首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
Mixed-layer water oscillations in tropical Pacific for ENSO cycle   总被引:7,自引:0,他引:7  
The main modes of interannal variabilities of thermocline and sea surface wind stress in the tropical Pacific and their interactions are investigated,which show the following results.(1) The thermocline anomalies in the tropical Pacific have a zonal dipole pattern with 160°W as its axis and a meridional seesaw pattern with 6-8°N as its transverse axis.The meridional oscillation has a phase lag of about 90° to the zonal oscillation,both oscillations get together to form the El Ni?o/La Ni?a cycle,which be-haves as a mixed layer water oscillates anticlockwise within the tropical Pacific basin between equator and 12°N.(2) There are two main patterns of wind stress anomalies in the tropical Pacific,of which the first component caused by trade wind anomaly is characterized by the zonal wind stress anomalies and its corresponding divergences field in the equatorial Pacific,and the abnormal cross-equatorial flow wind stress and its corresponding divergence field,which has a sign opposite to that of the equatorial region,in the off-equator of the tropical North Pacific,and the second component represents the wind stress anomalies and corresponding divergences caused by the ITCZ anomaly.(3) The trade winds anomaly plays a decisive role in the strength and phase transition of the ENSO cycle,which results in the sea level tilting,provides an initial potential energy to the mixed layer water oscillation,and causes the opposite thermocline displacement between the west side and east side of the equator and also between the equator and 12°N of the North Pacific basin,therefore determines the amplitude and route for ENSO cycle.The ITCZ anomaly has some effects on the phase transition.(4) The thermal anomaly of the tropical western Pacific causes the wind stress anomaly and extends eastward along the equator accompanied with the mixed layer water oscillation in the equatorial Pacific,which causes the trade winds anomaly and produces the anomalous wind stress and the corresponding divergence in favor to conduce the oscillation,which in turn intensifies the oscillation.The coupled system of ocean-atmo-sphere interactions and the inertia gravity of the mixed layer water oscillation provide together a phase-switching mechanism and interannual memory for the ENSO cycle.In conclusion,the ENSO cycle essentially is an inertial oscillation of the mixed layer water induced by both the trade winds anomaly and the coupled ocean-atmosphere interaction in the tropical Pacific basin between the equator and 12°N.When the force produced by the coupled ocean-atmosphere interaction is larger than or equal to the resistance caused by the mixed layer water oscillation,the oscillation will be stronger or maintain as it is,while when the force is less than the resistance,the oscillation will be weaker,even break.  相似文献   

4.
多源水联合调度重构滇池流域健康水循环模式   总被引:1,自引:0,他引:1  
河湖生态用水被挤占并严重短缺是滇池水污染严重和恶化趋势难以遏制的根本原因之一.在对滇池流域"自然人工"二元水循环结构剖析的基础上,结合滇池治理"六大工程"实施现状及存在问题,以水资源的高效配置和循环利用为核心,提出了重构滇池流域健康水循环的总体框架.在水资源模拟系统MIKE BASIN平台上,通过水力联系将环湖截污、外流域调水与节水、入湖河道整治、农业农村面源治理、生态修复、生态清淤等整合为一个有机整体,以恢复流域自然水系循环为目标,将外流域引调水与本区水库水、滇池水、地下水、城市再生水等多源水资源进行水量和水质统一配置,得到滇池流域水资源总体配置方案.结果表明:在牛栏江向滇池年均补水5.72亿m3的前提下,昆明城市尾水可以全部直接外排至下游作为工业用水,削减滇池入湖污染负荷,从而加速滇池生态环境修复的进程.  相似文献   

5.
1.Introduction Global Change Hydrology(GCH)is an emerging interdisciplinary field that links global change research and hydrology.GCH integrates hydrology,climatology,and geography to study the interactions between the terrestrial water cycle and global change across various time and space scales.The main objective of GCH is to understand the natural and anthropogenic causes of the changing terrestrial water cycle and the associated influences and feedbacks in the Earth system.  相似文献   

6.
A regional coupled approach to water cycle prediction is demonstrated for the 4-month period from November 2013 to February 2014. This provides the first multi-component analysis of precipitation, soil moisture, river flow and coastal ocean simulations produced by an atmosphere-land-ocean coupled system focussed on the United Kingdom (UK), running with horizontal grid spacing of around 1.5 km across all components. The Unified Model atmosphere component, in which convection is explicitly simulated, reproduces the observed UK rainfall accumulation (r2 of 0.95 for water day accumulation), but there is a notable bias in its spatial distribution—too dry over western upland areas and too wet further east. The JULES land surface model soil moisture state is shown to be in broad agreement with a limited number of cosmic-ray neutron probe observations. A comparison of observed and simulated river flow shows the coupled system is useful for predicting broad scale features, such as distinguishing high and low flow regions and times during the period of interest but are less accurate than optimized hydrological models. The impact of simulated river discharge on NEMO model simulations of coastal ocean state is explored in the coupled modelling framework, with comparisons provided relative to experiments using climatological river input and no river input around the UK coasts. Results show that the freshwater flux around the UK contributes of order 0.2 psu to the mean surface salinity, and comparisons to profile observations give evidence of an improved vertical structure when applying simulated flows. This study represents the first assessment of the coupled system performance from a hydrological perspective, with priorities for future model developments and challenges for evaluation of such systems discussed.  相似文献   

7.
Physical models are a well‐established tool in education to strengthen hydrological understanding. They facilitate the straightforward visualization of hydrological processes and allow the communication of hydrological concepts, research and questions of general interest to the public. In order to visualize the water cycle in a landscape of postglacial sediments, in particular the subsurface part, a physical model was constructed. In two videos, (1) a detailed construction manual and (2) visualization examples of hydrological concepts and processes are presented. With our contribution, we like to encourage professionals in the field of hydrology to share methods and tools of knowledge transfer and communication of hydrological concepts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Summary It is shown that in order for a steady-state closed circulation to be maintained in the atmosphere, the working of the pressure force on a particle moving round the closed circuit is exactly balanced by the working of the particle against friction. It is concluded that sources of heat are associated with low surface pressure, and sinks with high surface pressure. This association of sources and sinkswith low and high surface pressure is verified, for circulations ranging in scale from that associated with an individual cumulus cloud to large-scale monsoonal systems.  相似文献   

9.
青藏高原是地球上最重要的高海拔地区之一,对全球变化具有敏感响应.青藏高原作为"亚洲水塔",其地表水资源及其变化对高原本身及周边地区的经济社会发展具有重要的影响.然而,在气候变暖的情况下,构成高原地表水资源的各个组分,如冰川、湖泊、河流、降水等水体的相变及其转化却鲜为人知.湖泊是青藏高原地表水体相变和水循环的关键环节.湖泊面积、水位和水量对西风和印度季风的降水变化非常敏感,但湖泊面积和水量变化在不同区域和时段的响应也不尽相同.湖泊水温对气候变暖具有明显响应,湖泊水温和水下温跃层深度的变化能够对水—气的热量交换具有明显影响,从而影响了区域蒸发和降水等水循环过程.由于湖泊水量增加,高原中部色林错地区湖泊盐度自1970s以来普遍下降.根据60多个湖泊实地监测建立的遥感反演模型研究发现,2000—2019年湖泊透明度普遍升高.对不同补给类型的大湖水量平衡监测发现,影响湖泊变化的气象和水文要素具有较大差异.在目前的暖湿气候条件下,青藏高原的湖泊将会持续扩张.为了深入认识湖泊变化在青藏高原区域水循环和气候变化中的作用,需要全面了解湖泊水量赋存及连续的时间序列变化,需要深入了解湖泊理化参数变化及对湖泊...  相似文献   

10.
11.
沉水植物驱动的水环境钙泵与水体磷循环的关系   总被引:1,自引:2,他引:1  
水体磷循环是水柱和对应的沉积物中发生的各种非生物和生物的磷迁移转化过程.与此同时,沉积物中钙通过沉水植物吸收和转运,从该类植物的叶面释放至水柱中,释放的Ca2+与水柱中的CO23-一起形成碳酸钙.在这一过程中,水柱中少量溶解性磷分配在碳酸钙中形成CaCO3-P共沉淀,导致水体中可溶性磷向难溶性磷转化,这种由沉水植物驱动的水环境钙泵在水体磷循环中发挥着重要作用.研究证明,沉水植物菹草叶面上有CaCO3-P共沉淀的形成,且这种共沉淀的含磷量变化范围很宽.另一方面,新近沉积物中钙与磷的沉淀物存在一个由聚磷酸盐向磷灰石逐渐演变过程,而沉水植物叶面上的含磷共沉淀作用是否也存在由聚磷酸盐向磷灰石的变质过程,该过程在沉水植物生长期间是否发生关系到沉水植物除磷效果值得深入研究.本文从水体磷循环概述、钙在水体磷循环中的作用和沉水植物驱动的水环境钙泵假说及其在水体磷循环中的意义等方面综述了钙在水环境中的迁移对水体磷循环的贡献.  相似文献   

12.
In order to understand the processes of land surface-atmosphere interaction over de-sertification area, it is indispensable to utilize of satellite remote sensing. Two scenes of LandsatTM were used to produce a set of maps of surface reflectance, MSAVI, vegetation coverage, sur-face temperature, net radiation, soil heat flux, sensible heat flux and latent heat flux. Statisticalanalysis based on these maps revealed some quantitative significant land surface characteristics.Future developments of the method are also discussed.  相似文献   

13.
In order to understand the processes of land surface-atmosphere interaction over desertification area, it is indispensable to utilize of satellite remote sensing. Two scenes of Landsat TM were used to produce a set of maps of surface reflectance, MSAVI, vegetation coverage, surface temperature, net radiation, soil heat flux, sensible heat flux and latent heat flux. Statistical analysis based on these maps revealed some quantitative significant land surface characteristics. Future developments of the method are also discussed.  相似文献   

14.
The Langtang catchment is a high mountain, third order catchment in the Gandaki basin in the Central Himalaya (28.2°N, 85.5°E), that eventually drains into the Ganges. The catchment spans an elevation range from 1400 to 7234 m a.s.l. and approximately one quarter of the area is glacierized. Numerous research projects have been conducted in the valley during the last four decades, with a strong focus on the cryospheric components of the catchment water balance. Since 2012 multiple weather stations and discharge stations provide measurements of atmospheric and hydrologic variables. Full weather stations are used to monitor at an hourly resolution all four radiation components (incoming and outgoing shortwave and longwave radiation; SWin/out and LWin/out), air temperature, humidity, wind speed and direction, and precipitation, and cover an elevational range of 3862–5330 m a.s.l. Air temperature and precipitation are monitored along elevation gradients for investigations of the spatial variability of the high mountain meteorology. Dedicated point-scale observations of snow cover, depth and water equivalent as well as ice loss have been carried out over multiple years and complement the observations of the water cycle. All data presented is openly available in a database and will be updated annually.  相似文献   

15.
16.
针对太湖水体交换周期近十余年发生的变化,本文收集整理了1986-2018年太湖水文巡测、汛期水文巡测数据以及太湖流域沿江城市引水量、流域降雨量变化数据,基于太湖出入湖水量的变化研究了太湖水体交换周期的变化及原因,并对交换周期变化对水质空间格局的影响进行分析.结果 表明:太湖入湖水量有显著上升,2007年以来平均每年入湖...  相似文献   

17.
Anthropogenic activities have altered the climate and led to changes in the water cycle. Understanding the climate change and hydrological responses is critical to derive adaptive strategies for sustainable water resources management. In this study, we diagnosed the trends of primary climate elements and hydrological components during the past half century (1960–2009) for the humid Xiangjiang River Basin in central-south China at multiple temporal and spatial scales. The air temperature trend demonstrated an overall warming climate but with a quicker pace in recent years; however, the wind speed reduced significantly in the early period, and this downtrend had largely disappeared after the mid-1990s. Under such a shifting climate, the hydrological responses were not monotonic during the past 50 years: the evapotranspiration behaved in a decreasing trend in the early 35 years (1960–1994), followed by an uptrend in the later period (1995–2009). The stepwise analysis of soil water content and baseflow demonstrated a wetting trend followed by a drying one but with a steeper slope, indicating an accelerated drying trend which may cause a concern in stream water availability especially in the dry season. Spatial trend analysis showed that some areas experienced a downtrend (drying) in the dry season, but most areas had an uptrend (wetting) in the wet season for the whole study period. Overall, the analyses of temporal and spatial changes are useful for decision makers to deal with the continuing changes in climate and hydrology. This study also highlighted the necessity of climate change studies at multiple temporal and spatial scales.  相似文献   

18.
19.
Arctic perimeters volcanism has pulsed to a maximum approximately every 30 million years. This periodicity is similar to that observed on a global scale.  相似文献   

20.
Large-scale vegetation restoration has been helpful to prevent serious soil erosion, but also has aggravated water scarcity and resulted in soil desiccation below a depth of 200 cm in the Loess Plateau of China. To understand the dynamic mechanism of soil desiccation formation is very important for sustainable development of agriculture in the Loess Plateau. Based on natural and simulated rainfall, the characteristics of soil water cycle and water balance in the 0–400 cm soil layer on a steep grassland hillslope in Changwu County of Shaanxi Loess Plateau were investigated from June to November in 2002, a drought year with annual rainfall of 460 mm. It was similarly considered to represent a rainy year with annual rainfall of 850 mm under simulated rainfall conditions. The results showed that the temporal variability of water contents would decrease in the upper 0–200 cm soil layer with the increase in rainfall. The depth of soil affected by rainfall infiltration was 0–200 cm in the drought year and 0–300 cm in the rainy year. During the period of water consumption under natural conditions, the deepest layer of soil influenced by evapotranspiration (ET) rapidly reached a depth of 200 cm on July 21, 2002, and soil water storage decreased by 48 mm from the whole 0–200 cm soil layer. However, during the same investigation period under simulated rainfall conditions, soil water storage in the 0–400 cm soil layer increased by only 71 mm, although the corresponding rainfall was about 640 mm. The extra-simulated rainfall of 458 mm from May 29 to August 10 did not result in the disappearance of soil desiccation in the 200–400 cm deep soil layer. Most infiltrated rainwater retained in the top 0–200 cm soil layer, and it was subsequently depleted by ET in the rainy season. Because very little water moved below the 200 cm depth, there was desiccation in the deep soil layer in drought and normal rainfall years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号