首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
中子星-中子星或中子星-黑洞的并合可以导致强烈的高频引力波辐射,同时它们也可以通过向外抛射物质发出多种类型的电磁辐射信号,因而是当前多信使天文学研究的主要对象之一.在各种电磁辐射信号中,由抛射物所发出的热暂现源辐射被称为千新星,或可更广义地称为并合新星,其辐射能量来源主要是抛射物中放射性重元素的衰变和中心并合产物的持续能量输出(如自转能损).这种现象最早由Li和Paczynski在1998年从理论上预言提出,并最终在2017年的引力波事件GW170817中被观测证实.千新星(并合新星)观测在GW170817事件中发挥了关键性的电磁对应体作用,帮助人们精确定位引力波信号、证认其天体物理起源乃至限制并合产物的性质.从宇宙中重元素的起源这一研究背景出发,循着历史发展的脉络,分别对千新星(并合新星)模型的提出、发展、并合产物的性质、相关候选体的发现以及GW170817引力波事件等不同的研究阶段和研究专题进行简要的回顾,以梳理这一方向上研究思路的历史变迁,展现理论和观测的相互作用及其对研究进程的影响和促进.  相似文献   

2.
The state of supranuclear matter in compact stars remains puzzling, and it is argued that pulsars could be strangeon stars. What would happen if binary strangeon stars merge? This kind of merger could result in the formation of a hyper-massive strangeon star, accompanied by bursts of gravitational waves and electromagnetic radiation(and even a strangeon kilonova explained in the paper). The tidal polarizability of binary strangeon stars is different from that of binary neutron stars, because a strangeon star is self-bound on the surface by the fundamental strong force while a neutron star by the gravity, and their equations of state are different. Our calculation shows that the tidal polarizability of merging binary strangeon stars is favored by GW170817. Three kinds of kilonovae(i.e., of neutron, quark and strangeon) are discussed, and the light curve of the kilonova AT 2017 gfo following GW170817 could be explained by considering the decaying strangeon nuggets and remnant star spin-down. Additionally,the energy ejected to the fireball around the nascent remnant strangeon star, being manifested as a gamma-ray burst, is calculated. It is found that, after a prompt burst, an X-ray plateau could follow in a timescale of 10~2-10~3 s. Certainly, the results could be tested also by further observational synergies between gravitational wave detectors(e.g., Advanced LIGO) and X-ray telescopes(e.g., the Chinese HXMT satellite and e XTP mission), and especially if the detected gravitational wave form is checked by peculiar equations of state provided by the numerical relativistical simulation.  相似文献   

3.
伴随着引力波事件GW170817的短暴GRB (Gamma-Ray Burst) 170817A首次提供了双中子星并合与短暴相联系的直接证据.但是短暴GRB 170817A具有非常弱的光度,意味着观测的视线方向可能偏离喷流轴方向.根据短暴静止系的峰值能量E_(p,i)和各向同性光度L_(iso)。之间的关系以及洛伦兹因子Γ和L_(iso)。之间的关系估算了短暴GRB 170817A以及长短暴GRB 060614观测角与喷流边缘的夹角θ'_(obs)和洛伦兹因子Γ,结果表明GRB 170817A的Γ=45±27,θ'_(obs)=2.2±0.5°,而GRB 060614的Γ=214±93,θ'_(obs)=0.5±0.1°.这个结果相当于GRB 170817A的正轴各向同性光度L_(iso,on)=(2.1±0.7)×10~(49) erg·s~(-1),比典型的短暴少2-3个数量级.GRB 060614的L_(iso,on)=(5.12±1.91)×10~(51) erg·s~(-1)与典型短暴相当.这意味着GRB 060614可能属于短暴类型,而GRB 170817A可能本质上就是一个弱暴.  相似文献   

4.

The results of observations of the gravitational-wave (GW) event S190425z recorded by the LIGO/Virgo detectors with the anti-coincidence shield (ACS) of the SPI gamma-ray spectrometer onboard the INTEGRAL observatory are presented. With a high probability (>99%) it was associated with a neutron star (NS) merger in a close binary system. This is only the second event of such a type in the history of gravitational-wave observations (after GW170817). A weak gamma-ray burst, GRB190425, consisting of two pulses ~0.5 and ~5.9 s after the NS merger in the event S190425z with an a priori significance of 3.5 and 4.4σ (taken together 5.5σ) was detected by SPI-ACS. Analysis of the SPI-ACS count rate history recorded on these days (a total of ~125 ks of observations) has shown that the rate of random occurrence of two close spikes with the characteristics of GRB190425 does not exceed 6.4 × 10?5 s?1 (i.e., such events occur by chance, on average, every ~4.3 hours). Note that the time profile of GRB190425 has much in common with the profile of GRB170817A accompanying the event GW170817, that both NS mergers were the nearest (≤150 Mpc) of all the events recorded by the LIGO/Virgo detectors, and that no significant excesses of the gamma-ray flux above the background were detected in any of ~30 black hole merger events recorded to date by these detectors. No bursts of hard radiation were detected in the field of view of the SPI and IBIS/ISGRI gamma-ray telescopes onboard INTEGRAL. This, along with the absence of detection of gamma-ray emission from GRB190425 by the GBM gamma-ray burst monitor of the Fermi observatory suggesting its occultation by the Earth, allows the localization region for the source of this GWevent to be reduced significantly. The parameters Eiso and Ep for GRB190425 are estimated and compared with those for GRB170817A.

  相似文献   

5.
The gamma-ray burst GR170817 A associated with GW170817 is subluminous and subenergetic compared with other typical short gamma-ray bursts. It may be due to a relativistic jet viewed off-axis, or a structured jet or cocoon emission. Giant flares from magnetars may possibly be ruled out.However, the luminosity and energetics of GRB 170817 A are coincident with those of magnetar giant flares. After the coalescence of a binary neutron star, a hypermassive neutron star may be formed. The hypermassive neutron star may have a magnetar-strength magnetic field. During the collapse of this hypermassive neutron star, magnetic field energy will also be released. This giant-flare-like event may explain the luminosity and energetics of GRB 170817 A. Bursts with similar luminosity and energetics are expected in future neutron star-neutron star or neutron star-black hole mergers.  相似文献   

6.
GRB 170817A, associated with the LIGO-Virgo GW170817 neutron-star merger event, lacks the short duration and hard spectrum of a Short gamma-ray burst (GRB) expected from long-standing classification models. Correctly identifying the class to which this burst belongs requires comparison with other GRBs detected by the Fermi GBM. The aim of our analysis is to classify Fermi GRBs and to test whether or not GRB 170817A belongs—as suggested—to the Short GRB class. The Fermi GBM catalog provides a large database with many measured variables that can be used to explore gamma-ray burst classification. We use statistical techniques to look for clustering in a sample of 1298 gamma-ray bursts described by duration and spectral hardness. Classification of the detected bursts shows that GRB 170817A most likely belongs to the Intermediate, rather than the Short GRB class. We discuss this result in light of theoretical neutron-star merger models and existing GRB classification schemes. It appears that GRB classification schemes may not yet be linked to appropriate theoretical models, and that theoretical models may not yet adequately account for known GRB class properties. We conclude that GRB 170817A may not fit into a simple phenomenological classification scheme.  相似文献   

7.
GRB 170817A was confirmed to be associated with GW170817, which was produced by a neutron star - neutron star merger. It indicates that at least some short gamma-ray bursts come from binary neutron star mergers. Theoretically, it is widely accepted that short gamma-ray bursts can be produced by two distinctly different mechanisms, binary neutron star mergers and neutron star - black hole mergers. These two kinds of bursts should be different observationally due to their different trigger mechanisms. Motivated by this idea, we collect a universal data set constituted of 51 short gamma-ray bursts observed by Swift/BAT, among which 14 events have extended emission component. We study the observational features of these 51 events statistically. It is found that our samples consist of two distinct groups. They clearly show a bimodal distribution when their peak photon fluxes at 15–150 keV band are plotted against the corresponding fluences. Most interestingly, all the 14 short bursts with extended emission lie in a particular region of this plot. When the fluences are plotted against the burst durations, short bursts with extended emission again tend to concentrate in the long duration segment. These features strongly indicate that short gamma-ray bursts really may come from two distinct types of progenitors. We argue that those short gamma-ray bursts with extended emission come from the coalescence of neutron stars, while the short gamma-ray bursts without extended emission come from neutron star - black hole mergers.  相似文献   

8.
The long awaited event of the detection of a gravitational wave from a binary neutron star merger and its electromagnetic counterparts marked the beginning of a new era in observational astrophysics. The brand-new field of gravitational wave astronomy combined with multi-messenger observations will uncover violent, highly energetic astrophysical events that could not be explored before by humankind. This article focuses on the presumable appearance of a hadron–quark phase transition and the formation of regions of deconfined quark matter in the interior of a neutron star merger product. The evolution of density and temperature profiles inside the inner region of the produced hypermassive/supramassive neutron star advises an incorporation of a hadron–quark phase transition in the equation of state of neutron star matter. The highly densed and hot neutron star matter of the remnant populate regions in the QCD phase diagram where a non neglectable amount of deconfined quark matter is expected to be present. If a strong hadron–quark phase transition would happen during the post-merger phase, it will be imprinted in the spectral properties of the emitted gravitational wave signal and might give an additional contribution to the dynamically emitted outflow of mass.  相似文献   

9.
The remnant resulting from the merger of two neutron stars produces neutrinos in copious amounts. In this paper we present the neutrino emission results obtained via Newtonian, high-resolution simulations of the coalescence event. These simulations use three-dimensional smoothed particle hydrodynamics together with a nuclear, temperature-dependent equation of state and a multiflavour neutrino leakage scheme. We present the details of our scheme, discuss the neutrino emission results from a neutron star coalescence and compare them with the core-collapse supernova case where neutrino emission has been studied for several decades. The average neutrino energies are similar to those in the supernova case, but contrary to the latter, the luminosities are dominated by electron-type antineutrinos that are produced in the hot, neutron-rich, thick disc of the merger remnant. The cooler parts of this disc contain substantial fractions of heavy nuclei, which, however, do not influence the overall neutrino emission results significantly. Our total neutrino luminosities from the merger event are considerably lower than those found in previous investigations. This imposes constraints on the ability of neutron star mergers to produce a gamma-ray burst via neutrino annihilation. The neutrinos are emitted preferentially along the initial binary rotation axis, an event seen 'pole-on' would appear much brighter in neutrinos than a similar event seen 'edge-on'.  相似文献   

10.
We present a state-of-the-art scenario for newly born magnetars as strong sources of gravitational waves (GWs) in the early days after formation. We address several aspects of the astrophysics of rapidly rotating, ultra-magnetized neutron stars (NSs), including early cooling before transition to superfluidity, the effects of the magnetic field on the equilibrium shape of NSs, the internal dynamical state of a fully degenerate, oblique rotator and the strength of the electromagnetic torque on the newly born NS. We show that our scenario is consistent with recent studies of supernova remnant surrounding Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs) in the Galaxy that constrains the electromagnetic energy input from the central NS to be  ≤ 1051  erg. We further show that if this condition is met, then the GW signal from such sources is potentially detectable with the forthcoming generation of GW detectors up to Virgo cluster distances where an event rate ∼1 yr−1 can be estimated. Finally, we point out that the decay of an internal magnetic field in the 1016 G range couples strongly with the NS cooling at very early stages, thus significantly slowing down both processes: the field can remain this strong for at least 103 yr, during which the core temperature stays higher than several times 108 K.  相似文献   

11.
We describe the possible electromagnetic signals expected from the magnetospheric interactions of a neutron star binary prior to merger. We find that both radio and X-ray signals of detectable strength are possible. We discuss possible links with the phenomenon of gamma-ray bursts (GRBs) and describe the prospects for direct detection of these signals in searches for radio and X-ray transients.  相似文献   

12.
Data from the Fermi Gamma-ray Burst Monitor satellite observatory suggested that the recently discovered gravitational wave source, a pair of two coalescing black holes, was related to a gamma-ray burst. The observed high-energy electromagnetic radiation (above 50 keV) originated from a weak transient source and lasted for about 1 s. Its localization is consistent with the direction to GW150914. We speculate about the possible scenario for the formation of a gamma-ray burst accompanied by the gravitational-wave signal. Our model invokes a tight binary system consisting of a massive star and a black hole which leads to the triggering of a collapse of the star’s nucleus, the formation of a second black hole, and finally to the binary black hole merger. For the most-likely configuration of the binary spin vectors with respect to the orbital angular momentum in the GW150914 event, the recoil speed (kick velocity) acquired by the final black hole through gravitational wave emission is of the order of a few hundred km/s and this might be sufficient to get it closer to the envelope of surrounding material and capture a small fraction of matter from the remnant of the host star. The gamma-ray burst is produced by the accretion of this remnant matter onto the final black hole. The moderate spin of the final black hole suggests that the gamma-ray burst jet is powered by weak neutrino emission rather than the Blandford–Znajek mechanism, and hence explains the low power available for the observed GRB signal.  相似文献   

13.
There is a 3P2 neutron superfluid region in NS (neutron star) interior. For a rotating NS the 3P2 superfluid region is like a system of rotating magnetic dipoles. It will give out electromagnetic radiation, which may provide a new heating mechanism of NSs. This mechanism plus some cooling agent may give a sound explanation to NS glitches.  相似文献   

14.
The fast radio burst, FRB 171019, was relatively bright when discovered first by ASKAP but was identified as a repeater with three faint bursts detected later by GBT and CHIME. These observations lead to the discussion of whether the first bright burst shares the same mechanism with the following repeating bursts. A model of binary neutron star merger is proposed for FRB 171019, in which the first bright burst occurred during the merger event, while the subsequent repeating bursts are starquake-induced, and generally fainter, as the energy release rate for the starquakes can hardly exceed that of the catastrophic merger event. This scenario is consistent with the observation that no later burst detected is as bright as the first one.  相似文献   

15.
We present neutral hydrogen absorption observations of the luminous infrared merger NGC 6240 using MERLIN with a resolution of 0.2 arcsec. Broad absorption (a few hundred km s−1) has been found against two compact radio sources within the central kpc providing dynamical information about the neutral gas components in front of these sources. A narrow absorption component is also detected superimposed upon this broad absorption and additionally against some of the extended L -band continuum. From these results we deduce that the broad component is a result of absorption by a highly disturbed disc-like structure of neutral gas aligned along the position angle of the two compact radio sources, similar to the model previously proposed by Tacconi et al. at the end of the last century based on spectral CO emission data. The narrow component is likely to arise from absorption by less disturbed neutral gas at much larger scales within the system.
Continuum observations presented here at 1.4 and 5 GHz support the view that NGC 6240 contains a double nucleus resulting from a galactic merger event and show these as two compact radio sources separated by 1.52 arcsec. We have also applied luminosity and morphological considerations to the continuum results to determine the most feasible source of radio emission for this luminous merger galaxy. We conclude that the most likely source of the radio flux found in NGC 6240 is a combination of starburst emission from radio luminous supernova remnants, similar to those found in Arp 220, and emission from a weak AGN probably triggered by a merger event.  相似文献   

16.
We consider a system consisting of a neutron star surrounded by a disc of dense degenerate matter, and study the sequence of events following the impact of comets on to the disc. The direct signature of the impact event is a short burst of high-energy radiation (X-rays to UV, depending on the impact location) emitted from the bubble of hot gas created at the impact site. We assume that the bubble is confined by the magnetic field of the central neutron star. Part of the bubble matter may be channelled along magnetic field lines and rain down on the polar caps. The surface density at the neutron star surface may be sufficient to initiate a runaway thermonuclear reaction. These X-rays or the direct effect of the transferred plasma crossing charge-depleted regions in the outer magnetosphere may re-ignite an otherwise dead pulsar.  相似文献   

17.
The discovery of protoglobular cluster candidates in many present-day mergers allows us to understand better the possible effects of a merger event on the globular cluster system of a galaxy, and to foresee the properties of the end-product. By comparing these expectations with the properties of globular cluster systems of elliptical galaxies at the present time we can constrain merger models. The observational data indicate that (i) every gaseous merger induces the formation of new star clusters, and (ii) the number of new clusters formed in such a merger increases with the gas content of the progenitor galaxies. Low-luminosity (about M V  > −21), discy ellipticals are generally thought to be the result of a gaseous merger. As such, new globular clusters are expected to form but have not been detected to date. We investigate various reasons for the non-detection of subpopulations in low-luminosity ellipticals, i.e. absence of an old population, absence of a new population, destruction of one of the populations and, finally, an age–metallicity conspiracy that allows old and new globular clusters to appear indistinguishable at the present epoch. All of these possibilities lead us to a similar conclusion, namely that low-luminosity ellipticals did not form recently ( z  < 1) in a gas-rich merger, and might not have formed in a major merger of stellar systems at all. High-luminosity ellipticals do reveal globular cluster subpopulations. However, it is difficult to account for the two populations in terms of mergers alone and, in particular, we can rule out scenarios in which the second subpopulation is the product of a recent, gas-poor merger.  相似文献   

18.
The processes are investigated by which gas loses its angular momentum during the protogalactic collapse phase, leading to disc galaxies that are too compact with respect to the observations. High-resolution N -body/SPH simulations in a cosmological context are presented including cold gas and dark matter (DM). A halo with quiet merging activity since redshift   z ∼ 3.8  and with a high-spin parameter is analysed that should be an ideal candidate for the formation of an extended galactic disc. We show that the gas and the DM have similar specific angular momenta until a merger event occurs at   z ∼ 2  with a mass ratio of 5:1. All the gas involved in the merger loses a substantial fraction of its specific angular momentum due to tidal torques and dynamical friction processes falls quickly into the centre. In contrast, gas infall through small subclumps or accretion does not lead to catastrophic angular momentum loss. In fact, a new extended disc begins to form from gas that was not involved in the 5:1 merger event and that falls in subsequently. We argue that the angular momentum problem of disc galaxy formation is a merger problem: in cold dark matter cosmology substantial mergers with mass ratios of 1:1 to 6:1 are expected to occur in almost all galaxies. We suggest that energetic feedback processes could in principle solve this problem, however only if the heating occurs at the time or shortly before the last substantial merger event. Good candidates for such a coordinated feedback would be a merger-triggered starburst or central black hole heating. If a large fraction of the low angular momentum gas would be ejected, late-type galaxies could form with a dominant extended disc component, resulting from late infall, a small bulge-to-disc ratio and a low baryon fraction, in agreement with observations.  相似文献   

19.
We study the expected X-ray luminosity of stellar merger products several years after merger. The X-ray emission is assumed to result from magnetic activity. The extended envelope of the merger product possesses a large convective region and it is expected to rotate fast. The rotation and convection might give rise to an efficient dynamo operation; therefore we expect strong magnetic activity. Using well-known relations connecting magnetic activity and X-ray luminosity in other types of magnetically active stars, we estimate that the strong X-ray luminosity will start several years after merger, will reach a maximum of L x∼ 3 × 1030 erg s−1, and will slowly decline on a time-scale of ∼100 yr. We predict that X-ray emission from V838 Mon which erupted in 2002 will be detected in 2008 with 20 h of observation.  相似文献   

20.
引力波理论和实验的新进展   总被引:3,自引:0,他引:3  
引力波的存在是爱因斯坦在广义相对论理论中提出的一个重要预言.由于目前技术水平的限制,无法在实验室产生足以被探测到的引力波,因此宇宙中大量的大质量剧烈活动的天体成为科学家研究引力波的首选,从而诞生了引力波天文学.引力波探测将开启研究宇宙的新窗口,是继电磁辐射、宇宙线和中微子探测后探索宇宙奥秘的又一重要手段,对天文学研究有着极为重要的意义.新一代应用了高灵敏度的迈克耳逊干涉仪装置的长基线引力波探测仪正在建造中.该综述从引力波理论出发,阐述了目前研究较多的可探测引力波源,给出了目前观测上的最新进展,并展望了今后的发展前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号