首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
湖泊是地球表层水体的重要组成部分,在区域社会经济发展和生物多样性保护等方面发挥着不可替代的作用.气候变化和高强度的水资源开发利用等,导致湖泊物理、化学特性在时空格局上发生显著的变化,引起一系列的社会、环境、气候等响应.湖泊水文学研究湖泊水文要素及其时空变化特征、平衡关系与变化规律,在水文过程演变与归因解析、湖泊洪旱发生机理与调控、湖泊资源评估与可持续利用等方面,解决了众多理论和实践问题,为区域发展提供了强大支撑.本文评述了近50年来我国湖泊水文学的发展与研究进展,重点阐述湖泊水量平衡与水量变化、湖泊水动力与水文过程调蓄、湖泊极端水文事件成因、湖泊水文遥感反演等方面的研究进展,展望了湖泊水文学的未来发展趋势.  相似文献   

2.
Topography is a dominant factor in hillslope hydrology. TOPMODEL, which uses a topographical index derived from a simplified steady state assumption of mass balance and empirical equations of motion over a hillslope, has many advantages in this respect. Its use has been demonstrated in many small basins (catchment areas of the order of 2–500 km2) but not in large basins (catchment areas of the order of 10 000–100 000 km2). The objective of this paper is to introduce the Block‐wise TOPMODEL (BTOP) as an extension of the TOPMODEL concept in a grid based framework for distributed hydrological simulation of large river basins. This extension was made by redefining the topographical index by using an effective contributing area af(a) (0?f(a)?1) per unit grid cell area instead of the upstream catchment area per unit contour length and introducing a concept of mean groundwater travel distance. Further the transmissivity parameter T0 was replaced by a groundwater dischargeability D which can provide a link between hill slope hydrology and macro hydrology. The BTOP model uses all the original TOPMODEL equations in their basic form. The BTOP model has been used as the core hydrological module of an integrated distributed hydrological model YHyM with advanced modules of precipitation, evapotranspiration, flow routing etc. Although the model has been successfully applied to many catchments around the world since 1999, there has not been a comprehensive theoretical basis presented in such applications. In this paper, an attempt is made to address this issue highlighted with an example application using the Mekong basin. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
王欣  丁永建  张勇 《湖泊科学》2019,31(3):609-620
冰川融水通过热量、水、物质传输对山地冰冻圈冰湖水文效应产生影响,引起广泛关注.本文从山地冰冻圈冰湖的水量、物理化学性质、生物等方面系统总结冰川融水对冰湖水文效应的影响.冰川融水被冰湖滞留能在一定程度上延缓区域冰川水资源的亏损,但也直接导致了潜在危险性冰湖数量和危险程度增大.冰川融水对冰湖物理性质的影响主要表现在降低湖水温度、影响透明度/浊度、改变湖水密度、造成湖水热力分层现象等方面,对冰湖化学性质的影响主要表现在增加湖水中的氮素、溶解有机物、持久性有机污染物、各类离子和重金属等,进而影响冰湖生物的分布、组成、结构和功能.深入系统地开展冰川融水及其变化对冰湖水文效应研究,对冰川水文与水资源、山地冰冻圈生态环境研究具有重要意义.  相似文献   

4.
V. P. Singh 《水文研究》2001,15(4):671-706
The history of the kinematic wave theory and its applications in water resources are traced. It is shown that the theory has found its niche in water resources and its applications are so widespread that they may well constitute what may be termed ‘kinematic wave hydrology’. Few theories have been applied in hydrology and water resources as extensively as the kinematic wave theory. This theory, however, is not without limitations and when it is applied they must be so recognized. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Over the past decades, a number of water sciences and management programs have been developed to better understand and manage the water cycles at multiple temporal and spatial scales for various purposes, such as ecohydrology,global hydrology, sociohydrology, supply management, demand management, and integrated water resources management(IWRM). At the same time, rapid advancements have also been taking place in tracing, mapping, remote sensing, machine learning, and modelling technologies in hydrological research. Despite those programs and advancements, a water crisis is intensifying globally. The missing link is effective interactions between the hydrological research and water resource management to support implementation of the UN Sustainable Development Goals(SDGs) at multiple spatial scales. Since the watershed is the natural unit for water resources management, watershed science offers the potential to bridge this missing link.This study first reviews the advances in hydrological research and water resources management, and then discusses issues and challenges facing the global water community. Subsequently, it describes the core components of watershed science:(1)hydrological analysis;(2) water-operation policies;(3) governance;(4) management and feedback. The framework takes into account water availability, water uses, and water quality; explicitly focuses on the storage, fluxes, and quality of the hydrological cycle; defines appropriate local water resource thresholds through incorporating the planetary boundary framework; and identifies specific actionable measures for water resources management. It provides a complementary approach to the existing water management programs in addressing the current global water crisis and achieving the UN SDGs.  相似文献   

6.
ABSTRACT

The critical need for hydrological observations in support of water resources management, particularly during extreme events, has transformed traditional methods of hydrological data management. This transformation has given rise to a framework of e-monitoring the hydrological cycle, the aim of which is to improve understanding of the nature of water. New trends in data science, coupled with increasing technological evolution, make the new generation of data systems more agile and responsive to the needs and expectations for efficient and effective data sharing and service delivery. The WMO Hydrological Observing System was designed around the integration of observations, data exchange, research, data processing, modelling and forecasting, in such a way that societal needs for disaster risk reduction, improved sustainability of environmental resources, climate resilience and economic growth can be effectively met. With its implementation of conceptual functionalities for sustainable data management, the WHOS operational architecture is hydrology’s system for the future.  相似文献   

7.
D. A. Hughes 《水文研究》2016,30(14):2419-2431
During the four decades of Keith Beven's career there have been many developments in the science of hydrological modelling. Some have focused on the links between hydrological process understanding and the structure and complexity of hydrological models, others on the related issues of modelling uncertainty. The southern Africa region continues to be generally less well endowed with the resources required to contribute to these research developments, but they are critical for successful water resources management decision‐making in data scarce areas, and go beyond academic interest. Consequently, the focus in the region has been on adding a local context to northern hemisphere research as well as trying to put it into practice. The challenge in southern Africa has always been to extrapolate from published research ideas and decide how they can be effectively used in larger scale practical applications in data‐poor areas. The paper examines the issues of model complexity, links with process understanding and the broad topic of model uncertainty estimation in the context of data scarce areas and how the science questions relate to improvements in water resources decision making. The conclusions suggest that the southern African region has benefited a great deal from several decades of northern hemisphere research (including those by Beven) and that some values have been added through the focus on practical implementation. The region should also embrace the opportunities presented by the need to link realistic uncertainty estimates with risk‐based water resources decision‐making, thereby contributing to the international debate on this important topic. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper deals with hydrological analyses of Lakes Ohrid and Prespa. The watersheds and the lakes themselves are shared by three countries: Albania, Greece and Macedonia. As a result of insufficient interstate scientific cooperation and inexistence of data exchange, the lakes and their watersheds are not fully investigated regarding hydrology and hydrogeology. This paper represents a first attempt at a complete hydrological analysis based on data from the Macedonian side. This is not considered to be a particular deficiency, because over 60% of the lakes' watersheds and the lakes themselves belong to Macedonia, where a great number of reliable and long‐term data series of hydrometeorological observations exist. The Prespa lakes do not have surface outflow and are connected with Lake Ohrid by underground karst conduits. Because of this, from the hydrological point of view, the lakes and their watersheds cannot be analysed separately. The changes of the regime of the air temperature and the rainfall distribution have been investigated in this report. An increase of the maximum and decrease of the minimum annual air temperatures, as well as a decrease of annual precipitation sums has been determined. Also, a statistically significant descending trend of water level in both lakes has been confirmed, with a statement that the water level decrease in Lake Prespa is extremely alarming. From 1985 to 1995 the water level in Lake Prespa has dropped by more than 5 m. The main reasons for this cannot be identified easily because there are no data on water use quantities from all three countries. As the lakes represent unique natural, ecological and economical water resources in a region suffering water shortage, we plead for a strengthening of international support in activities on salvation of both lakes. A prerequisite for this is the water balance calculation and common cooperation in sustainable water resources management of the lakes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
History of forest hydrology   总被引:24,自引:0,他引:24  
Hydrology as a science and a technology is examined, as are some of the myths on the role of forests in hydrology and water resources. The history of catchment area research is traced, in Europe, in the USA and in East Africa, with particular reference to forest hydrology and, in the earlier years, to water quantity rather than water quality. The importance of associating physical process studies with hydrological systems' investigations, to enhance understanding of why particular catchments behave as they do, is stressed. Recent advances in hydrochemistry have been exploited to elucidate water flow paths within experimental catchments. Stimulated by requirements for research into acidification of surface waters, research catchments have proved to be valuable outdoor laboratories from which a much improved understanding of the flow processes has been achieved. Conflicting claims about the impacts of forestry are described and discussed.  相似文献   

10.
Abstract

Abstract MODerate-resolution Imaging Spectroradiometer (MODIS) is a new generation remote sensing (RS) sensor and its applications in hydrology and water resources have attracted much attention. To overcome the problems of slow response in flood disaster monitoring based on traditional RS techniques in China, the Flood Disaster Monitoring and Assessing System (FDMAS), based on MODIS and a Geographic Information System (GIS), was designed and applied to Dongting Lake, Hunan Province, China. The storage curve of Dongting Lake for 1995 was obtained using 1:10 000 topographic map data and then a relationship between water level at the Chenglingji hydrological station and lake area was derived. A new relationship between water level and lake area was obtained by processing MODIS images of Dongting Lake from April 2002 to April 2003 and the influence of lake area variation on water level was analysed with the 1996 flood data. It was found that the water level reduction reached 0.64 m for the 1996 flood if the original lake area curve was replaced with the area curve of 2002. This illustrates that the flood water level has been considerably reduced as a result of the increased area of Dongting Lake since the Chinese Central Government’s ?return land to lake? policy took effect in 1998.  相似文献   

11.
12.
Abstract

Among the processes most affected by global warming are the hydrological cycle and water resources. Regions where the majority of runoff consists of snowmelt are very sensitive to climate change. It is significant to express the relationship between climate change and snow hydrology and it is imperative to perform climate change impact studies on snow hydrology at global and regional scales. Climate change impacts on the mountainous Upper Euphrates Basin were investigated in this paper. First, historical data trend analysis of significant hydro-meteorological data is presented. Available future climate data are then explained, and, finally, future climate data are used in hydrological models, which are calibrated and validated using historical hydro-meteorological data, and future streamflow is projected for the period 2070–2100. The hydrological model outcomes indicate substantial runoff decreases in summer and spring season runoff, which will have significant consequences on water sectors in the Euphrates Basin.

Citation Yilmaz, A.G. & Imteaz, M.A. (2011) Impact of climate change on runoff in the upper part of the Euphrates basin. Hydrol. Sci. J. 56(7), 1265–1279.  相似文献   

13.
杨素  万荣荣  李冰 《湖泊科学》2022,34(4):1055-1074
水文连通性作为连接河湖水体间物质、能量及信息传递与交换的关键纽带,对水环境、水生态和生境状况具有联动与触发反馈作用,已成为水文学、水利学和生态学等诸多领域的研究热点.太湖流域作为全国典型的流域性密集平原河网区,在快速城镇化背景下,河湖水文连通关系变化剧烈并引起了一系列生态环境效应.本文以水文连通性概念与内涵为背景,对太湖流域水文连通性研究进行了综述.太湖流域水文连通性评价方法以图论法、景观格局指数及水文连通性函数等方法联合使用为主,且聚焦于区域尺度研究;演变过程按人类活动影响强度大致划分为自然水系形成阶段、古代人类活动影响阶段和现代人类活动影响阶段;气候变化和人类活动共同影响着太湖流域水文连通性变化,近百年来水利工程建设和城市化进程等人类活动的影响尤为剧烈;良好的水文连通性有利于汛期减轻流域洪涝灾害及非汛期保障水资源供给,但水文连通性的提高对水环境和水生态的效应由于涉及因素众多尚存在争议.针对当前研究现状和存在问题,提出(1)平原河网区水文连通性的定量表征与评估是水文连通性研究的前提;(2)定量解析流域水文连通性的驱动机制是水文连通性研究的重点;(3)深入跟踪大型引水调水工程对流域水文连通影响及其效应是一项长期任务;(4)兼顾环境生态效应的水利工程生态化改造研究,开展工程控制背景下的流域水文连通多目标优化调控,是实现太湖流域洪水调蓄、水资源供给、水环境净化、生物多样性维持等生态系统服务协同提升的重要途径.  相似文献   

14.
Hydrological processes change from the impacts of climate variability and human activities. Runoff in the upper reaches of the Hun‐Taizi River basin, which is mainly covered by forests in northeast China, decreased from 1960 to 2006. The data used in this study were based on runoff records from six hydrological stations in the upper reaches of the Hun‐Taizi River basin. Nonparametric Mann–Kendall statistic was used to identify change trends and abrupt change points and consequently analyze the change characteristics in hydrological processes. The abrupt change in the annual runoff in most subcatchments appeared after 1975. Finally, the effects of climate change and land cover change on water resources were identified using regression analysis and a hydrology model. Results of the regression analysis suggest that the correlation coefficients between precipitation and runoff prior to the abrupt change were higher compared with those after the abrupt change. Moreover, using hydrology model analysis, the water yield was found to increase because of the decrease in forest land. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

This paper presents an expert system to help select the best method to estimate design flood flows for civil engineering works based upon the procedures available, the nature and characteristics of the basin and existing hydrological records. The system presents the user with a list of possible methods ranked in descending grade order and optionally presents explanations which support the selected choices. Ordering is achieved using the knowledge base provided by the expert. The system recommends procedures for both preliminary estimates and final designs. The system also constitutes a valuable aid for junior engineers and experienced hydrologists in the selection of methods. Its conceptual structure can be easily generalized to treat other problems of a similar nature in the field of hydrology and water resources.  相似文献   

16.
Abstract

The increasing level of competition in scientific publishing arguably has a greater negative impact on hydrologists from developing countries and specifically young scientists. This paper discusses the constraints they face and offers suggestions to authors and the hydrological community about how these may be mitigated. These include a lack of access to resources to assist with creating good publications, the difficulty of publishing research based on relatively scarce data, a common problem in many developing countries, and a lack of familiarity with the process of publishing scientific material together with limited access to mentorship from experienced authors. A key point is to ensure that the research question addressed has a broad interest beyond the local study area. However, the more limited hydrological knowledge and the water resources problems of developing countries represent opportunities for internationally relevant research, particularly within the nexus between hydrology and society, or between science and practice. Both of these are high on the international hydrological research agenda.

Editor D. Koutsoyiannis  相似文献   

17.
Climate patterns over preceding years affect seasonal water and moisture conditions. The linkage between regional climate and local hydrology is challenging due to scale differences, both spatially and temporally. In this study, variance, correlation, and singular spectrum analyses were conducted to identify multiple hydroclimatic phases during which climate teleconnection patterns were related to hydrology of a small headwater basin in Idaho, USA. Combined field observations and simulations from a physically based hydrological model were used for this purpose. Results showed statistically significant relations between climate teleconnection patterns and hydrological fluxes in the basin, and climate indices explained up to 58% of hydrological variations. Antarctic Oscillation (AAO), North Atlantic Oscillation (NAO), and Pacific North America (PNA) patterns affected mountain hydrology, in that order, by decreasing annual runoff and rain on snow (ROS) runoff by 43% and 26% during a positive phase of NAO and 25% and 9% during a positive phase of PNA. AAO showed a significant association with the rainfall-to-precipitation ratio and explained 49% of its interannual variation. The runoff response was affected by the phase of climate variability indices and the legacy of past atmospheric conditions. Specifically, a switch in the phase of the teleconnection patterns of NAO and PNA caused a transition from wet to dry conditions in the basin. Positive AAO showed no relation with peak snow water equivalent and ROS runoff in the same year, but AAO in the preceding year explained 24 and 25% (p < 0.05) of their variations, suggesting that the past atmospheric patterns are equally important as the present conditions in affecting local hydrology. Areas sheltered from the wind and acted as a source for snow transport showed the lowest (40% below normal) ROS runoff generation, which was associated with positive NAO that explained 33% (p < 0.01) of its variation. The findings of this research highlighted the importance of hydroclimatic phases and multiple year variations that must be considered in hydrological forecasts, climate projections, and water resources planning.  相似文献   

18.
In many catchments, the geographical demarcation does not coincide with the limits of the aquifers, so groundwater may be exchanged beyond their topographic boundaries. By studying groundwater exchanges, the natural resources of a catchment can be better assessed, and the divergences between hydrological models and measurements can be explained. The aim of this work is to reveal the importance of including groundwater exchanges in the hydrological modelling of some catchments, using a water balance model. For this purpose, a simple example is conducted. The so‐called parent model scheme is modified to only allow groundwater exchanges, and it is applied to the headwater of the Segura River Basin District, located in the southeast of Spain. This area is selected because groundwater plays an important role in surface hydrology. The results reveal that groundwater exchanges cannot be neglected in some catchments when assessing water resources because their integration in the hydrological model corrects errors in the water balance. Moreover, this paper proves that water balance models are a useful tool for estimating groundwater exchanges between catchments, which can be contrasted with more complex distributed models or isotopic tracers if there is enough information available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Snow and frozen soil prevail in cold regions worldwide, and the integration of these processes is crucial in hydrological models. In this study, a combined model was developed by fully coupling a simultaneous heat and water model with a geomorphologically based distributed hydrological model. The combined model simulates vertical and lateral water transfer as well as vertical heat fluxes and is capable of representing the effects of frozen soil and snowmelt on hydrological processes in cold regions. This model was evaluated by using in situ observations in the Binggou watershed, an experimental watershed for cold region hydrology of the Watershed Allied Telemetry Experimental Research Project. Results showed that the model was able to predict soil freezing and thawing, unfrozen soil water content, and snow depth reasonably well. The simulated hydrograph was in good agreement with the in situ observation. The Nash–Sutcliffe coefficient of daily discharge was 0.744 for the entire simulation period, 0.472 from April to June, and 0.711 from June to November. This model can improve our understanding of hydrological processes in cold regions and assess the impacts of global warming on hydrological cycles and water resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号