important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号