首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 764 毫秒
1.
Variability and unpredictability are characteristics of the aquatic ecosystems, hydrological patterns and climate of the largely dryland region that encompasses the Basin and Range, American Southwest and western Mexico. Neither hydrological nor climatological models for the region are sufficiently developed to describe the magnitude or direction of change in response to increased carbon dioxide; thus, an attempt to predict specific responses of aquatic ecosystems is premature. Instead, we focus on the sensitivity of rivers, streams, springs, wetlands, reservoirs, and lakes of the region to potential changes in climate, especially those inducing a change in hydrological patterns such as amount, timing and predictability of stream flow. The major sensitivities of aquatic ecosystems are their permanence and even existence in the face of potential reduced net basin supply of water, stability of geomorphological structure and riparian ecotones with alterations in disturbance regimes, and water quality changes resulting from a modified water balance. In all of these respects, aquatic ecosystems of the region are also sensitive to the extensive modifications imposed by human use of water resources, which underscores the difficulty of separating this type of anthropogenic change from climate change. We advocate a focus in future research on reconstruction and analysis of past climates and associated ecosystem characteristics, long-term studies to discriminate directional change vs. year to year variability (including evidence of aquatic ecosystem responses or sensitivity to extremes), and studies of ecosystems affected by human activity. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
The south-eastern United States and Gulf Coast of Mexico is physiographically diverse, although dominated by a broad coastal plain. Much of the region has a humid, warm temperate climate with little seasonality in precipitation but strong seasonality in runoff owing to high rates of summer evapotranspiration. The climate of southern Florida and eastern Mexico is subtropical with a distinct summer wet season and winter dry season. Regional climate models suggest that climate change resulting from a doubling of the pre-industrial levels of atmospheric CO2 may increase annual air temperatures by 3–4°C. Changes in precipitation are highly uncertain, but the most probable scenario shows higher levels over all but the northern, interior portions of the region, with increases primarily occurring in summer and occurring as more intense or clustered storms. Despite the increases in precipitation, runoff is likely to decline over much of the region owing to increases in evapotranspiration exceeding increases in precipitation. Only in Florida and the Gulf Coast areas of the US and Mexico are precipitation increases likely to exceed evapotranspiration increases, producing an increase in runoff. However, increases in storm intensity and clustering are likely to result in more extreme hydrographs, with larger peaks in flow but lower baseflows and longer periods of drought. The ecological effects of climate change on freshwaters of the region include: (1) a general increase in rates of primary production, organic matter decomposition and nutrient cycling as a result of higher temperatures and longer growing seasons: (2) reduction in habitat for cool water species, particularly fish and macroinvertebrates in Appalachian streams; (3) reduction in water quality and in suitable habitat in summer owing to lower baseflows and intensification of the temperature–dissolved oxygen squeeze in many rivers and reservoirs; (4) reduction in organic matter storage and loss of organisms during more intense flushing events in some streams and wetlands; (5) shorter periods of inundation of riparian wetlands and greater drying of wetland soils, particularly in northern and inland areas; (6) expansion of subtropical species northwards, including several non-native nuisance species currently confined to southern Florida; (7) expansion of wetlands in Florida and coastal Mexico, but increase in eutrophication of Florida lakes as a result of greater runoff from urban and agricultural areas; and (8) changes in the flushing rate of estuaries that would alter their salinity regimes, stratification and water quality as well as influence productivity in the Gulf of Mexico. Many of the expected climate change effects will exacerbate current anthropogenic stresses on the region's freshwater systems, including increasing demands for water, increasing waste heat loadings and land use changes that alter the quantity and quality of runoff to streams and reservoirs. Research is needed especially in several critical areas: long-term monitoring of key hydrological, chemical and biological properties (particularly water balances in small, forested catchments and temperature-sensitive species); experimental studies of the effects of warming on organisms and ecosystem processes under realistic conditions (e.g. in situ heating experiments); studies of the effects of natural hydrological variation on biological communities; and assessment of the effects of water management activities on organisms and ecosystem processes, including development and testing of management and restoration strategies designed to counteract changes in climate. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
The region studied includes the Laurentian Great Lakes and a diversity of smaller glacial lakes, streams and wetlands south of permanent permafrost and towards the southern extent of Wisconsin glaciation. We emphasize lakes and quantitative implications. The region is warmer and wetter than it has been over most of the last 12000 years. Since 1911 observed air temperatures have increased by about 0·11°C per decade in spring and 0·06°C in winter; annual precipitation has increased by about 2·1% per decade. Ice thaw phenologies since the 1850s indicate a late winter warming of about 2·5°C. In future scenarios for a doubled CO2 climate, air temperature increases in summer and winter and precipitation decreases (summer) in western Ontario but increases (winter) in western Ontario, northern Minnesota, Wisconsin and Michigan. Such changes in climate have altered and would further alter hydrological and other physical features of lakes. Warmer climates, i.e. 2 × CO2 climates, would lower net basin water supplies, stream flows and water levels owing to increased evaporation in excess of precipitation. Water levels have been responsive to drought and future scenarios for the Great Lakes simulate levels 0·2 to 2·5 m lower. Human adaptation to such changes is expensive. Warmer climates would decrease the spatial extent of ice cover on the Great Lakes; small lakes, especially to the south, would no longer freeze over every year. Temperature simulations for stratified lakes are 1–7°C warmer for surface waters, and 6°C cooler to 8°C warmer for deep waters. Thermocline depth would change (4 m shallower to 3·5 m deeper) with warmer climates alone; deepening owing to increases in light penetration would occur with reduced input of dissolved organic carbon (DOC) from dryer catchments. Dissolved oxygen would decrease below the thermocline. These physical changes would in turn affect the phytoplankton, zooplankton, benthos and fishes. Annual phytoplankton production may increase but many complex reactions of the phytoplankton community to altered temperatures, thermocline depths, light penetrations and nutrient inputs would be expected. Zooplankton biomass would increase, but, again, many complex interactions are expected. Generally, the thermal habitat for warm-, cool- and even cold-water fishes would increase in size in deep stratified lakes, but would decrease in shallow unstratified lakes and in streams. Less dissolved oxygen below the thermocline of lakes would further degrade stratified lakes for cold water fishes. Growth and production would increase for fishes that are now in thermal environments cooler than their optimum but decrease for those that are at or above their optimum, provided they cannot move to a deeper or headwater thermal refuge. The zoogeographical boundary for fish species could move north by 500–600 km; invasions of warmer water fishes and extirpations of colder water fishes should increase. Aquatic ecosystems across the region do not necessarily exhibit coherent responses to climate changes and variability, even if they are in close proximity. Lakes, wetlands and streams respond differently, as do lakes of different depth or productivity. Differences in hydrology and the position in the hydrological flow system, in terrestrial vegetation and land use, in base climates and in the aquatic biota can all cause different responses. Climate change effects interact strongly with effects of other human-caused stresses such as eutrophication, acid precipitation, toxic chemicals and the spread of exotic organisms. Aquatic ecological systems in the region are sensitive to climate change and variation. Assessments of these potential effects are in an early stage and contain many uncertainties in the models and properties of aquatic ecological systems and of the climate system. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
The input and fate of dissolved organic matter (DOM) can have important consequences for coastal zone productivity in large lakes and oceans. Chromophoric DOM (CDOM) is often delivered to coastal zones from rivers and streams and affects light penetration in a water column. CDOM can protect biota from damaging ultraviolet (UV) light by acting as sunscreen, resulting in increased ecosystem productivity. Alternatively, CDOM can decrease ecosystem productivity by absorbing light needed for photosynthesis and forming photoreaction products that are harmful to coastal zone biota. Increased urbanization of watersheds and seasonal differences in weather patterns change the delivery pathways, reactivity, input, and energy flow of DOM (and its CDOM component) into aquatic systems. This study investigated the effects of watershed and season on the concentrations and potential photodegradation of stream-derived DOM in Lake Superior tributaries, chosen to be geographically and geologically similar but differing in land use. Organic carbon analysis, UV–Visible spectrophotometry, and terrestrial (land use) analysis were used to investigate differences among samples and sample treatments. The major differences in DOM concentration and photochemical response appeared seasonal rather than site specific, with snow-melt samples showing stronger and more consistent changes in UV–Visible parameters while base-flow samples showed stronger and more consistent losses in DOC.  相似文献   

5.
Processes occurring at various scales interact to influence the export of organic carbon from watersheds to freshwater ecosystems and eventually the ocean. The goal of this study was to determine if and how differences in wetland extent and presence of lakes influenced dissolved organic carbon (DOC) concentrations and yields in streams. We monitored stream flow, DOC and dissolved inorganic carbon concentrations periodically for 2 years at four sites with forested watersheds, four sites with wetland watersheds, and four sites with wetland watersheds that also contained in-network lakes. As expected, the presence of wetlands resulted in higher DOC concentrations and yields, but the impact of lakes was less clear on the magnitude of DOC concentrations and yields. With respect to temporal dynamics, we found positive relationships between stream flow and DOC concentration (median r2 = 0.89) in streams without upstream lakes. The relationships for forested sites are among the strongest reported in the literature, and suggest a clear shift in hydrologic flowpath from intersecting mineral soils at low flow, to organic soils at high flow. In streams with upstream lakes, the relationship between flow and concentration was non-significant for three of four sites unless time lags with flow were applied to the concentration data, after which the relationship was similar to the non-lake streams (median r2 = 0.95). These findings suggest that lakes buffering temporal patterns in streams by hydrologically delaying pulses of carbon, but provide little support that in-line lakes have a net effect on carbon exports in this region.  相似文献   

6.
We developed an index (MESHMacroinvertebrates in Estonia: Score of Hydromorphology) to assess hydromorphological quality of Estonian surface waters based on macroinvertebrate taxonomic composition. The MESH is an average score based on the affinities of selected indicator taxa to flow velocity and bottom type. As both parameters were highly correlated (r = 0.65) indicator response to both parameters were combined. The list of MESH indicators includes 394 freshwater macroinvertebrate taxa derived from 3282 samples collected from rivers and lakes during 1985–2009. The indicators were selected out of 690 taxa, by applying the information-theoretical Kullback–Leibler divergence. The individual scores of macroinvertebrates range from 0 to 3, the higher scores indicating faster flow and/or solid bottom substrate. For standing waters, flow velocity was always considered zero. Among the reference waterbodies, mean MESH was the highest for small streams followed by middle streams, large streams, and lakes. In lakes with medium water hardness (the prevailing type in Estonia), the MESH decreased gradually from stony to muddy bottom. The highest MESH values for standing waters were observed in the stony surf zone of very large lakes (area > 100 km2). The lowest values occurred for small lakes with exceptional hydrochemical characteristics (soft- and darkwater, and calcareous types). Similarly, MESH indicated stream degradation by damming. Mean MESH in reservoirs with a muddy bottom was significantly lower than in reservoirs with a hard bottom, or in unregulated stream sections.  相似文献   

7.
Matthias Brunke   《Limnologica》2004,34(4):460-478
The objective of this paper is twofold: 1) to validate the German stream typology for Schleswig-Holstein, and 2) to develop an assessment system for lake outlets. The German stream typology, based on a top-down analysis of geomorphological variables, was validated using biotic data of streams in Schleswig-Holstein, northern Germany. A null model analysis was conducted to test for differences between seven stream types (sand streams and rivers, gravel streams and rivers, partly-mineralic streams, limnic marsh streams, and lake outlets). The dataset compiled for the statistical analysis comprised 28 streams, 65 different sampling sites, 428 samples, and 296 taxa. The analysis confirmed all stream type except partly-mineralic streams, which showed faunal overlap with all types except gravel streams. Gravel streams were the most distinctive stream type. Lake outlets were shown to be a unique type, having a distinct macroinvertebrate fauna. Furthermore it was shown, that the species composition differed between lentic and lotic outlets. Canonical correspondence analysis of 19 investigated lake outlets revealed that characteristics of the lakes had only a minor effect on macroinvertebrate community structure.

The developed assessment system of lake outlets was based on the habitat association of 132 macroinvertebrate taxa. Taxa were allotted to five categories of lake outlet preferences depending on the results from ordinations, frequency tables and abundance distributions. A qualitative and a quantitative lake outlet index (LTI) were tested with independent data sets. The quantitative LTIquan proved to be more robust and only slightly affected by seasonal changes in the macroinvertebrate community composition. Assessments of lake outlets based on macroinvertebrates should be conducted in spring and autumn to reduce the risk of misclassifications, in particular, for boundary cases rated between good and moderate quality classes.  相似文献   


8.
IINTRODUCTIONLanddevelopmentandlandusepatternsinthewatershedcaninduceincreasedsedimentloadsinriversandstreams.AGREATIllstudy(1982)illustratedthatsedimentyieldsfromagriculturallandcouldbeseveralfoldsmorethanothertypeoflandusesanderosionsources.ThesamestudyalsodemonstratedthatfinesedimentsweretheheaviestportionoftotalsoillossesfromeachtypeoflandusesinthetwelvehydrologicareasitinvestigatedintheUMRS.Thesamecouldbetrueforotheruplandareasalso.Howeverfinesediments,formthewashloadofthestream…  相似文献   

9.
Steven M. Wondzell 《水文研究》2011,25(22):3525-3532
Many hyporheic papers state that the hyporheic zone is a critical component of stream ecosystems, and many of these papers focus on the biogeochemical effects of the hyporheic zone on stream solute loads. However, efforts to show such relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly variable in place and time (or among streams) that a consistent relationship should not be expected? Or, is the hyporheic zone less important in stream ecosystems than is commonly expected? These questions were examined using data from existing groundwater modelling studies of hyporheic exchange flow at five sites in a fifth‐order, mountainous stream network. The size of exchange flows, relative to stream discharge (QHEF:Q), was large only in very small streams at low discharge (area ≈ 100 ha; Q < 10 l/s). At higher flows (flow exceedance probability > 0·7) and in all larger streams, QHEF:Q was small. These data show that biogeochemical processes in the hyporheic zone of small streams can substantially influence the stream's solute load, but these processes become hydrologically constrained at high discharge or in larger streams and rivers. The hyporheic zone may influence stream ecosystems in many ways, however, not just through biogeochemical processes that alter stream solute loads. For example, the hyporheic zone represents a unique habitat for some organisms, with patterns and amounts of upwelling and downwelling water determining the underlying physiochemical environment of the hyporheic zone. Similarly, hyporheic exchange creates distinct patches of downwelling and upwelling. Upwelling environments are of special interest, because upwelling water has the potential to be thermally or chemically distinct from stream water. Consequently, micro‐environmental patches created by hyporheic exchange flows are likely to be important to biological and ecosystem processes, even if their impact on stream solute loads is small. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

10.
Urbanization through the addition of impervious cover can alter catchment hydrology, often resulting in increased peak flows during floods. This phenomenon and the resulting impact on stream channel morphology is well documented in temperate climatic regions, but not well documented in the humid tropics where urbanization is rapidly occurring. This study investigates the long‐term effects of urbanization on channel morphology in the humid sub‐tropical region of Puerto Rico, an area characterized by frequent high‐magnitude flows, and steep coarse‐grained rivers. Grain size, low‐flow channel roughness, and the hydraulic geometry of streams across a land‐use gradient that ranges from pristine forest to high density urbanized catchments are compared. In areas that have been urbanized for several decades changes in channel features were measurable, but were smaller than those reported for comparable temperate streams. Decades of development has resulted in increased fine sediment and anthropogenic debris in urbanized catchments. Materials of anthropogenic origin comprise an average of 6% of the bed material in streams with catchments with 15% or greater impervious cover. At‐a‐station hydraulic geometry shows that velocity makes up a larger component of discharge for rural channels, while depth contributes a larger component of discharge in urban catchments. The average bank‐full cross‐sectional area of urbanized reaches was 1.5 times larger than comparable forested reaches, and less than the world average increase of 2.5. On average, stream width at bank‐full height did not change with urbanization while the world average increase is 1.5 times. Overall, this study indicates that the morphologic changes that occur in response to urban runoff are less in channels that are already subject to frequent large magnitude storms. Furthermore, this study suggests that developing regions in the humid tropics shouldn't rely on temperate analogues to determine the magnitude of impact of urbanization on stream morphology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A modification of water stream pollution index was developed based on the use of periphyton diatomic algae, taking into account the regional features of the Ladoga basin. Original values of indicator valences and weights are given for 60 mass taxa of diatoms. River water quality was found to deteriorate from the north to the south because of the higher economic development of the southern part of Ladoga basin. The zonal changes in water quality in large rivers is much less pronounced than in medium and small rivers, which have closer relationships with the local situation on the watershed. Studying the correlation of the modified index with total phosphorus concentration showed it to be more efficient in estimating the anthropogenic pollution of streams in Ladoga basin as compared with trophic datomic indices developed in Europe.  相似文献   

12.
Lakes are common in glaciated mountain regions and geomorphic principles suggest that lake modifications to water and sediment fluxes should affect downstream channels. Lakes in the Sawtooth Mountains, Idaho, USA, were created during glaciation and we sought to understand how and to what extent glacial morphology and lake disruption of fluxes control stream physical form and functions. First, we described downstream patterns in channel form including analyses of sediment entrainment and hydraulic geometry in one catchment with a lake. To expand on these observations and understand the role of glacial legacy, we collected data from 33 stream reaches throughout the region to compare channel form and functions among catchments with lakes, meadows (filled lakes), and no past or present lakes. Downstream hydraulic geometry relationships were weak for both the single catchment and regionally. Our data show that downstream patterns in sediment size, channel shape, sediment entrainment and channel hydraulic adjustment are explained by locations of sediment sources (hillslopes and tributaries) and sediment sinks (lakes). Stream reaches throughout the region are best differentiated by landscape position relative to lakes and meadows according to channel shape and sediment size, where outlets are wide and shallow with coarse sediment, and inlets are narrow and deep with finer sediment. Meadow outlets and lake outlets show similarities in the coarse‐sediment fraction and channel capacity, but meadow outlets have a smaller fine‐sediment fraction and nearly mobile sediment. Estimates of downstream recovery from lake effects on streams suggest 50 per cent recovery within 2–4 km downstream, but full recovery may not be reached within 20 km downstream. These results suggest that sediment sinks, such as lakes, in addition to sources, such as tributaries, are important local controls on mountain drainage networks. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
River regulation and river training have been performed for various purposes and negative effects have been shown in numerous cases. In some cases the negative effects are so serious that humans have to consider to "renaturalize" the regulated rivers. Only by using the strategy of integrated river management the diverse river uses and natural fluvial processes and ecological systems may be harmonized. Based on analysis of case studies and data collected from literatures this paper presents the concept of integrated river management and four principles of river training. The integrated river management comprises: 1) taking the watershed, upper stream basin including the tributaries, middle and lower reaches and the estuary as an integrated entity in the planning, design and management; and 2) mitigating or controlling the negative impacts on hydrology, erosion and sedimentation, fluvial processes, land use and river use, environment and ecology while in achieving economic benefit from water resources development, flood safety management and hydropower exploitation. River training and management should be in accordance with the four principles: 1) extending the duration of river water flowing on the continent, which may be achieved by extending the river course or reducing the flow velocity; 2) controlling various patterns of erosions and reducing the sediment transportation in the rivers; 3) increasing the diversity of habitat and enhancing the connectivity between the river and riparian waters; and 4) restoring natural landscapes.  相似文献   

14.
Juvenile north-temperate and Arctic fishes are faced with trade-offs between energy allocation to growth and energy storage (primarily lipids) prior to over-wintering. We determined classical morphometric (fork length, body weight and condition factor) and biochemical (whole body triglycerides, muscle RNA/DNA ratio, muscle proteins) measures of growth and condition in individual young-of-the-year (YOY) Arctic grayling (Thymallus arcticus). Grayling were collected just prior to over-wintering in late August (approximately 50 days after swim-up) from two natural streams and five locations within a 3.4 km long artificial stream constructed as a fish habitat compensation project and diversion channel for the diamond mining industry in Northwest Territories, Canada (64°45′N). Fork lengths, body weights and whole body triglyceride levels in grayling collected from all sites along the artificial stream were significantly lower than fish collected from one of the natural streams. Condition factor (weight-at-length) was not different among grayling collected from natural and artificial streams. Muscle proteins were lower in grayling collected from four sites along the artificial stream compared to the natural streams. In contrast, muscle RNA/DNA ratios were greater in grayling collected from two sites in the artificial stream compared to natural streams. There were no consistent differences in any variable among grayling collected at the five artificial stream sites or among grayling collected from the two natural streams. The higher RNA/DNA ratios and lower fork lengths, whole body triglycerides and muscle proteins in grayling inhabiting the artificial stream are consistent with energy still being primarily allocated to growth in these fish at this late stage of summer. Individuals that are both larger and possess greater energy storage in the form of triglycerides are more likely to survive the long over-wintering period at this latitude. Our results suggest that YOY grayling using the artificial stream as nursery habitat will likely face increased over-winter mortality, thus raising concerns over the use of fish presence, spawning and rearing as criteria for the initial success of artificial streams as habitat compensation measures in Arctic tundra regions. Further research is needed to determine the potential consequences of reduced size and energy storage in juvenile fishes in order to assess the viability of stream fish habitat compensation and restoration projects associated with industrial development in Arctic tundra regions.  相似文献   

15.
Rivers in the Mediterranean region often exhibit an intermittent character. An understanding and classification of the flow regimes of these rivers is needed, as flow patterns control both physicochemical and biological processes. This paper reports an attempt to classify flow regimes in Mediterranean rivers based on hydrological variables extracted from discharge time series. Long‐term discharge records from 60 rivers within the Mediterranean region were analysed in order to classify the streams into different flow regime groups. Hydrological indices (HIs) were derived for each stream and principal component analysis (PCA) and then applied to these indices to identify subsets of HIs describing the major sources of variations, while simultaneously minimizing redundancy. PCA was performed for two groups of streams (perennial and temporary) and for all streams combined. The results show that whereas perennial streams are mainly described by high‐flow indices, temporary streams are described by duration, variability and predictability indices. Agglomerative cluster analysis based on HIs identified six groups of rivers classified according to differences in intermittency and variability. A methodology allowing such a classification for ungauged catchments was also tested. Broad‐scale catchment characteristics based on digital elevation, climate, soil and land use data were derived for each long‐term station where these data were available. By using stepwise multiple regression analysis, statistically significant relationships were fitted, linking the three selected hydrological variables (mean annual number of zero‐flow days, predictability and flashiness) to the catchment characteristics. The method provides a means of simplifying the complexity of river systems and is thus useful for river basin management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Region 2 comprises arctic and subarctic North America and is underlain by continuous or discontinuous permafrost. Its freshwater systems are dominated by a low energy environment and cold region processes. Central northern areas are almost totally influenced by arctic air masses while Pacific air becomes more prominent in the west, Atlantic air in the east and southern air masses at the lower latitudes. Air mass changes will play an important role in precipitation changes associated with climate warming. The snow season in the region is prolonged resulting in long-term storage of water so that the spring flood is often the major hydrological event of the year, even though, annual rainfall usually exceeds annual snowfall. The unique character of ponds and lakes is a result of the long frozen period, which affects nutrient status and gas exchange during the cold season and during thaw. GCM models are in close agreement for this region and predict temperature increases as large as 4°C in summer and 9°C in winter for a 2 × CO2 scenario. Palaeoclimate indicators support the probability that substantial temperature increases have occurred previously during the Holocene. The historical record indicates a temperature increase of > 1°C in parts of the region during the last century. GCM predictions of precipitation change indicate an increase, but there is little agreement amongst the various models on regional disposition or magnitude. Precipitation change is as important as temperature change in determining the water balance. The water balance is critical to every aspect of hydrology and limnology in the far north. Permafrost close to the surface plays a major role in freshwater systems because it often maintains lakes and wetlands above an impermeable frost table, which limits the water storage capabilities of the subsurface. Thawing associated with climate change would, particularly in areas of massive ice, stimulate landscape changes, which can affect every aspect of the environment. The normal spring flooding of ice-jammed north-flowing rivers, such as the Mackenzie, is a major event, which renews the water supply of lakes in delta regions and which determines the availability of habitat for aquatic organisms. Climate warming or river damming and diversion would probably lead to the complete drying of many delta lakes. Climate warming would also change the characteristics of ponds that presently freeze to the bottom and result in fundamental changes in their limnological characteristics. At present, the food chain is rather simple usually culminating in lake trout or arctic char. A lengthening of the growing season and warmer water temperature would affect the chemical, mineral and nutrient status of lakes and most likely have deleterious effects on the food chain. Peatlands are extensive in region 2. They would move northwards at their southern boundaries, and, with sustained drying, many would change form or become inactive. Extensive wetlands and peatlands are an important component of the global carbon budget, and warmer and drier conditions would most likely change them from a sink to a source for atmospheric carbon. There is some evidence that this may be occurring already. Region 2 is very vulnerable to global warming. Its freshwater systems are probably the least studied and most poorly understood in North America. There are clear needs to improve our current knowledge of temperature and precipitation patterns; to model the thermal behaviour of wetlands, lakes and rivers; to understand better the interrelationships of cold region rivers with their basins; to begin studies on the very large lakes in the region; to obtain a firm grasp of the role of northern peatlands in the global carbon cycle; and to link the terrestrial water balance to the thermal and hydrological regime of the polar sea. Overall, there is a strong need for basic research and long-term monitoring. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Glacial meltwater streams in the McMurdo Dry Valleys, Antarctica exhibit daily cycles in temperature with maxima frequently reaching 10–15 °C, often 10 °C above air temperatures. Hydrologic and biogeochemical processes occurring in these streams and their hyporheic zones strongly influence the flux of water, solutes, and sediment to the ice-covered lakes on the valley bottoms. The purpose of this study was to identify the dominant processes controlling water temperature in these polar desert streams and to investigate in particular the role of hyporheic exchange. In order to do this, we analyzed stream temperature patterns on basin-wide, longitudinal, and reach scales. In the basin-wide study, we examined stream temperature monitoring data for seven streams in the Lake Fryxell Basin. For the longitudinal study, we measured temperatures at seven sites along a 5-km length of Von Guerard Stream.  相似文献   

18.
In streams, benthic bacterial communities are integral to multiple aspects of ecosystem function, including carbon and nitrogen cycles. Variation both in terms of bacterial community structure (based on taxonomic and/or functional genes) and function can reveal potential drivers of spatiotemporal patterns in stream processes. In this study, the abundance and diversity of 16S rRNA genes and abundance of nosZ genes, encoding for nitrous oxide reductase, were related to denitrification and environmental conditions. Denitrification rates varied among the three streams examined, and within a given stream there were significant longitudinal differences. Likewise, bacterial community structure based on analysis of the 16S rRNA gene also differed significantly among streams. However, variation in denitrification rate was not well correlated with environmental or biological variables measured. In addition, relatively large numbers of denitrifiers occurred when denitrification rates were low. In conclusion, although the streams differed in environmental conditions as well as bacterial community structure, these differences did not explain much of the spatial variation in denitrification rates.  相似文献   

19.
Abstract

This study of longitudinal stream profiles of rivers of the Midcontinent (rivers tributary to the Mississippi) and Atlantic and East Gulf Slopes has revealed five types of longitudinal profiles: (1) Overall concave-upward profiles with or without long constant slope segments; (2) convex upward, for example, the Missouri River has a profile that has a constant slope for its lower 560 miles and then is convex upward with constant slope segments to a point beyond the Yellowstone River junction; (3) concave-upward irregular, ungraded, low-gradient profiles (Ohio and Tennessee Rivers); (4) irregular unsegmented and steep profiles, such as shown by the Delaware and Savannah-Tugaloo Rivers; and (5) irregular ungraded, steep-gradient profiles that are concave-upward in the upstream reaches and downstream convex-upward, for example, on most of the Atlantic Slope and East Gulf Slope Rivers above the Fall Line. Constant slope profiles occur where the last type of rivers flow across relatively weak Coastal Plain sediments and also inland on the Coosa and Oostanaula-Conasauga Rivers. The profile characteristics of the Atlantic and East Gulf streams lend support to the hypothesis of multiple erosion cycles in the Appalachians.  相似文献   

20.
Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment‐associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment‐associated chemical constituent concentrations for (1) baseline, (2) land‐use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment‐associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment‐associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges: Atlantic rivers (49%) > Pacific rivers (40%) > Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources. Almost all the elevated sediment‐associated chemical concentrations found in conterminous US coastal rivers are lower than worldwide averages. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号