共查询到20条相似文献,搜索用时 0 毫秒
1.
M. N. Toksőz F. Press K. Anderson A. Dainty G. Latham M. Ewing J. Dorman D. Lammlein Y. Nakamura G. Sutton F. Duennebier 《Earth, Moon, and Planets》1972,4(3-4):490-504
Lunar seismic data from three Apollo seismometers are interpreted to determine the structure of the Moon's interior to a depth of about 100 km. The travel times and amplitudes ofP arrivals from Saturn IV B and LM impacts are interpreted in terms of a compressional velocity profile. The most outstanding feature of the model is that, in the Fra Mauro region of Oceanus Procellarum, the Moon has a 65 km thick layered crust. Other features of the model are: (i) rapid increase of velocity near the surface due to pressure effects on dry rocks, (ii) a discontinuity at a depth of about 25 km, (iii) near constant velocity (6.8 km/s) between 25 and 65 km deep, (iv) a major discontinuity at 65 km marking the base of the lunar crust, and (v) very high velocity (about 9 km/s) in the lunar mantle below the crust. Velocities in the upper layer of the crust match those of lunar basalts while those in the lower layer fall in the range of terrestrial gabbroic and anorthositic rocks.Lamant-Doherty Geological Observatory Contribution No. 1768. 相似文献
2.
Seismic refraction data, obtained at the Apollo 14 and 16 sites, when combined with other lunar seismic data, allow a compressional wave velocity profile of the lunar near-surface and crust to be derived. The regolith, although variable in thickness over the lunar surface, possesses surprisingly similar seismic properties. Underlying the regolith at both the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is low-velocity brecciated material or impact derived debris. Key features of the lunar seismic velocity profile are: (i) velocity increases from 100–300 m s–1 in the upper 100 m to 4 km s–1 at 5 km depth, (ii) a more gradual increase from 4 km s–1 to 6 km s–1 at 25 km depth, (iii) a discontinuity at a depth of 25 km and (iv) a constant value of 7 km s–1 at depths from 25 km to about 60 km. The exact details of the velocity variation in the upper 5 to 10 km of the Moon cannot yet be resolved but self-compression of rock powders cannot duplicate the observed magnitude of the velocity change and the steep velocity-depth gradient. Other textural or compositional changes must be important in the upper 5 km of the Moon. The only serious candidates for the lower lunar crust are anorthositic or gabbroic rocks.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973. 相似文献
3.
Mineralogy of the lunar crust: Results from Clementine 总被引:1,自引:0,他引:1
Abstract— The central peaks of 109 impact craters across the Moon are examined with Clementine ultraviolet-visible (UVVIS) camera multispectral data. The craters range in diameter from 40 to 180 km and are believed to have exhumed material from 5–30 km beneath the surface to form the peaks, including both upper and lower crustal rocks depending on whether craters have impacted into highlands or basins. Representative five-color spectra from spectrally and spatially distinct areas within the peaks are classified using spectral parameters, including “key ratio” (which is related to mafic mineral abundance) and “spectral curvature” (linked to absorption band shape, which distinguishes between low- and high-Ca pyroxene and olivine). The spectral parameters are correlated to mineralogical abundances, related in turn to highland plutonic rock compositions. The derived rock compositions for the various central peaks are presented in a global map. From these results, it is evident that the lunar crust is compositionally diverse, both globally and at local 100 m scales found within individual sets of central peaks. Although the central peaks compositions imply a crust that is generally consistent with previous models of crustal structure, they also indicate a more anorthositic crust than generally assumed, with a bulk plagioclase content of ~81%, evolving from “pure” anorthosite near the surface towards more mafic, low-Ca pyroxene-rich compositions with depth (comparable to anorthositic norite). Evidence for mafic plutons occurs in both highlands and basins and represent all mafic highland rock types. However, the lower crust is more compositionally diverse than the highlands, with both a greater range of rock types and more diversity within individual sets of central peaks. 相似文献
4.
Xiaojia Zeng Katherine H. Joy Shijie Li John F. Pernet-Fisher Xiongyao Li Dayl J. P. Martin Yang Li Shijie Wang 《Meteoritics & planetary science》2018,53(5):1030-1050
This study presents the petrography, mineralogy, and bulk composition of lunar regolith breccia meteorite Northwest Africa (NWA) 7948. We identify a range of lunar lithologies including basaltic clasts (very low-titanium and low-titanium basalts), feldspathic lithologies (ferroan anorthosite, magnesian-suite rock, and alkali suite), granulites, impact melt breccias (including crystalline impact melt breccias, clast-bearing impact melt breccias, and glassy melt breccias), as well as regolith components (volcanic glass and impact glass). A compositionally unusual metal-rich clast was also identified, which may represent an impact melt lithology sourced from a unique Mg-suite parent rock. NWA 7948 has a mingled bulk rock composition (Al2O3 = 21.6 wt% and FeO = 9.4 wt%) and relatively low concentrations of incompatible trace elements (e.g., Th = 1.07 ppm and Sm = 2.99 ppm) compared with Apollo regolith breccias. Comparing the bulk composition of the meteorite with remotely sensed geochemical data sets suggests that the sample was derived from a region of the lunar surface distal from the nearside Th-rich Procellarum KREEP Terrane. Our investigations suggest that it may have been ejected from a nearside highlands-mare boundary (e.g., around Mare Crisium or Orientale) or a cryptomare region (e.g., Schickard-Schiller or Mare smythii) or a farside highlands-mare boundary (e.g., Mare Australe, Apollo basin in the South Pole–Aitken basin). The distinctive mineralogical and geochemical features of NWA 7948 suggest that the meteorite may represent lunar material that has not been reported before, and indicate that the lunar highlands exhibit wide geological diversity. 相似文献
5.
Paul H. Warren 《Meteoritics & planetary science》2005,40(3):477-506
Abstract— New data for lunar meteorites and a synthesis of literature data have significant implications for the interpretation of global Th data and for the Moon's bulk composition. As presently calibrated (Prettyman et al. 2002), the Lunar Prospector gamma‐ray data imply that the average global surface Th = 1.58 μg/g. However, that calibration yields implausibly high concentrations for the three most Th‐poor documented sampling sites, it extrapolates to a nonzero Lunar Prospector Th, ?0.7 μg/g, at zero sample Th, and it results in a misfit toward too‐high Th when compared with the global regolith Th spectrum as constrained using mainly lunaite regolith breccias. Another problem is manifested by Th versus K systematics. Ground truth data plot consistently to the high‐Th/K side of the Prospector data trend, offset by a factor of 1.2. A new calibration is proposed that represents a compromise between the Th levels indicated by ground truth constraints and the Prettyman et al. (2002) calibration. Conservatively assuming that the Th versus K issue is mostly a K problem, the average global surface Th is estimated to be ?1.35 μg/g. The Moon's remarkable global asymmetry in KREEP abundance is even more pronounced than previously supposed. The surface Th concentration ratio between the hemisphere antipodal to the Procellarum basin and the hemisphere centered on Procellarum is reduced to 0.24 in the new calibration. This extreme disparity is most simply interpreted as a consequence of Procellarum's origin at a time when the Moon still contained at least a thin residual layer of a global magma ocean. Allowing for diminution of Th with depth, the extrapolated bulk crustal Th is ?0.73 μg/g. Further extrapolation to bulk Moon Th yields ?0.07 μg/g, which is nearly identical to the consensus estimate for Earth's primitive mantle. Assuming chondritic proportionality among refractory lithophile elements implies Al2O3 of approximately 3.8 wt%. The Moon's bulk mantle mg ratio is only weakly constrained by seismic and mare‐basaltic data. KREEP‐and mare‐free lunaite regolith samples, other thoroughly polymict lunar meteorites, and a few KREEP‐free Apollo highland samples manifest a remarkable anticorrelation on a plot of Al2O3 versus mg. This trend implies that an important component of the Moon is highly magnesian. The bulk Moon is inferred to have an Earth‐like oxide mg ratio of ?87–88 mol%. The close resemblance between the bulk Moon and Earth's primitive mantle extends to moderately volatile elements, most clearly Mn. Unless major proportions of Cr and V are sequestered into deep mantle spinel, remarkably Earth‐like depletions (versus chondrites) are also inferred for bulk Moon Cr and V. 相似文献
6.
Elliptical structure of the lunar South Pole-Aitken basin 总被引:3,自引:0,他引:3
The South Pole-Aitken basin (SP-A) is the largest and oldest basin on the Moon. The basin has usually been interpreted to exhibit a degraded circular structure, but here we demonstrate that the topography, iron and thorium signatures of the basin are well described by ellipses with axes measuring 2400 by 2050 km and centered at −53°, 191°E. Topography, abundances of iron, thorium, and the distribution of mare basalts are all elevated in the northern halves of the ellipses. We also identify an outer topographic ellipse whose semiminor axis scales with the main topographic ellipse by approximately . Taken together, these data imply that the basin was created by an oblique impact along an azimuth of approximately 19°, measured counterclockwise from longitude 191°E. The geometry of the elevated central farside topography surrounding SP-A suggests that it predates the impact. The elliptical ring structures of SP-A and their scaling relationships will help to understand the formation of large and elliptical basins elsewhere in the Solar System. This refined basin shape will also inform local geology, geochemistry, and geophysics of the region. 相似文献
7.
Janet A. USHING G. Jeffrey TAYLOR Marc D. NORMAN Klaus KEIL 《Meteoritics & planetary science》1999,34(2):185-195
Abstract— An important and poorly understood group of rocks found in the ancient lunar highlands is called “feldspathic granulitic impactites.” Rocks of the granulite suite occur at most of the Apollo highlands sites as hand samples, rake samples, clasts in breccias, and soil fragments. Most lunar granulites contain 70–80% modal plagioclase, but they can range from anorthosite to troctolite and norite. Previous studies have led to different interpretations for the thermal history of these rocks, including formation as igneous plutons, long-duration metamorphism at high temperatures, and short-duration metamorphism at low temperatures. This paper reports on a study of 24 polished thin sections of lunar granulites from the Apollo 15, 16, and 17 missions. We identify three different textural types of granulitic breccias: poikilitic, granoblastic, and poikilitic-granoblastic breccias. These breccias have similar equilibration temperatures (1100 ± 50 °C), as well as common compositions. Crystal size distributions in two granoblastic breccias reveal that Ostwald ripening took place during metamorphism. Solid-state grain growth and diffusion calculations indicate relatively rapid cooling during metamorphism (0.5 to 50 °C/year), and thermal modeling shows that they cooled at relatively shallow depths (<200 m). In contrast, we conclude that the poikilitic rocks formed by impact melting, whereas the poikilitic-granoblastic rocks were metamorphosed and may have partially melted. These results indicate formation of lunar granulites in relatively small craters (30–90 km in diameter), physically associated with the impact-melt breccia pile, and possibly from fine-grained fragmental precursor lithologies. 相似文献
8.
S. E. Roberts M. C. McCanta M. M. Jean L. A. Taylor 《Meteoritics & planetary science》2019,54(12):3018-3035
Northwest Africa (NWA) 10986 is a new mingled lunar meteorite found in 2015 in Western Sahara. This impact melt breccia contains abundant impact melt glass and clasts as large as 0.75 mm. Clasts are predominantly plagioclase and pyroxene‐rich and represent both highland and basalt lithologies. Highland lithologies include troctolites, gabbronorites, anorthositic norites, and troctolitic anorthosites. Basalt lithologies include crystalline clasts with large zoned pyroxenes representing very low titanium to low titanium basalts. In situ geochemical analysis of minerals within clasts indicates that they represent ferroan anorthosite, Mg‐suite, and gabbronorite lithologies as defined by the Apollo sample collection. Clasts representing magnesian anorthosite, or “gap” lithologies, are prevalent in this meteorite. Whole rock and in situ impact glass measurements indicate low incompatible trace element concentrations. Basalt clasts also have low incompatible trace element concentrations and lack evolved KREEP mineralogy although pyroxferroite grains are present. The juxtaposition of evolved, basaltic clasts without KREEP signatures and highland lithologies suggests that these basaltic clasts may represent cryptomare. The lithologies found in NWA 10986 offer a unique and possibly a complete cross section view of the Moon sourced outside of the Procellarum KREEP Terrane. 相似文献
9.
William K. Hartmann 《Icarus》1973,18(4):634-636
Effects of intense pre-mare cratering on subsurface structure and seismic properties are considered. A mega-regolith of fragmental material (possibly bonded at depth) exists not only in the terrae but possibly in subsurface layers under some maria. 相似文献
10.
Yosio Nakamura James Dorman Frederick Duennebier David Lammlein Gary Latham 《Earth, Moon, and Planets》1975,13(1-3):57-66
Data relevant to the shallow structure of the Moon obtained at the Apollo seismic stations are compared with previously published results of the active seismic experiments. It is concluded that the lunar surface is covered by a layer of low seismic velocity (V p ? 100 m s?1), which appears to be equivalent to the lunar regolith defined previously by geological observations. This layer is underlain by a zone of distinctly higher seismic velocity at all of the Apollo landing sites. The regolith thicknesses at the Apollo 11, 12, and 15 sites are estimated from the shear-wave resonance to be 4.4, 3.7, and 4.4 m, respectively. These thicknesses and those determined at the other Apollo sites by the active seismic experiments appear to be correlated with the age determinations and the abundances of extralunar components at the sites. 相似文献
11.
Paul H. WARREN Finn ULFF‐M
LLER Gregory W. KALLEMEYN 《Meteoritics & planetary science》2005,40(7):989-1014
Abstract— We have analyzed nine highland lunar meteorites (lunaites) using mainly INAA. Several of these rocks are difficult to classify. Dhofar 081 is basically a fragmental breccia, but much of its groundmass features a glassy‐fluidized texture that is indicative of localized shock melting. Also, much of the matrix glass is swirly‐brown, suggesting a possible regolith derivation. We interpret Dar al Gani (DaG) 400 as an extremely immature regolith breccia consisting mainly of impact‐melt breccia clasts; we interpret Dhofar 026 as an unusually complex anorthositic impact‐melt breccia with scattered ovoid globules that formed as clasts of mafic, subophitic impact melt. The presence of mafic crystalline globules in a lunar material, even one so clearly impact‐heated, suggests that it may have originated as a regolith. Our new data and a synthesis of literature data suggest a contrast in Al2O3‐incompatible element systematics between impact melts from the central nearside highlands, where Apollo sampling occurred, and those from the general highland surface of the Moon. Impact melts from the general highland surface tend to have systematically lower incompatible element concentration at any given Al2O3 concentration than those from Apollo 16. In the case of Dhofar 026, both the bulk rock and a comparatively Al‐poor composition (14 wt% Al2O3, 7 μg/g Sm) extrapolated for the globules, manifest incompatible element contents well below the Apollo 16 trend. Impact melts from Luna 20 (57°E) distribute more along the general highland trend than along the Apollo 16 trend. Siderophile elements also show a distinctive composition for Apollo 16 impact melts: Ni/Ir averaging ?1.8x chondritic. In contrast, lunaite impact‐melt breccias have consistently chondritic Ni/Ir. Impact melts from Luna 20 and other Apollo sites show average Ni/Ir almost as high as those from Apollo 16. The prevalence of this distinctive Ni/Ir ratio at such widely separated nearside sites suggests that debris from one extraordinarily large impact may dominate the megaregolith siderophile component of a nearside region 2300 km or more across. Highland polymict breccia lunaites and other KREEP‐poor highland regolith samples manifest a strong anticorrelation between Al2O3 and mg. The magnesian component probably represents the chemical signature of the Mg‐suite of pristine nonmare rocks in its most “pure” form, unaltered by the major KREEP‐assimilation that is so common among Apollo Mg‐suite samples. The average composition of the ferroan anorthositic component is now well constrained at Al2O3 ?29–30 wt% (implying about 17–19 wt% modal mafic silicates), in good agreement with the composition predicted for flotation crust over a “ferroan” magma ocean (Warren 1990). 相似文献
12.
Alex RUZICKA Gregory A. SNYDER Lawrence A. TAYLOR 《Meteoritics & planetary science》2000,35(1):173-192
Abstract— Crystal‐bearing lunar spherules (CLSs) in lunar breccia (14313, 14315, 14318), soil (68001, 24105), and impact‐melt rock (62295) samples can be classified into two types: feldspathic and olivine‐rich. Feldspathic CLSs contain equant, tabular, or acicular plagioclase grains set in glass or a pyroxene‐olivine mesostasis; the less common olivine‐rich CLSs contain euhedral or skeletal olivine set in glass, or possess a barred‐olivine texture. Bulk‐chemical and mineral‐chemical data strongly suggest that feldspathic CLSs formed by impact melting of mixtures of ferroan anorthosite and Mg‐suite rocks that compose the feldspathic crust of the Moon. It is probable that olivine‐rich CLSs also formed by impact melting, but some appear to have been derived from distinctively magnesian lunar materials, atypical of the Moon's crust. Some CLSs contain reversely‐zoned “relic” plagioclase grains that were not entirely melted during CLS formation, thin (≤5 μm thick) rims of troilite or phosphate, and chemical gradients in glassy mesostases attributed to metasomatism in a volatile‐rich (Na‐K‐P‐rich) environment. Crystal‐bearing lunar spherules were rimmed and metasomatized prior to brecciation. Compound CLS objects are also present; these formed by low‐velocity collisions in an environment, probably an ejecta plume, that contained numerous melt droplets. Factors other than composition were responsible for producing the crystallinity of the CLSs. We agree with previous workers that relatively slow cooling rates and long ballistic travel times were critical features that enabled these impact‐melt droplets to partially or completely crystallize in free‐flight. Moreover, incomplete melting of precursor materials formed nucleation sites that aided subsequent crystallization. Clearly, CLSs do not resemble meteoritic chondrules in all ways. The two types of objects had different precursors and did not experience identical rimming processes, and vapor fractionation appears to have played a less important role in establishing the compositions of CLSs than of chondrules. However, the many detailed similarities between CLSs and chondrules indicate that it is more difficult to rule out an origin for some chondrules by impact melting than some have previously argued. Differences between CLSs, chondrules, and their host rocks possibly can be reconciled with an impact‐melt origin for some chondrules when different precursors, the higher gravity of the Moon compared to chondrite parent bodies, and the likely presence of nebular gas during chondrule formation are taken into account. 相似文献
13.
Lunar Penetrating Radar(LPR) based on the time domain Ultra-Wideband(UWB) technique onboard China's Chang'e-3(CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed. 相似文献
14.
Naosuke Sekiguchi 《Earth, Moon, and Planets》1980,23(1):99-107
The photometric observations of the lunar surface during lunar eclipses were carried out on four nights between 1972 to 1978, using the 91 cm reflector of the Dodaira Station of the Tokyo Astronomical Observatory. The photometry was performed in B-, V-, and R-colours, and arranged in accordance with the angular distance from the centre of the Earth's shadow. The results do not show any large systematic differences between the four nights, showing no support for Danjon's proposition. 相似文献
15.
Marc D. Norman Lars E. Borg Lawrence E. Nyquist Donald D. Bogard 《Meteoritics & planetary science》2003,38(4):645-661
Abstract— The petrology, major and trace element geochemistry, and Nd‐Ar‐Sr isotopic compositions of a ferroan noritic anorthosite clast from lunar breccia 67215 have been studied in order to improve our understanding of the composition, age, structure, and impact history of the lunar crust. The clast (designated 67215c) has an unusually well preserved igneous texture. Mineral compositions are consistent with classification of 67215c as a member of the ferroan anorthositic suite of lunar highlands rocks, but the texture and mineralogy show that it cooled more rapidly and at shallower depths than did more typical ferroan anorthosites (FANs). Incompatible trace element concentrations are enriched in 67215c relative to typical FANs, but diagnostic signatures such as Ti/Sm, Sc/Sm, plagiophile element ratios, and the lack of Zr/Hf and Nb/Ta fractionation show that this cannot be due to the addition of KREEP. Alternatively, 67215c may contain a greater fraction of trapped liquid than is commonly present in lunar FANs. 147Sm‐143Nd isotopic compositions of mineral separates from 67215c define an isochron age of 4.40 ± 0.11 Gyr with a near‐chondritic initial ε143Nd of +0.85 ± 0.53. The 40Ar‐39Ar composition of plagioclase from this clast records a post‐crystallization thermal event at 3.93 ± 0.08 Gyr, with the greatest contribution to the uncertainty in this age deriving from a poorly constrained correction for lunar atmosphere 40Ar. Rb‐Sr isotopic compositions are disturbed, probably by the same event recorded by the Ar isotopic compositions. Trace element compositions of FANs are consistent with crystallization from a moderately evolved magma ocean and do not support a highly depleted source composition such as that implied by the positive initial ε143Nd of the ferroan noritic anorthosite 62236. Alternatively, the Nd isotopic systematics of lunar FANs may have been subject to variable degrees of modification by impact metamorphism, with the plagioclase fraction being more strongly affected than the mafic phases. 147Sm‐143Nd isotopic compositions of mafic fractions from the 4 ferroan noritic anorthosites for which isotopic data exist (60025, 62236, 67016c, 67215c) define an age of 4.46 ± 0.04 Gyr, which may provide a robust estimate for the crystallization age of lunar ferroan anorthosites. 相似文献
16.
Anton M. Dainty M. Nafi Toksöz Kenneth R. Anderson P. Jacques Pines Y. Nakamura G. Latham 《Earth, Moon, and Planets》1974,9(1-2):11-29
Long, reverberating trains of seismic waves produced by impacts and moonquakes may be interpreted in terms of scattering in a surface layer overlying a non-scattering elastic medium. Model seismic experiments are used to qualitatively demonstrate the correctness of the interpretation. Three types of seismograms are found, near impact, far impact and moonquake. Only near impact and moonquake seismograms contain independent information. Details are given in the paper of the modelling of the scattering processes by the theory of diffusion.Interpretation of moonquake and artificial impact seismograms in two frequency bands from the Apollo 12 site indicates that the scattering layer is 25 km thick, with a Q of 5000. The mean distance between scatterers is approximately 5 km at 25 km depth and approximately 2 km at 14 km depth; the density of scatterers appears to be high near the surface, decreasing with depth. This may indicate that the scatterers are associated with cratering, or are cracks that anneal with depth. Most of the scattered energy is in the form of scattered surface waves.Communication presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973. 相似文献
17.
We study the velocity fields in the region of quiet solar filaments using spectral observations at the Sayan Solar Observatory (ISTP, Irkutsk). Once the series of spectral images have been processed, maps of the two-dimensional distribution of the velocity and its variations in the chromosphere (in the Hβ λ = 486.13 nm line) and the photosphere (in the Fe I λ = 486.37 nm line) are constructed. The motions in the filaments have been found to consist of steady and periodic components. Our analysis of the spatial distributions of various oscillation modes shows that the short-period (<10 min) oscillations propagate mainly vertically and are observed at the filament edges, on scales of several arcseconds. The quasi-hour (>40 min) oscillations propagate mostly along the filament at a small angle to its axis. The intensity in the Hβ core in individual fragments of some filaments varies with a period of about one hour. The observed velocity structures in the filaments and the imbalance of steady motions on the opposite sides of the filaments can be explained in terms of the model of a twisted fine-structure magnetic flux tube. 相似文献
18.
《天文和天体物理学研究(英文版)》2016,(4)
We study the dimensionless spin parameter j ≡ c J/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that jmax ~0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M 0.5 M⊙. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f /f_K)- 0.42(f /f _K)2+0.48(f /f_K)3is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency f_K. 相似文献
19.
Goldreich (Goldreich, P. [1967]. J. Geophys. Res. 72, 3135) showed that a lunar core of low viscosity would not precess with the mantle. We show that this is also the case for much of lunar history. But when the Moon was close to the Earth, the Moon’s core was forced to follow closely the precessing mantle, in that the rotation axis of the core remained nearly aligned with the symmetry axis of the mantle. The transition from locked to unlocked core precession occurred between 26.0 and 29.0 Earth radii, thus it is likely that the lunar core did not follow the mantle during the Cassini transition. Dwyer and Stevenson (Dwyer, C.A., Stevenson, D.J. [2005]. An Early Nutation-Driven Lunar Dynamo. AGU Fall Meeting Abstracts GP42A-06) suggested that the lunar dynamo needs mechanical stirring to power it. The stirring is caused by the lack of locked precession of the lunar core. So, we do not expect a lunar dynamo powered by mechanical stirring when the Moon was closer to the Earth than 26.0-29.0 Earth radii. A lunar dynamo powered by mechanical stirring might have been strongest near the Cassini transition. 相似文献
20.
Stuart Ross Taylor 《Earth, Moon, and Planets》1973,7(1-2):181-195
The principal rock types in the highlands are highland basalt (gabbroic anorthosite) with 28% Al2O3 and low K Fra Mauro basalt with 18% Al2O3. The chemistry of the highland soils and breccias can be represented by simple mixing models involving these rock types as major constituents. The mixing occurred during the intense highland cratering. Layering observed at the Apennine Front is interpreted as produced the Serenitatis basin collision. The plains-forming Cayley Formation and the Descartes Formation are not volcanic, but are derived from pre-existing highland crust.Although the overall chemical composition of the Moon has been affected by pre-accretion processes (e.g. loss of volatile elements), the composition of the highlands is mainly the result of postaccretion melting and element fractionation. Thus the individual rock types show involatile element distribution patterns, relative to primitive abundances, indicative of solid-liquid equilibria, evidence of post-accretion lunar igneous activity.The chemistry of the primitive green glass component (15426) indicates that the abundance of the involatile elements (REE, Ba, Zr, Hf, Th and U) in the source regions is at most only 2–3 times the abundances in chondrites.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973. 相似文献