首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial and temporal distribution of sulphate (SO4) concentrations in peat pore water and the outlet streams of two forested swamps was related to variations in the magnitude of upland runoff, wetland water levels and flow path. The swamps were located in headwater catchments with contrasting till depths typical of the southern Canadian Shield. Inputs of SO4 from shallow hillslope tills and streams showed little seasonal variation in either source or concentration in both swamps. Sulphate dynamics at the outlet stream reflected hydrological and biogeochemical processes within the valley wetlands, which in turn were partly controlled by catchment hydrogeology. During high runoff, maximum water table elevations and peak surface flow in the swamps resulted in upland inputs largely bypassing anoxic peat. Consequently, SO4 concentrations of 8–10 mg/l at the swamp outlets were similar to stream and groundwater inputs. During periods of low flow, concentrations of SO4 at the swamp outlets declined to less than 3 mg/l. At this time lower water table elevations resulted in increased interaction of input water with anoxic peats, and therefore, SO4 reduction. Contrasts in till depth and the nature of groundwater flow between catchments resulted in differences in SO4 dynamics between years and swamps. In dry summers the absence of groundwater inputs to the swamp in the catchment with thin till resulted in a large water table drawdown and re-oxidation of accumulated S, which contributed to maximum SO4 concentrations (up to 35 mg/l) during storm runoff. Continuous groundwater input to the swamp in the catchment with deeper till was critical to maintaining saturated surfaces and efficient SO4 retention during both dry and wet summers. A conceptual model of wetland SO4 retention and export, based on catchment hydrogeology, is developed to generalize the SO4 dynamics of valley bottom wetlands at the landscape scale. © 1997 by John Wiley & Sons, Ltd.  相似文献   

2.
Sulfur and nitrogen input–output budgets were estimated for five forested Appalachian Plateau basins in Pennsylvania for the period October 1988 to March 1990. Wet and dry deposition inputs were determined on a weekly basis from data collected at atmospheric deposition monitoring stations located near the study sites. Stream export was estimated from intensively sampled stream chemistry and continuous discharge data collected on all five basins. On four of the five basins, deposited sulfur was essentially in balance with stream flow export of sulfur (92–120% exported) for the 1989 water year. The fifth basin had net retention of deposited sulfur, with only 42% exported. All five basins retained the vast majority of deposited nitrogen (only 3–18% exported). The fraction of atmospherically deposited sulfur exported in stream flow was greater by a mean factor of 14 versus nitrogen, implying that sulfur dominates base cation leaching processes on these non-carbonate-based catchments. Although basins in the study were relatively homogeneous in terms of topography, climate, geology and land use, local basin conditions caused significant differences in input–output budgets, pointing to the need for replicated basin studies in a region. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
The role of chemical weathering in the neutralization of acidic deposition   总被引:1,自引:0,他引:1  
Chemical weathering of rocks and minerals is a key factor which mitigates acidic deposition and affects water chemistry. It supplies cations and alkalinity to the surface water, groundwater, ion-exchange complex, and vegetation in the watershed. The kinetics of chemical weathering have not been determined in the field, but based on laboratory experiments, the rate of weathering has a fractional order dependency on hydrogen ion and organic ligand concentration in bulk solution. Watersheds with the greatest degree of hydrologic and geologic sensitivity can produce only 200–500 eq/ha·yr of cations or alkalinity for export. This is equivalent to 100 cm/yr of precipitation with a pH of 4.3–4.6 or an annual sulfur deposition of 1.0–2.5 g S/m2·yr. When acid and sulfur deposition are greater than these levels, extremely sensitive lakes may become acidified. To illustrate this point, a simple steady-state model is applied to lakes in regions where acidification of lakes has been reported.  相似文献   

4.
5.
Transit times are hypothesized to influence catchment sensitivity to atmospheric deposition of acidity and nitrogen (N) because they help determine the amount of time available for infiltrating precipitation to interact with catchment soil and biota. Transit time metrics, including fraction of young water (Fyw) and mean transit time (MTT), were calculated for 11 headwater catchments in mountains of the western United States based on differences in the amplitude of the seasonal signal of δ18O in streamflow and precipitation. Results were statistically compared with catchment characteristics to elucidate controlling mechanisms. Transit times also were compared with stream solute concentrations to test the hypothesis that transit times are a primary influence on weathering rates and biological assimilation of atmospherically deposited N. Results indicate that transit times in the study catchments are strongly related to soil, vegetation, and topographic characteristics, with barren terrain (bare rock and talus) and steep slopes linked to high Fyw and short MTT, whereas forest soil (hydrogroup B) was linked to low Fyw and greater MTT. Concentrations of silicate weathering products (Na+ and Si) were negatively related to Fyw and barren terrain, and positively related to MTT and forest soil, supporting the concept that weathering fluxes and buffering capacity tend to be low in alpine areas due to short transit times. Nitrate concentrations were positively related to N deposition, catchment slope, and barren terrain, and negatively related to forest, indicating that hydrologic and/or biogeochemical processes associated with steep slopes limit uptake of atmospherically deposited N by biota. Interannual and seasonal variability in transit times and source water contributions in the study catchments was substantial, reflecting the influence of strong temporal variations in snowmelt inputs in high‐elevation catchments of the western United States. Results from this study confirm that short transit times in these areas are a key reason they are highly sensitive to atmospheric pollution and climate change.  相似文献   

6.
Although acidifying deposition in western North America is lower than in many parts of the world, many high‐elevation ecosystems there are extremely sensitive to acidification. Previous studies determined that the Mount Zirkel Wilderness Area (MZWA) has the most acidic snowpack and aquatic ecosystems that are among the most sensitive in the region. In this study, spatial and temporal variability of ponds and lakes in and near the MZWA were examined to determine their sensitivity to acidification and the effects of acidic deposition during and after snowmelt. Within the areas identified as sensitive to acidification based on bedrock types, there was substantial variability in acid‐neutralizing capacity (ANC), which was related to differences in hydrological flowpaths that control delivery of weathering products to surface waters. Geological and topographic maps were of limited use in predicting acid sensitivity because their spatial resolution was not fine enough to capture the variability of these attributes for lakes and ponds with small catchment areas. Many of the lakes are sensitive to acidification (summer and autumn ANC < 100 µeq L?1), but none of them appeared to be threatened immediately by episodic or chronic acidification. In contrast, 22 ponds had minimum ANC < 30 µeq L?1, indicating that they are extremely sensitive to acidic deposition and could be damaged by episodic acidification, although net acidity (ANC < 0) was not measured in any of the ponds during the study. The lowest measured pH value was 5·4, and pH generally remained less than 6·0 throughout early summer in the most sensitive ponds, indicating that biological effects of acidification are possible at levels of atmospheric deposition that occurred during the study. The aquatic chemistry of lakes was dominated by atmospheric deposition and biogeochemical processes in soils and shallow ground water, whereas the aquatic chemistry of ponds was also affected by organic acids and biogeochemical processes in the water column and at the sediment–water interface. These results indicate that conceptual and mechanistic acidification models that have been developed for lakes and streams may be inadequate for predicting acidification in less‐understood systems such as ponds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Loch Vale watershed was instrumented in 1983 with initial support from the National Acid Precipitation Assessment Program to ask whether ecosystems of Rocky Mountain National Park (RMNP) were affected by acidic atmospheric deposition. Research and monitoring activities were expanded in 1991 by the U.S. Geological Survey Water, Energy, and Biogeochemical Budgets program to understand the processes, and their interactions, controlling water, energy, and biogeochemical fluxes. With help from many collaborators we have characterized trends and patterns in atmospheric deposition, climate, and hydrology, including glaciers and other ice features. Instead of acidic deposition, we documented high atmospheric inputs of reactive nitrogen (Nr), and have studied the ecological consequences in soils, surface water, and vegetation. Using paleolimnology, we documented the onset of human-caused change to lake primary producers ca. 1950 in response to increased Nr deposition and warming. Our results provided the basis for the Colorado Nitrogen Deposition Reduction Plan, a state policy that aims to reduce Nr emissions to protect resources in RMNP by 2032. Carbon cycle research revealed mountain wetlands now release more carbon than they store, and respiration and methane flux occurs even during winter through deep snow packs. Trend analyses found export of Nr to be closely tied to atmospheric inputs, but can lag in response to drought. Current research explores consequences of the combination of warming, changes in precipitation dynamics, and atmospheric deposition of Nr and dust on stream and lake CO2 dynamics, lake biology and trophic state, and soil carbon composition. Dramatic increases in park visitors have prompted studies on the effects of recreational use on water quality. New tools such as remote sensing and high frequency instream water quality sensors are being applied to lake and stream studies. Monitoring, combined with experiments, models, and spatial comparisons is an essential foundation for science-based resource management.  相似文献   

8.
The time it takes water to travel through a catchment, from when it enters as rain and snow to when it leaves as streamflow, may influence stream water quality and catchment sensitivity to environmental change. Most studies that estimate travel times do so for only a few, often rain-dominated, catchments in a region and use relatively short data records (<10 years). A better understanding of how catchment travel times vary across a landscape may help diagnose inter-catchment differences in water quality and response to environmental change. We used comprehensive and long-term observations from the Turkey Lakes Watershed Study in central Ontario to estimate water travel times for 12 snowmelt-dominated headwater catchments, three of which were impacted by forest harvesting. Chloride, a commonly used water tracer, was measured in streams, rain, snowfall and as dry atmospheric deposition over a 31 year period. These data were used with a lumped convolution integral approach to estimate mean water travel times. We explored relationships between travel times and catchment characteristics such as catchment area, slope angle, flowpath length, runoff ratio and wetland coverage, as well as the impact of harvesting. Travel time estimates were then used to compare differences in stream water quality between catchments. Our results show that mean travel times can be variable for small geographic areas and are related to catchment characteristics, in particular flowpath length and wetland cover. In addition, forest harvesting appeared to decrease mean travel times. Estimated mean travel times had complex relationships with water quality patterns. Results suggest that biogeochemical processes, particularly those present in wetlands, may have a greater influence on water quality than catchment travel times.  相似文献   

9.
This study presents input–output budgets of total dissolved nitrogen (TDN), dissolved organic N (DON) and dissolved inorganic N (DIN) for a reservoir in a peatland catchment in the south Pennines (UK). This site receives high levels of atmospheric inorganic N deposition, in the range of 26 kg N ha?1 yr?1. The results show that the reservoir retains ~21 to 31% of the annual TDN input (8806 ± 741 kg N). Approximately 39 to 55% of DON (3782 ± 653 kg N) and 6 to 13% of DIN (5024 ± 349 kg N) were retained/processed. A long water retention time (104 days), average annual pH of 6.5, high concentrations of DIN in the reservoir water and a deep water column suggest that denitrification is potentially a key mechanism of N retention/removal. The results also demonstrate that DON is potentially photodegraded and utilized within the reservoir, particularly during the summer season when 58 to 80% of DON input (682 ± 241 kg N) was retained, and a net export of DIN (~34 kg N) was observed. The findings therefore suggest that DON may play a more crucial role in the biogeochemistry of peat‐dominated acid sensitive upland freshwater systems than previously thought. Reservoirs, impoundments and large lakes in peatland catchments may be important sites in mediating downstream N transport and speciation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   

11.
The results of biogeochemical and microbiological studies of three small lakes in southwestern Arkhangelsk province are presented. The lakes differ in their morphometric characteristics, thermal and oxygen regimes, and the extent of anthropogenic impact they experience. In the periods of summer and winter stratification, anaerobic water layers with higher phosphates, ammonium, and sulfide sulfur (hydrogen sulfide) are found to form in the bottom horizon of deep-water zones of the lakes. The highest concentrations of sulfide sulfur (150–210 μg dm−3) were recorded in the shallow Beloe Lake during winter low-water period, while in summer, sulfide concentration did not differ from those obtained in other lakes (∼10 μg dm−3). The abundance of sulfate-reducing bacteria in lake bottom sediments varied from 10 to 100000 cell cm−3, and the rate of sulfate reduction process varied from 29 to 3746 μg S dm−3 day−1. Seasonal variations were revealed in hydrogen sulfide distribution over the water column and in the rate of sulfate reduction process in the upper horizons of bottom sediments in the examined lakes.  相似文献   

12.
Freshwaters in different regions show many similarities and differences in their responses to climatic warming. Bases for comparison include reports from regional committees, long-term records for several sites where climate has warmed in the past two decades and other human alterations to freshwaters that simulate some of the expected results of climatic warming, such as reservoir construction. Palaeoecological studies of freshwaters under climatic warming and differences in communities under different climatic regimes are also considered. Major changes in the physical, chemical and biological characteristics of lakes occur. Many of the changes to lakes and streams are the result of strong effects of climatic warming on terrestrial catchments. Inputs from catchments can be either dampened or amplified by in-lake processes, in some cases causing counter-intuitive responses, such as the acidification of streams but alkalinization of lakes in areas where supplies of base cations are limited. Consideration of land–water interactions and interactions between climatic warming and other human stresses are important for the accurate prediction of the effects of climatic change. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
We examined the isotope hydrology of eight, contrasting mesoscale (104–488 km2) catchments characterized by a systematic change in the relative importance of upland and lowland areas that reflects the relative distribution of metamorphic and sedimentary rocks. Precipitation and stream water were monitored over a 12‐month period, and stable isotopes were used to examine spatial variations in the hydrometric and tracer dynamics of the catchments. Isotopic tracers were used to examine the temporal dynamics of different runoff sources, and geochemical tracers (alkalinity) were used to identify the geographic sources of runoff. Input–output relationships of isotopic tracers were explored using a gamma function to fit a transit time distribution, which was used to test the hypothesis that the length of mean transit times increased systematically with the cover of sandstone aquifers in the catchments. However, in three catchments, the increased influence of anthropogenic factors, notably reservoir storage, urban runoff and agricultural abstraction for irrigation, prevented reliable transit time estimation. For sites where tentative mean transit time estimates were possible, these varied from around 1.6 years in upland catchments dominated by metamorphic rocks (>75%) and responsive soils to around 4 years in catchments with 34% sandstone cover and freely draining soils. These preliminary results were consistent with inferences of geochemical tracers on the increased role of sedimentary aquifers as runoff sources in lowland areas, but observation from a larger number of sites is needed to confirm this. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long‐term (~20 years) time series of river export (annual mass yield, Y, and flow‐weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long‐term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long‐term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
From 2011 to 2019, mercury (Hg) stores and fluxes were studied in the small forested catchment Lesní potok (LES) in the central Czech Republic using the watershed mass balance approach together with internal measurements. Mean input fluxes of Hg via open bulk deposition, beech throughfall and spruce throughfall during the periodwere 2.9, 3.9 and 7.6 μg m−2 year−1, respectively. These values were considerably lower than corresponding deposition Hg fluxes reported in the early years of the 21st century from catchments in Germany. Current bulk precipitation inputs at unimpacted Czech mountainous sites were lower than those in Germany. The largest Hg inputs to the catchment were via litterfall, averaging 22.6 and 17.8 μg m−2 year−1 for beech and spruce stands. The average Hg input, based on the sum of mean litterfall and throughfall deposition, was 23.0 μg m−2 year−1, compared to the estimated Hg output in runoff of 0.5 μg m−2 year−1, which is low compared to other reported values. Thus, only ~2% of Hg input is exported in stream runoff. Stream water Hg was only weakly related to dissolved organic carbon (DOC) but both concentrations were positively correlated with water temperature. The estimated total soil Hg pool averaged 47.5 mg m−2, only 4% of which was in the O-horizon. Thus Hg in the O-horizon pool represents 72 years of deposition at the current input flux and 3800 years of export at the current runoff flux. Age-dating by 14C suggested that organic soil contains Hg from recent deposition, while mineral soil at 40–80 cm depth contained 4400-year old carbon, suggesting the soil had accumulated atmospheric Hg inputs through millennia to reach the highest soil Hg pool of the soil profile. These findings suggest that industrial era intensification of the Hg cycle is superimposed on a slower-paced Hg cycle during most of the Holocene.  相似文献   

16.
Monte-Carlo simulations were used to assess the extent of shortterm alkalinity depressions occuring in Sierra Nevada lakes due to acidic deposition events. The Episodic Event Model (EEM) was used to simulate spring snowmelt events. Snow course data, precipitation data and lake acidification surveys were used to derive values for the EEM parameters. Spring snowmelt events were shown to have great impacts on the water quality of Sierran lakes. Lakes are likely to be most affected by the early-spring snowmelt event because the epilimnion depth is at a minimum, which indicates minimum dilution. Under annual average loading conditions, no Sierran lake has been reported as acidic although 29% of the lakes have alkalinities less than 40 µeq/L indicating a sensitivity to acidification. In simulations of early-spring snowmelt events, using present-day acidic loading conditions, it was estimated 79% ± 9% of the lakes would experience shortterm lake alkalinity depressions to levels less than 40 µeq/L. The results provided by the model simulations are valuable in establishing upper and lower limits on the extent of possible episodic acidification to lake-resources-at-risk. The most critical parameters controlling the magnitude of lake alkalinity depressions during snowmelt episodic events are a) the lake area to watershed area ratio — a measure of input loading, and b) the epilimnion volume — a measure of dilution and mixing.  相似文献   

17.
Alpine lakes in siliceous catchments of Tyrol and Carinthia (Austria) show signs of acidification. About 9% of the studied lakes have no alkalinity, more than 20% are below pH 6. About two thirds of all lakes have acid neutralizing capacities below 100 eq 1–1. In spite of moderate precipitation acidity, some lakes show considerable concentrations of dissolved reactive aluminum during or shortly after snowmelt. High altitude lakes of the Alps are definitely more acidic than high mountain lakes in remote areas. Large differences in water and soil chemistry of nearby situated lakes were attributed to heterogeneities of bedrock geology. Paleolimnological investigations on former pH values of five lakes, based on diatom assemblages in the sediment, showed different developments: recent and past acidification, stable conditions, and alkalinization.  相似文献   

18.
The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3?). However, watershed attributes, including surficial terrestrial characteristics, in‐lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake‐watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (~26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within‐ and between‐watershed influences of land cover, the contribution of glacial till groundwater inputs, and in‐lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3? were high at the Grass Pond inlets, especially at two inlets, and NO3? was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric‐analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3? and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3? and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3? and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in‐lake processing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Streamwater quality can be affected by climate-related variability in hydrologic state, which controls flow paths and affects biogeochemical processes. Thirty-one years of input/output solute fluxes at Panola Mountain Research Watershed, a small, forested, seasonally water-limited watershed near Atlanta, Georgia, were used to quantify the effects of climatic-related variability in storage on streamwater solute concentrations and fluxes. Streamwater fluxes were estimated for ten solutes from weekly and event sample concentrations using regression-based methods. The most pertinent storage attribute (current or antecedent watershed, shallow, and deep storage) for each solute was determined by fitting separate concentration relationships. The concentration-discharge relationships varied more for reactive solutes such as potassium, sulfate, and DOC and less for weathering products (base cations and dissolved silica) and conservative chloride. Many solutes exhibited higher concentrations when storage levels were lower or wetting up, which was likely the result of the concentrating effects of evapotranspiration and/or the buildup and flushing of weathering products associated with longer residence times. The impacts of storage modeling on annual fluxes varied by solute, ranging from about 5% (magnesium) to 52% (nitrate) as relative standard deviations, and sufficiently removed climate-related patterns observed in streamwater concentrations. Sulfate was particularly mobilized following growing season droughts but only if deep storage was sufficiently recharged, possibly indicating that sulfides in the deep storage pool were oxidized to sulfate during droughts and mobilized when re-wetted. The lack of streamwater sulfate response to 61% declines in atmospheric deposition indicates the importance of watershed biogeochemical processes on controls of streamwater export of sulfate. The approach of explicitly incorporating storage in the streamwater concentration modeling elucidated the effects of climate on streamwater water-quality and may provide insight into the effects of climatic change on future fluxes.  相似文献   

20.
The occurrences of increased atmospheric nitrogen deposition (ADN) in Southeast Asia during smoke haze episodes have undesired consequences on receiving aquatic ecosystems. A successful prediction of episodic ADN will allow a quantitative understanding of its possible impacts. In this study, an artificial neural network (ANN) model is used to estimate atmospheric deposition of total nitrogen (TN) and organic nitrogen (ON) concentrations to coastal aquatic ecosystems. The selected model input variables were nitrogen species from atmospheric deposition, Total Suspended Particulates, Pollutant Standards Index and meteorological parameters. ANN models predictions were also compared with multiple linear regression model having the same inputs and output. ANN model performance was found relatively more accurate in its predictions and adequate even for high-concentration events with acceptable minimum error. The developed ANN model can be used as a forecasting tool to complement the current TN and ON analysis within the atmospheric deposition-monitoring program in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号